煤炭工业分析整理
煤的工业分析及其指标关系

煤的工业分析及其指标关系煤是一种重要的能源资源,广泛用于工业生产、发电、供暖等领域。
煤的工业分析及其指标关系对于了解煤的特性、优化生产工艺、提高能源利用效率具有重要意义。
本文将就煤的工业分析及其指标关系进行探讨,并分析对煤的工业利用具有重要意义的关键指标。
一、煤的工业分析1. 煤的成分分析:煤是由碳、氢、氧、氮、硫等元素组成的矿物质。
其成分的多少对煤的工业利用具有重要的影响。
煤可以分为无烟煤、烟煤、褐煤、石煤、泥炭等不同种类,其成分也有所不同。
在煤的成分分析中,主要关注碳含量、挥发分、灰分和硫分等指标。
2. 煤的热值分析:煤的热值是指单位质量煤燃烧时释放的热量,通常以千焦或千卡为单位。
热值是衡量煤质优劣的重要指标之一,是评价煤的工业利用性能的重要依据。
3. 煤的燃烧特性分析:煤的燃烧特性主要包括点火温度、燃烧速率、燃烧过程中的气味、烟气等。
燃烧特性对于煤的工业利用过程中燃烧效率、环保要求等具有重要的影响。
4. 煤的化学性质分析:煤的化学性质主要包括挥发物含量、固定碳含量、灰分含量、硫分含量等。
这些指标对于煤的燃烧特性、煤气化、液化等工艺具有重要的影响。
二、煤的指标关系分析1. 碳含量与热值的关系:煤的热值主要与其碳含量有关,碳含量越高,热值越高。
通过煤的碳含量指标可以初步判断其燃烧性能。
2. 挥发分与燃烧速率的关系:煤的挥发分含量越高,燃烧速率越快。
这意味着,在燃烧过程中,挥发分含量高的煤更容易燃烧,可以提高燃烧效率。
3. 硫分含量与环保要求的关系:煤中的硫分含量高,燃烧过程中容易产生二氧化硫等有害气体,对环境造成污染。
而高硫煤的工业利用需要进行脱硫处理,增加生产成本。
4. 煤的化学性质与工业利用的关系:煤的化学性质直接影响其工业利用中的燃烧特性、气化特性、液化特性等。
不同种类的煤可以通过不同的工艺进行利用,因此对其化学性质进行分析具有重要的意义。
1. 煤的工业分析在煤矿开采中具有重要意义。
通过对煤的成分、热值、化学性质等指标的分析,可以确定煤矿的资源储量、煤质优劣,为煤矿的生产经营提供科学依据。
煤的工业分析与元素分析

煤的工业分析与元素分析1、煤的工业分析、元素分析煤是一种远古植物残骸经长期地质变化形成的可燃性生物岩。
它是由碳、氢、氧、硫、氮等化学元素组成的复杂有机物的混合物。
具有多极性集团和发达的毛细管,可以吸附水而成为内在水。
对于年轻的煤,变质程度较浅,毛细管较发达,亲水性较强,反应活性较好。
随着煤龄的变长,变质程度加深,毛细管状况变差,内表面减少,内在水份减少。
表现为憎水性增强,反应活性较差。
煤的工业利用价值可以通过工业分析得到:(1)水份(Mad)煤中的水份按存在形态可以分为三种:①外在水,也称游离水。
是在开采、运输、贮存过程中带入的水份。
一般附着于煤的外表和直径大于1.0E-5cm的大毛细管中。
在空气中,外在水份可以自然风干。
外在水份与外在条件有关,而与煤质本身无关。
②内在水份,也称吸附水。
以吸附的方式存在于较小的毛细管中(直径小于1.0E-5cm)。
一般在100多度下恒温能够除去。
内在水份的含量和煤质有关,是影响成浆性的重要因素。
③结晶水,也称化合水。
是煤中无机化合物的水化物中所含的水。
如硫酸钙(CaSO4•2H2O)、高岭土(AL2O3•2SiO2•2H2O)等。
结晶水一般在200多度下恒温能够除去。
(2)灰份(Aad)灰份是煤样在815±10℃燃烧至恒重时残留物的重量分率。
煤中的灰份高,相对降低了含碳量。
灰份在气化炉中是无用而有害的物质。
无用是不参加化学反应,不能生成合成气的有效成分。
有害是灰份熔融要消耗热量,增加比氧耗和比煤耗。
溶渣会冲刷、侵蚀向火面砖,缩短耐火砖的使用寿命。
并且灰份高会增大粗合成气的水气比,并增大渣水系统的负荷。
灰份的主要组成是:SiO2、AL2O3、Fe2O3、CaO、MgO、TiO2、SO3等。
这些组分的熔化温度决定了灰份的熔点。
如果灰份中SiO2+AL2O3所占比例愈大,灰份的熔点愈高。
因为这两种成分的特点是熔点极高。
其他成分如Fe2O3、CaO、MgO的含量越多时,则灰熔点越低。
煤的工业分析范文

