人教A版高中数学必修五2.2等差数列(二)
人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】

2.2等差数列的概念与通项公式一、教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。
2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。
②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。
二、教学重点:研究等差数列的概念以及通项公式的推导。
教学难点;(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
三、学情及导入分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。
本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.弄清楚等差数列与通项公式的含义以及通项公式的推导过程。
四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新1、知识链接;数列的通项公式与递推关系.学生回答,引导温故知新。
由复习引入,通过数学知识的内部提出问题。
知归纳抽象形成概念比较分析,深化认识创设问题情景:1.下述数列有什么共同特点?根据下述数列的共同特点,可以给出等差数列的定义吗?能将以上的文字语言转换成数学符号语言吗?[来源:学#科#网Z#X#X#K]引例1:从0开始,将5的倍数从小到大排列,得到的数列?引例2:从1开始,将自然数从小到大排列,得到的数列?引例3:为了保证考试笔试的秩序,每次放入2个人考试,依次排列下去,已经考试的人员组成一个什么数列?得出等差数列的定义:从第二项起,每一项与它前一项的差(公差d)为同一常数,这样的一组数列,叫做等差数列”。
人教A版高中数学必修五第二章2.2等差数列的性质同步检测题

人教A版高中数学必修五第二章2.2等差数列的性质同步检测题一、选择题1.在等差数列{a n}中,若a2=4,a4=2,则a6=()A.-1B.0C.1 D.62.已知等差数列{a n},则使数列{b n}一定为等差数列的是() A.b n=-a n B.b n=a2nC.b n=a n D.b n=1 a n3.在等差数列{a n}中,若a2=1,a6=-1,则a4=() A.-1 B.1C.0 D.-1 24.等差数列{a n}的公差d<0,且a2·a4=12,a2+a4=8,则数列{a n}的通项公式是()A.a n=2n-2(n∈N*) B.a n=2n+4(n∈N*)C.a n=-2n+12(n∈N*) D.a n=-2n+10(n∈N*)5.如果数列{a n}是等差数列,则下列式子一定成立的有()A.a1+a8<a4+a5B.a1+a8=a4+a5C.a1+a8>a4+a5D.a1a8=a4a56.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为() A. 3 B.±3C.-33D.- 37.等差数列{a n}中,a5+a6=4,则log2(2a1·2a2·…·2a10)=() A.10 B.20C.40 D.2+log25二、填空题8.等差数列{a n}中,a15=33,a25=66,则a35=________.9.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=________.10.在等差数列{a n }中,若a 5=a ,a 10=b ,则a 15=________.11.数列{a n }满足递推关系a n =3a n -1+3n -1(n ∈N *,n ≥2),a 1=5,则使得数列 ⎭⎬⎫⎩⎨⎧+n n m a 3为等差数列的实数m 的值为________. 12.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的公差分别为d 1和d 2,则d 1d 2的值为________. 三、解答题13.梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级宽度依次成等差数列,计算中间各级的宽度.14.若三个数a -4,a +2,26-2a 适当排列后构成递增等差数列,求a 的值和相应的数列.15.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?16.已知数列{a n}的通项公式为a n=pn2+qn(常数p,q∈R).(1)当p和q满足什么条件时,数列{a n}是等差数列?(2)求证:对任意的实数p和q,数列{a n+1-a n}都是等差数列.人教A 版高中数学必修五第二章2.2等差数列的性质同步检测题解析一、选择题1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6解析:由等差数列的性质得a 6=2a 4-a 2=2×2-4=0,选B.答案:B2.已知等差数列{a n },则使数列{b n }一定为等差数列的是( )A .b n =-a nB .b n =a 2nC .b n =a nD .b n =1a n解析:∵数列{a n }是等差数列,∴a n +1-a n =d (常数).对于A ,b n +1-b n =a n -a n +1=-d ,正确;对于B 不一定正确,如a n =n ,则b n=a 2n =n 2,显然不是等差数列;对于C 和D ,a n 及1a n不一定有意义,故选A. 答案:A3.在等差数列{a n }中,若a 2=1,a 6=-1,则a 4=( )A .-1B .1C .0D .-12解析:∵2a 4=a 2+a 6=1-1=0,∴a 4=0.答案:C4.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( )A .a n =2n -2(n ∈N *)B .a n =2n +4(n ∈N *)C .a n =-2n +12(n ∈N *)D .a n =-2n +10(n ∈N *)解析:由⎪⎩⎪⎨⎧<=+=∙,,,08124242d a a a a ⇒⎩⎨⎧==,,2642a a ⇒⎩⎨⎧-==,,281d a ∴a n =a 1+(n -1)d =8+(n -1)·(-2)=-2n +10.5.如果数列{a n }是等差数列,则下列式子一定成立的有( )A .a 1+a 8<a 4+a 5B .a 1+a 8=a 4+a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5解析:由等差数列的性质有a 1+a 8=a 4+a 5,故选B.答案:B6.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为() A . 3 B .±3C .-33 D .- 3解析:由等差数列的性质得a 1+a 7+a 13=3a 7=4π,∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan 2π3=- 3.答案:D7.等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A .10B .20C .40D .2+log 25解析:由等差数列的性质知a 1+a 2+…+a 10=5(a 5+a 6)=5×4=20,从而log 2(2a 1·2a 2·…·2a 10)=log 2220=20.答案:B二、填空题8.等差数列{a n }中,a 15=33,a 25=66,则a 35=________.解析:由a 25是a 15与a 35的等差中项知2a 25=a 15+a 35,∴a 35=2a 25-a 15=2×66-33=99.答案:999.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.解析:由等差数列的性质可知,a 2+a 8=a 4+a 6=a 3+a 7,∴a 2+a 4+a 6+a 8=37×2=74.10.在等差数列{a n }中,若a 5=a ,a 10=b ,则a 15=________.解析:设数列{a n }的公差为d .法一:由题意知⎩⎨⎧=+==+=,,b d a a a d a a 9411015 解得⎪⎪⎩⎪⎪⎨⎧-=-=,,55491a b d b a a∴a 15=a 1+14d =9a -4b 5+14×b -a 5=2b -a .法二:d =a 10-a 510-5=b -a 5, ∴a 15=a 10+5d =b +5×b -a 5=2b -a .法三:∵a 5,a 10,a 15成等差数列,∴a 5+a 15=2a 10.∴a 15=2a 10-a 5=2b -a .答案:2b -a11.数列{a n }满足递推关系a n =3a n -1+3n -1(n ∈N *,n ≥2),a 1=5,则使得数列⎭⎬⎫⎩⎨⎧+n n m a 3为等差数列的实数m 的值为________. 解析:由题设知a n +m 3n -a n -1+m 3n -1=3a n -1+3n -1+m 3n -a n -1+m 3n -1 =3n -1-2m 3n=1-1+2m 3n 为常数, 则1+2m =0,故m =-12.答案:-1212.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的公差分别为d 1和d 2,则d 1d 2的值为________. 解析:n -m =3d 1,d 1=13(n -m ).又n -m =4d 2,d 2=14(n -m ).∴d 1d 2=13·(n -m )14·(n -m )=43. 答案:43三、解答题13.梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级宽度依次成等差数列,计算中间各级的宽度.解析:由题意可设最低一级宽度为a 1,梯子的宽度依次成等差数列,设为{a n },依题意a 12=33,由a 12=a 1+(12-1)d ⇒33=110+11d ,∴d =-7,∴a n =110+(n -1)×(-7),∴a 2=103,a 3=96,a 4=89,a 5=82,a 6=75,a 7=68,a 8=61,a 9=54,a 10=47,a 11=40,故梯子中间各级的宽度依次为103,96,89,82,75,68,61,54,47,40.14.若三个数a -4,a +2,26-2a 适当排列后构成递增等差数列,求a 的值和相应的数列.解析:显然a -4<a +2,(1)若a -4,a +2,26-2a 成等差数列,则(a -4)+(26-2a )=2(a +2),∴a =6,相应的等差数列为:2,8,14.(2)若a -4,26-2a ,a +2成等差数列,则(a -4)+(a +2)=2(26-2a ),∴a =9,相应的等差数列为:5,8,11.(3)若26-2a ,a -4,a +2成等差数列,则(26-2a )+(a +2)=2(a -4),∴a =12,相应的等差数列为:2,8,14.15.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?解析:设两个数列分别为{a n }与{b k }.则a 1=5,d 1=8-5=3,通项公式a n =5+(n -1)·3=3n +2;b 1=3,d 2=7-3=4,通项公式b k =3+(k -1)·4=4k -1.设数列{a n }的第n 项与{b k }的第k 项相同, 即a n =b k ,也就是3n +2=4k -1,∴n =43k -1,而n ∈N *,k ∈N *,∴k 必须为3的倍数,设k =3r (r ∈N *),得n =4r -1.由条件知⎩⎨⎧≤-≤≤≤,,10014110031r r 解得12≤r ≤1014.又r ∈N *,∴1≤r ≤25(r ∈N *).∴共有25个共同的项.16.已知数列{a n }的通项公式为a n =pn 2+qn (常数p ,q ∈R).(1)当p 和q 满足什么条件时,数列{a n }是等差数列?(2)求证:对任意的实数p 和q ,数列{a n +1-a n }都是等差数列. 解析:(1)设数列{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q , 若2pn +p +q 是一个与n 无关的常数,则2p =0,即p =0,q ∈R.∴当p =0,q ∈R 时,数列{a n }是等差数列.(2)证明:∵a n +1-a n =2pn +p +q ,∴a n +2-a n +1=2p (n +1)+p +q ,∴(a n +2-a n +1)-(a n +1-a n )=[2p (n +1)+p +q ]-(2pn +p +q )=2p (常数). ∴对任意的实数p 和q ,数列{a n +1-a n }都是等差数列.。
高中数学人教A版必修5第二章2.2等差数列2课时课件

a2=a1+d,
实际由等差数列定义有
a3=a2+d =a1+2d, a4=a3+d =a1+3d, 由上式猜测: an=a1+(n-1)d.
a2-a1=d, a3-a2=d,
a4-a3=d, ……
an-an-1=d,
联想:形如递推公式a n
- an-1
=
f
(n),
求通项公式可运用累加法
各式两边分别相加得
问题1. 刚才写出的 4 个数列, 它们有什么共同的 规律? 请你给有这种规律的数列设计一个名称.
(1) 5, 10, 15, 20, 25, 30, 35, … (2) 18, 15.5, 13, 10.5, 8, 5.5, 3, 0.5. (3) 10072, 10144, 10216, 10288, 10360. (4) 60, 58, 56, 54, 52, 50, 48, 46, 44, 42.
问题1. 等差数列的应用较为广泛, 如: 能被 7 整 除的三位正整数有多少个? 一部梯子有 15 级, 最下 一级宽 61cm, 最上一级宽 40cm, 从下到上的第 10 级宽是多少? 你能用等差数列知识解决这类问题吗?
同样, 梯子的各级宽依次构成等差数列. 设这个数列为{bn}, 则 b1=61, b15=40. 由通项公式 b15=b1+(15-1)d 得
(2) 是等差数列, 它的首项是原数列首项a1, 公差是原 数列公差的 2 倍, 即2d.
(3) 也是等差数列, 它的首项是原数列首项a7, 公差是 原数列公差的 7 倍, 即7d.
5. 已知{an}是等差数列. (1) 2a5=a3+a7 是否成立? 2a5=a1+a9 呢? 为什么? (2) 2an=an-1+an+1 (n>1) 是否成立? 据此你能得出 什么结论?
人教a版必修五课件:等差数列的性质(52页)

2.在等差数列{an}中,若 an+am=ap+aq,则 m+n=p +q 吗?
提示:不一定,若{an}是常数列,则 m+n=p+q 不一 定成立.若{an}不是常数列,则 m+n=p+q 成立.
3.等差数列的“子数列”有什么性质?
提示:若数列{an}是公差为 d 的等差数列,则 (1){an}去掉前几项后余下的项仍组成公差为 d 的等差 数列; (2)奇数项数列{a2n-1}是公差为 2d 的等差数列; 偶数项数列{a2n}是公差为 2d 的等差数列; (3)若{kn}成等差数列,则{akn}也是等差数列.
等差数列.
思考感悟
1.等差数列的通项同一次函数间是什么关系?
提示:(1)当等差数列的公差 d=0 时,其通项 an=a1, 是不随自变量变化而变化的常数, 是常函数, 不是一次函数. (2)当等差数列的公差 d≠0 时,其通项 an=a1+(n-1)d =dn+(a1-d),显然其是关于 n 的一次函数.
ai+an-i+1=„
.
(4)若数列{an}为等差数列,则数列{λan+b}(λ,b 是常 数)是公差为 λd 的等差数列. (5)若数列{an}为等差数列, 则下标成等差数列且公差为 m 的项 ak,ak+m,ak+2m,„(k,m∈N*)组成公差为 md 的等 差数列. (6)若数列{an}与{bn}均为等差数列,则{Aan+Bbn}也是
第二章
数列
2.2 等差数列
第2课时 等差数列的性质
课前自主预习 课堂互动探究
随堂知能训练
课时作业
目标了然于胸,让讲台见证您的高瞻远瞩
1.进一步了解等差数列的项与序号之间的规律. 2.理解等差数列的性质. 3.掌握等差数列的性质及其应用.
高中数学 2.2等差数列的性质导学案 新人教A版必修5

2.2等差数列性质预习案【学习目标】1.准确理解等差数列的性质,掌握由等差数列的通项公式研究其图象的方法,提高运算求解能力.2.通过对等差数列通项公式的推导和等差数列性质的探究,进一步渗透数形结合思想、函数思想及方程思想.3.激情参与、惜时高效,激励学生自主探究,发现规律,感受等差数列的内在奥妙. 【重点】:等差数列的性质. 【难点】:等差数列的性质的应用. 【学法指导】1. 阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法;2. 完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测;3. 将预习中不能解决的问题标出来,并写到后面“我的疑惑”处.Ⅰ.相关知识1. 等差数列的通项公式是什么?与一次函数有什么关系?2. 利用等差数列的通项公式可以解决那些问题?3. 若a 、A 、b 成等差数列,则A 叫做a 、b 的________,即A=_______________4. 判断一个数列是否为等差数列的方法有哪些? Ⅱ.教材助读1.依据等差数列的概念,你能写出等差数列的通项公式吗?公差对数列的增减性有何影响?2.已知等差数列的公差为d ,第m 项为m a ,第n 项为n a (n>m )则n a =m a +_________3.已知一个等差数列的首项是1a ,公差为d ,(1)将数列的前m 项去掉,其余各项组成的数列是等差数列吗?如果是,它的首项和公差各是什么?(2)取出数列的所有奇数项,组成一个新的数列,这个数列是等差数列吗?如果是,它的首项和公差各是什么?(3)取出数列中所有项数是7的倍数的项,组成一个新的数列,这个数列是等差数列吗?如果是,它的首项和公差各是什么?(4)数列,,,543432321a a a a a a a a a ++++++......是等差数列吗?如果是,它的首项和公差各是什么?【预习自测】1.在△ABC 中,A 、B 、C 成等差数列,则B 等于( ) A .30 B.60 C.90 D.不能确定2.若{a n }是等差数列,则,,,543432321a a a a a a a a a ++++++987a a a ++,……,n n n a a a 31323++--,……( )A.一定不是等差数列B.一定是递增数列C.一定是等差数列D .一定是递减数列 3.已知等差数列{a n }中,741a a a ++=39,33852=++a a a ,则963a a a ++等于( ) A .30 B.27 C.24D.21【我的疑惑】探究案Ⅰ.质疑探究——质疑解惑、合作探究 探究一:等差数列的性质问题1:如果数列{a n}是等差数列,首项为a1,公差为d,则通项公式a n=____________=___________.其中变化的量为n,a n,则点(n,a n)在直线____________上;点(n,a n)的横坐标每增加1,函数值增加_____.问题2:等差数列的性质:已知一个等差数列{a n},其中首项是a1,公差为d,(1)下标成等差数列且公差为m的项a k,a k+m,a k+2m,…(k,m∈N*)组成公差为_____的等差数列.(2)a1+a2,a3+a4,a5+a6,…组成公差为_____的等差数列. a1+a2+…+a m,a m+1+a m+2+…+a2m,a2m+1+a2m+2+…+a3m,…组成公差为_____的等差数列.(3)若{b n}是公差为d0的等差数列,则数列{pa n+qb n}(p,q为常数)是公差为________的等差数列.(4)若{a n}是有穷等差数列,则与首末两项等距离的两项之和都_______,且等于_______________.(5)若正整数m,n,p,q满足m+n=p+q,则a m+a n与a p+a q相等吗?说明理由.(6)若m+n=2p,则a m+a n_____2a p,a m+a n_____a2p(填“=”或“≠”).【归纳总结】等差数列的性质有哪些?数列{a n}为等差数列,首项是a1,公差为d.(1)d>0,{a n}是递增数列;d<0,{a n}是递减数列;d=0,{a n}是常数列.(2)a n=a m+(n-m)d(m,n∈N*).(3)a1+a2+…+a m,a m+1+a m+2+…+a2m,…组成公差为m2d的等差数列.(4)a m,a2m,a3m,…,a km,…组成公差为md的等差数列.(5)若数列{b n}是公差为b的等差数列,p,q为常数,则{pa n±qb n}是公差为pd±qb的等差数列.(6)若m,n,p,q∈N*,且满足m+n=p+q,则a m+a n=a p+a q.探究二:等差数列性质的应用(重难点)【例1】若{a n}是等差数列,a15=8,a60=20,求a75的值. 【规律方法总结】等差数列{an}的性质:(1)a1+a n=a2+a n-1=….(2)m,n,p,q∈N*,且m+n=p+q a m+a n=a p+a q.(3)若m,n,p∈N*,且m,n,p 成等差数列,则a m,a n,a p成等差数列.(4)a n=a m+(n-m)d.(5)若数列{a n}是等差数列,则a n=an+b(a,b为常数,n∈N*).(6)若{a n}与{b n}均为等差数列,则{a n±b n}也是等差数列.【拓展提升】已知等差数列{a n}中,a3a7=-16,a4+a6=0,求{a n}的通项公式.探究三:综合应用(重难点)【例2】数列{a n}的首项为3,{b n}为等差数列且b n=a n+1-a n(n∈N*).若b3=-2,b10=12,则a8等于( )A.0B.3C.8D.11【规律方法总结】(1)求通项公式常用的方法:①不完全归纳法;②公式法;③叠加法;④累积法.(2)判断一个数列是等差数列常用的方法有:①定义法;②等差中项法;③函数法:若a n=an+b(a,b为常数),则数列{a n}是等差数列.(3)求数列的最大(小)项常用的方法:①不等式组法;②函数单调性判断法.Ⅱ.我的知识网络图训练案一、基础巩固------把简单的事做好就叫不简单!1.已知等差数列{a n}中,a7+a9=16,a4=1,则a12的值是( )A.15 B.30 C.31 D.642.已知{a n}是等差数列,a3+a11=40,则a6-a7+a8等于( )A.20 B.48 C.60 D.723. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有( ).A.a1+a101>0 B.a2+a100<0 Ca3+a100≤0 D.a51=04.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m等于( ) A.4 B.6 C.8 D.125. 在等差数列{a n}中,a18=95,a32=123,a n=199,则n=________.6. 已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=_________7. 设数列{a n},{b n}都是等差数列, 若711=+ba,2133=+ba, 则=+55ba___。
人教版高中数学必修五 2.2 等差数列

知识2:等差中项 问题导思:
如果三个数 a,A,b 成等差数列,那么它们之间有怎样的 数量关系? 答:因为 A-a=b-A,所以 a+b=2A.
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差中项.它 们之间的关系式是 a+b=2A .
4.已知等差数列{an}:-1,2,5,8,…,求公差 d 和 a10. 解:∵a1=-1, ∴d=a2-a1=2-(-1)=3, ∴a10=a1+(10-1)×d=-1+9×3=26.
变式训练 3:《九章算术》“竹九节”问题:现有一根 9 节的竹
子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,
下面 3 节的容积共 4 升,则第 5 节的容积为( )
A.1 升
B.6676升
C.4474升
D.3373升
【解析】设所构成数列为{an},且其首项为 a1,公差为 d, 依题意得aa17++aa28++aa39+=a44,=3, 即43aa11++62d1=d=3,4,
2.等差数列的通项公式可以解决以下三类问题: (1)已知 an,a1,n,d 中的任意三个量,可求出第四个量; (2)已知数列{an}的通项公式,可以求出等差数列{an}中的 任一项,也可以判断某一个数是否是该数列中的项; (3)若已知{an}的通项公式是关于 n 的一次函数或常数函 数,则可判断{an}是等差数列.
∴an=a1+(n-1)×5=5n-4, ∴a80=5×80-4=396.
(2)a1=a2-d=12+2=14, ∴an=14+(n-1)×(-2)=-20, ∴n=18.
类型3:等差数列的实际应用问题 例 3:梯子的最高一级宽 33 cm,最低一级宽 110 cm,中间还有 10 级,各级宽度依次成等差数列,计算中间各级的宽度.
2021年高中数学人教A版必修五第二章数列第二课时 等差数列的前n项和的最值及应用

5
课前预习
课堂互动
课堂小结
@《创新设计》
知识点2 裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求和.
常见的拆项方法:
(1)n(n1+k)=_1k__1n_-__n_+1__k__;
(2)
1 n+k+
=_1k___n_+___k_-___n__;
n
(3)(2n-1)1(2n+1)=_12_2_n__1-__1_-__2_n_1+__1__.
绕天心石砌9块扇面形石板构成第一环,向外每环依次
增加9块.下一层的第一环比上一层的最后一环多9块.向
外每环依次也增加9块.已知每层环数相同,且下层比中
层多729块,则三层共有扇面形石板(不含天心石)( )
A.3 699块
B.3 474块
C.3 402块
D.3 339块
@《创新设计》
18
课前预习
课堂互动
7
课前预习
课堂互动
@《创新设计》 课堂小结
@《创新设计》
2.数列{an}的通项公式 an=
1 n+
n+1,其前
n
项和
Sn=9,则
n=________.
解析
an=
1 n+
n+1=
n+1-
n,
∴Sn=( 2-1)+( 3- 2)+…+( n+1- n)
= n+1-1=9,∴n=99. 答案 99
8
课前预习
25
课前预习
课堂互动
课堂小结
(1)若{an}是等差数列,则ana1n+1=1da1n-an1+1,ana1n+2=21da1n-an1+2.
(2)n(n1+k)=1k1n-n+1 k.
人教A版高中数学教材目录(全)

人教A 版高中数学目录必修1第一章集合与函数概念1 1..1 1 集合集合 1 1..2 2 函数及其表示函数及其表示 1 1..3 3 函数的基本性质函数的基本性质第二章基本初等函数(Ⅰ)2.1 1 指数函数指数函数 2 2..2 2 对数函数对数函数 2 2..3 3 幂函数幂函数第三章函数的应用3.1 1 函数与方程函数与方程 3 3..2 2 函数模型及其应用函数模型及其应用必修2第一章空间几何体1 1..1 1 空间几何体的结构空间几何体的结构 1 1..2 2 空间几何体的三视图和空间几何体的三视图和直观图1 1..3 3 空间几何体的表面积与空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 2..1 1 空间点、直线、平面之空间点、直线、平面之间的位置关系2 2..2 2 直线、平面平行的判定直线、平面平行的判定及其性质 2 2..3 3 直线、平面垂直的判定直线、平面垂直的判定及其性质第三章直线与方程3.1 1 直线的倾斜角与斜率直线的倾斜角与斜率 3 3..2 2 直线的方程直线的方程3 3..3 3 直线的交点坐标与距离直线的交点坐标与距离公式必修3第一章算法初步1 1..1 1 算法与程序框图算法与程序框图 1 1..2 2 基本算法语句基本算法语句 1 1..3 3 算法案例算法案例阅读与思考割圆术第二章统计2 2..1 1 随机抽样随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应 2 2..2 2 用样本估计总体用样本估计总体阅读与思考生产过程中的质量控制图2 2..3 3 变量间的相关关系变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 3..1 1 随机事件的概率随机事件的概率阅读与思考天气变化的认识过程 3 3..2 2 古典概型古典概型 3 3..3 3 几何概型几何概型必修4第一章三角函数1 1..1 1 任意角和弧度制任意角和弧度制 1 1..2 2 任意角的三角函数任意角的三角函数1 1..3 3 三角函数的诱导公式三角函数的诱导公式 1 1..4 4 三角函数的图象与性质三角函数的图象与性质 1 1..5 5 函数函数y=Asin y=Asin((ωx+ψ) 1 1..6 6 三角函数模型的简单应三角函数模型的简单应用第二章平面向量 2 2..1 1 平面向量的实际背景及平面向量的实际背景及基本概念 2 2..2 2 平面向量的线性运算平面向量的线性运算 2 2..3 3 平面向量的基本定理及平面向量的基本定理及坐标表示 2 2..4 4 平面向量的数量积平面向量的数量积 2 2..5 5 平面向量应用举例平面向量应用举例第三章三角恒等变换3 3..1 1 两角和与差的正弦、余两角和与差的正弦、余弦和正切公式 3 3..2 2 简单的三角恒等变换简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n 项和2.4等比数列2.5等比数列的前n 项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用的应用3.4生活中的优化问题举例举例选修1-2第一章第一章 统计案例统计案例 1.1 回归分析的基本思想及其初步应用思想及其初步应用 1.2 独立性检验的基本思想及其初步应用本思想及其初步应用第二章第二章 推理与证明推理与证明 2.1 合情推理与演绎证明证明2.2 直接证明与间接证明证明第三章第三章 数系的扩充与复数的引入与复数的引入3.1数系的扩充和复数的概念的概念3.2复数代数形式的四则运算则运算第四章第四章 框图框图 4.1流程图流程图 4.2结构图结构图选修2-1第一章第一章 常用逻辑用语1.1 命题及其关系命题及其关系 1.2 充分条件与必要条件条件1.3 简单的逻辑联结词1.4 全称量词与存在量词量词第二章第二章 圆锥曲线与方程方程2.1 曲线与方程曲线与方程2.2 椭圆椭圆 2.3 双曲线双曲线 2.4 抛物线抛物线第三章第三章 空间向量与立体几何立体几何3.1 空间向量及其运算3.2 立体几何中的向量方法量方法选修2-2第一章第一章 导数及其应用1.1 变化率与导数变化率与导数1.2 导数的计算导数的计算1.3 导数在研究函数中的应用中的应用1.4 生活中的优化问题举例题举例1.5 定积分的概念定积分的概念 1.6 微积分基本定理微积分基本定理 1.7 定积分的简单应用第二章第二章 推理与证明推理与证明 2.1 合情推理与演绎推理推理2.2 直接证明与间接证明证明2.3 数学归纳法数学归纳法第三章 数系的扩充与复数的引入与复数的引入3.1 数系的扩充和复数的概念数的概念3.2 复数代数形式的四则运算四则运算选修2-3第一章第一章 计数原理计数原理1.1 分类加法计数原理与分步乘法计数原理理与分步乘法计数原理1.2 排列与组合排列与组合 1.3 二项式定理二项式定理第二章第二章 随机变量及其分布其分布2.1 离散型随机变量及其分布列及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差的均值与方差2.4 正态分布正态分布 第三章第三章 统计案例统计案例3.1 回归分析的基本思想及其初步应用思想及其初步应用 3.2 独立性检验的基本思想及其初步应用本思想及其初步应用选修3-1第一讲第一讲 早期的算术与几何与几何第二讲第二讲 古希腊数学古希腊数学 第三讲第三讲 中国古代数学瑰宝学瑰宝第四讲第四讲 平面解析几何的产生何的产生第五讲第五讲微积分的诞生 第六讲第六讲 近代数学两巨星巨星第七讲第七讲 千古谜题千古谜题第八讲第八讲 对无穷的深入思考入思考第九讲第九讲 中国现代数学的开拓与发展学的开拓与发展选修3-2选修3-3第一讲第一讲 从欧氏几何看球面看球面第二讲第二讲 球面上的距离和角离和角第三讲第三讲 球面上的基本图形本图形第四讲第四讲 球面三角形球面三角形 第五讲第五讲 球面三角形的全等的全等第六讲第六讲 球面多边形与欧拉公式与欧拉公式第七讲第七讲 球面三角形的边角关系边角关系第八讲第八讲 欧氏几何与非欧几何非欧几何选修3-4第一讲第一讲 平面图形的对称群对称群第二讲第二讲 代数学中的对称与抽象群的概念对称与抽象群的概念 第三讲第三讲 对称与群的故事故事选修4-1第一讲第一讲 相似三角形的判定及有关性质的判定及有关性质第二讲 直线与圆的位置关系位置关系第三讲 圆锥曲线性质的探讨质的探讨选修4-2第一讲 线性变换与二阶矩阵二阶矩阵第二讲 变换的复合与二阶矩阵的乘法与二阶矩阵的乘法 第三讲 逆变换与逆矩阵矩阵第四讲 变换的不变量与矩阵的特征向量量与矩阵的特征向量选修4-3 选修4-4第一讲第一讲 坐标系坐标系 第二讲第二讲 参数方程参数方程选修4-5第一讲 不等式和绝对值不等式对值不等式第二讲 证明不等式的基本方法的基本方法第三讲 柯西不等式与排序不等式与排序不等式第四讲 数学归纳法证明不等式证明不等式选修4-6第一讲第一讲 整数的整除整数的整除 第二讲第二讲 同余与同余方程方程第三讲第三讲 一次不定方程第四讲第四讲 数伦在密码中的应用中的应用选修4-7第一讲第一讲 优选法优选法 第二讲第二讲 试验设计初步选修4-8选修4-9第一讲第一讲 风险与决策的基本概念的基本概念第二讲第二讲 决策树方法决策树方法 第三讲第三讲 风险型决策的敏感性分析的敏感性分析第四讲第四讲 马尔可夫型决策简介决策简介高中人教版(高中人教版(B B )教材目录介绍必修一第一章第一章 集合集合1.1 1 集合与集合的表示方法集合与集合的表示方法集合与集合的表示方法 1 1..2 2 集合之间的关系与运算集合之间的关系与运算集合之间的关系与运算 第二章第二章 函数函数2 2..1 1 函数函数函数 2 2..2 2 一次函数和二次函数一次函数和二次函数一次函数和二次函数 2 2..3 3 函数的应用(Ⅰ)函数的应用(Ⅰ)函数的应用(Ⅰ) 2 2..4 4 函数与方程函数与方程函数与方程第三章第三章 基本初等函数(Ⅰ)3 3..1 1 指数与指数函数指数与指数函数指数与指数函数 3 3..2 2 对数与对数函数对数与对数函数对数与对数函数3 3..3 3 幂函数幂函数幂函数 3 3..4 4 函数的应用(Ⅱ)函数的应用(Ⅱ)函数的应用(Ⅱ)必修二第一章第一章 立体几何初步立体几何初步1.1 1 空间几何体空间几何体空间几何体 1 1..2 2 点、线、面之间的位置点、线、面之间的位置关系关系第二章第二章 平面解析几何初步平面解析几何初步 2 2..1 1 平面真角坐标系中的基平面真角坐标系中的基本公式本公式2 2..2 2 直线方程直线方程直线方程 2 2..3 3 圆的方程圆的方程圆的方程 2 2..4 4 空间直角坐标系空间直角坐标系空间直角坐标系必修三第一章第一章 算法初步算法初步1.1 1 算法与程序框图算法与程序框图算法与程序框图 1 1..2 2 基本算法语句基本算法语句基本算法语句 1 1..3 3 中国古代数学中的算法中国古代数学中的算法案例案例第二章第二章 统计统计2.1 1 随机抽样随机抽样随机抽样 2 2..2 2 用样本估计总体用样本估计总体用样本估计总体 2 2..3 3 变量的相关性变量的相关性变量的相关性第三章第三章 概率概率3.1 1 随机现象随机现象随机现象 3 3..2 2 古典概型古典概型古典概型 3 3..3 3 随机数的含义与应用随机数的含义与应用随机数的含义与应用 3 3..4 4 概率的应用概率的应用概率的应用必修四第一章第一章 基本初等函基本初等函((Ⅱ) 1 1..1 1 任意角的概念与弧度制任意角的概念与弧度制任意角的概念与弧度制 1 1..2 2 任意角的三角函数任意角的三角函数任意角的三角函数 1 1..3 3 三角函数的图象与性质三角函数的图象与性质三角函数的图象与性质第二章第二章 平面向量平面向量 2 2..1 1 向量的线性运算向量的线性运算向量的线性运算 2 2..2 2 向量的分解与向量的坐向量的分解与向量的坐标运算标运算 2 2..3 3 平面向量的数量积平面向量的数量积平面向量的数量积2 2..4 4 向量的应用向量的应用向量的应用第三章第三章 三角恒等变换三角恒等变换3.1 1 和角公式和角公式和角公式 3 3..2 2 倍角公式和半角公式倍角公式和半角公式倍角公式和半角公式 3 3..3 3 三角函数的积化和差与三角函数的积化和差与和差化积和差化积必修五第一章第一章 解直角三角形解直角三角形1.1 1 正弦定理和余弦定理正弦定理和余弦定理正弦定理和余弦定理 1 1..2 2 应用举例应用举例应用举例第二章第二章 数列数列2 2..1 1 数列数列数列 2 2..2 2 等差数列等差数列等差数列 2 2..3 3 等比数列等比数列等比数列第三章第三章 不等式不等式3 3..1 1 不等关系与不等式不等关系与不等式不等关系与不等式 3 3..2 2 均值不等式均值不等式均值不等式3 3..3 3 一元二次不等式及其解一元二次不等式及其解法 3 3..4 4 不等式的实际应用不等式的实际应用不等式的实际应用 3 3..5 5 二元一次不等式(组)二元一次不等式(组)与简单线性规划问题与简单线性规划问题选修1-1第一章第一章 常用逻辑用语常用逻辑用语1.1 1 命题与量词命题与量词命题与量词 1 1..2 2 基本逻辑联结词基本逻辑联结词基本逻辑联结词 1 1..3 3 充分条件、必要条件与充分条件、必要条件与命题的四种形式命题的四种形式第二章第二章 圆锥曲线与方程圆锥曲线与方程2.1 1 椭圆椭圆椭圆 2 2..2 2 双曲线双曲线双曲线 2 2..3 3 抛物线抛物线抛物线第三章第三章 导数及其应用导数及其应用3 3..1 1 导数导数导数 3 3..2 2 导数的运算导数的运算导数的运算 3 3..3 3 导数的应用导数的应用导数的应用选修1-2第一章第一章 统计案例统计案例 第二章第二章 推理与证明推理与证明 第三章第三章 数系的扩充与复数的引入的引入 第四章第四章 框图框图选修4-5第一章第一章 不等式的基本性质和证明的基本方法和证明的基本方法1 1..1 1 不等式的基本性质和一不等式的基本性质和一元二次不等式的解法元二次不等式的解法 1 1..2 2 基本不等式基本不等式基本不等式1 1..3 3 绝对值不等式的解法绝对值不等式的解法绝对值不等式的解法 1 1..4 4 绝对值的三角不等式绝对值的三角不等式绝对值的三角不等式 1 1..5 5 不等式证明的基本方法不等式证明的基本方法不等式证明的基本方法第二章第二章 柯西不等式与排序不等式及其应用不等式及其应用2.1 1 柯西不等式柯西不等式柯西不等式 2 2..2 2 排序不等式排序不等式排序不等式 2 2..3 3 平均值不等式平均值不等式平均值不等式((选学选学) ) 2 2..4 4 最大值与最小值问题,最大值与最小值问题,优化的数学模型优化的数学模型第三章第三章 数学归纳法与贝努利不等式利不等式3.1 1 数学归纳法原理数学归纳法原理数学归纳法原理 3 3..2 2 用数学归纳法证明不等用数学归纳法证明不等式,贝努利不等式式,贝努利不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结:
如果一个数列的通项公式是关于 正整数n的一次型函数,那么这个 数列必定是等差数列.
探究:
1. 在直角坐标系中,画出通项公式为 an=3n-5的数列的图象.这个图象有 什么特点?
探究:
2. 在同一个直角坐标系中,画出函数 y=3x-5的图象,你发现了什么?据 此说一说等差数列an=pn+q与一次 函数y=px+q的图象之间有什么关系.
7. 已知四个数成等差数列,它们的和为 28,中间两项的积为40,求这四个数.
讲授新课
1. 性质
在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq. 特别地, 若m+n=2p,则am+an=2ap.
讲解范例:
例1. 在等差数列{an}中 (1) 若a5=a, a10=b, 求a15; (2) 若a3+a8=m, 求a5+a6.
d an an1 d an a1
n1
复习引入
3. 有几种方法可以计算公差d:
d an an1 d an a1
n1
d an am nm
练习
4. {an}是首项a1=1,公差d=3的等差 数列,若an=2005,则n=( ) A. 667 B. 668 C. 669 D. 670
总结:
2. 判断数列是否为等差数列的常用方法:
(1) 定义法: 证明an-an-1=d (常数) (2) 中项法: 利用中项公式,若2b=a+c,
则a, b, c成等差数列. (3) 通项公式法: 等差数列的通项公式是
关于n的一次函数.
讲解范例:
例3. 已知数列{an}的通项公式为 an=pn+q,其中p、q为常数, 且p≠0,那么这个数列一定是 等差数列吗?
►1Our destiny offers not the cup of despair, but the chalice of opportunity. ►So let us seize it, not in fear, but in gladness. · 命运给予我们的不是失望之酒,而是机会之杯。 因此,让我们毫无畏惧,满心愉悦地把握命运
课堂小结
1. 等差数列的性质; 2. 判断数列是否为等差数列
Байду номын сангаас常用的方法.
湖南省长沙市一中卫星远程学校
课后作业
1. 阅读教材P.36到P.39; 2. 《习案》作业十二.
湖南省长沙市一中卫星远程学校
►Suffering is the most powerful teacher of life. 苦难是人生最伟大的老师。 ►For man is man and master of his fate. 人就是人,是自己命运的主人。 ►A man can't ride your back unless it is bent. 你的腰不弯,别人就不能骑在你的背上。
2.2 等差数列(二)
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1).
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1). 推导出公式:an=am+(n-m)d .
讲解范例:
例3. 已知数列{an}的通项公式为 an=pn+q,其中p、q为常数, 且p≠0,那么这个数列一定是 等差数列吗?
这个等差数列的首项与公差分 别是多少?
讲解范例:
例3. 已知数列{an}的通项公式为 an=pn+q,其中p、q为常数, 且p≠0,那么这个数列一定是 等差数列吗?
这个等差数列的首项与公差分 别是多少?
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1). 推导出公式:an=am+(n-m)d . 或an=pn+q (p、q是常数)
复习引入
3. 有几种方法可以计算公差d:
d an an1
复习引入
3. 有几种方法可以计算公差d:
练习
4. {an}是首项a1=1,公差d=3的等差 数列,若an=2005,则n=( ) A. 667 B. 668 C. 669 D. 670
5. 在3与27之间插入7个数,使它们成 为等差数列,则插入的7个数的第四 个数是( ) A. 18 B. 9 C. 12 D. 15
练习
6. 三个数成等差数列,它们的和为18, 它们的平方和为116,求这三个数.
总结:
2. 判断数列是否为等差数列的常用方法: (1) 定义法: 证明an-an-1=d (常数)
总结:
2. 判断数列是否为等差数列的常用方法: (1) 定义法: 证明an-an-1=d (常数) (2) 中项法: 利用中项公式,若2b=a+c,
则a, b, c成等差数列.
讲解范例:
例2. 已知数列{an}的前n项和为 Sn=3n2-2n,求证数列{an}成 等差数列,并求其首项、公差、 通项公式.