煤的工业分析范文煤是一种重要的化石燃料,广泛用于工业生产和能源领域。
它是世界上最主要的能源之一,尤其在发展中国家仍然占据主导地位。
本文将从以下几个方面对煤的工业分析进行探讨。
一、煤的工业应用1.电力行业:煤炭是电力行业最主要的燃料之一、煤炭被燃烧后产生高温高压的蒸汽,通过汽轮发电机产生电能。
在许多国家,煤燃烧发电仍然是主要的电力供应方式。
2.钢铁行业:煤炭是钢铁行业的主要原料之一、在冶炼过程中,煤炭与矿石一起放入高炉中,燃烧产生的高温使矿石还原为熔化的铁。
3.化工行业:煤炭可以提取出许多有机化学品,例如甲醇、丙烯酸和苯等。
这些有机化学品是制造化肥、塑料、合成纤维等化工产品的重要原料。
4.建筑材料行业:煤炭可以被转化为煤焦油和煤炭鄂砂。
煤焦油是生产沥青、染料和防水剂的重要原料。
煤炭鄂砂可以用于建筑材料的制备。
二、煤的生产与供应1.煤矿开采:煤炭是通过地下或露天矿井开采得到的。
地下开采是通过井下探矿和掘进来获取煤炭,而露天开采是通过开挖土地来获取煤炭。
目前,世界上开采煤炭的主要国家有中国、美国、澳大利亚和印度等。
2.煤炭贸易:煤炭是世界上最重要的贸易商品之一、煤炭贸易通过海运和铁路运输进行。
主要的煤炭出口国有澳大利亚、印度尼西亚和俄罗斯等,而主要的进口国有中国、印度和日本等。
3.环保问题:煤炭的工业利用对环境造成了很大的影响。
燃烧煤炭会产生大量的二氧化碳、二氧化硫和氮氧化物等温室气体和空气污染物,对空气质量和气候变化造成严重影响。
此外,煤矿的开采也会带来土地破坏和水资源污染等问题。
三、煤炭资源与技术创新1.煤炭资源分布:全球煤炭资源主要集中在中国、美国、印度和澳大利亚等国。
煤炭资源的分布对国家的经济发展有着重要的影响。
2.技术创新:为了更加高效地利用煤炭资源并减少环境污染,煤炭工业进行了一系列的技术创新。
例如,低排放燃烧技术、煤炭气化技术和超临界锅炉技术等,都可以提高燃烧效率、减少排放和降低污染。
四、煤炭工业的发展趋势2.清洁煤技术发展:为了应对环保压力,煤炭工业正在不断发展和推广清洁煤技术。
煤的工业分析

煤的工业分析一、煤的化学成分和工艺性质煤是重要的工业原料。
它的用途很广泛,除作燃料用外,还是重要的化工原料。
为了合理的利用煤炭资源,必须对煤的化学成分及其性质进行研究,以便综合利用。
(一)煤的元素组成煤主要是由碳C、氢H、氧O、氮N、硫S、磷P等元素构成的有机质,以及一些矿物杂质、水分等无机质组成。
其中,有机质主要是由碳、氢、氧组成,它们占有机质的95%以上;此外,还有氮、硫、少量的磷及金属元素等。
对煤的元素组成的研究,主要是通过元素分析进行的。
1.碳碳是煤中有机物质的主要组成部分。
也是煤燃烧过程中产生热量的重要元素,每公斤纯碳完全燃烧时能放出34080.6KJ的热量。
煤中碳元素的含量是随变质程度的加深而增加。
泥炭的含碳量为50~60%,褐煤为60-77%,烟煤为74~92%,无烟煤为90~98%。
2.氢氢是煤中有机质的重要元素。
每公斤氢完全燃烧时能产生143138.3KJ的热量,约为碳的4.2倍。
煤中含氢量的多少与成煤原始物质有直接关系。
腐泥煤的氢含量比腐植煤高,一般在6%以上,有时可达11%;而腐植煤的氢含量一般不超过6%.最低为1%左右。
随着变质程度的加深,氢含量有逐渐减少的趋势。
3.氧煤中氧的含量变化很大,并随变质程度加深而降低。
泥炭中氧含量为30-40%,褐煤中氧含量高达15~30%,烟煤为1~16%,无烟煤更不,一般小于2%。
当煤氧化时,氧含量迅速增高,碳、氢含量明显降低。
因此,氧含量是确定煤层风、氧化带深度的主要指标之一。
4.氮氮在煤中含量较少,它主要来自成煤植物中的蛋白质。
碳含量小于75%的某些褐煤,氮含量可达2~2.7%,无烟煤为0.5~1.5%。
氮含量随变质程度增高稍有降低。
在高温加工时,一部分氮转化为氨及吡啶类等有机含氮化合物,这些化学产品可回收制成硫酸铵、尿素、氨水等氮肥。
5.硫硫是煤的有害物质。
它在煤中常以三种形式出现,第一种为硫化物硫,绝大部分是以黄铁矿FeS2和少量白铁矿FeS2硫形态存在;第二种为有机硫,主要来自成煤时植物和微生物中的蛋白质;第三种为硫酸盐硫,主要是石膏CaS04·2H20中的硫。
煤工业分析原理

煤工业分析原理
煤工业分析原理主要涉及煤炭的化学成分分析和物理性质分析。
一、化学成分分析
煤炭是一种复杂的碳质燃料,其化学成分影响其燃烧性能和利用价值。
常见的化学成分分析方法有以下几种:
1. 高温氧化法:将煤样在高温下与浓氢氧化钠或浓硫酸反应,使有机质完全氧化为无机酸,然后通过酸碱滴定或仪器分析,确定煤中的碳、氢、氧含量。
2. 气化法:将煤样在高温下与空气或氧气气化,生成煤气,经过分析仪器测定,确定煤中元素的含量。
3. 光谱法:利用光谱学分析技术,通过煤样的红外光谱、紫外光谱或荧光光谱等,判断煤中含氧官能团、含硫官能团、含氮官能团、芳香环等的存在和含量。
4. 矿物学分析:煤炭中的无机物主要存在于有机质的孔隙中,通过显微镜观察和化学试剂法分析,可以确定煤中的无机物组分。
二、物理性质分析
煤炭的物理性质可以反映出其结构特征和燃烧性能。
常见的物理性质分析方法包括以下几种:
1. 吸附法:利用氮气吸附测定煤的孔隙结构和比表面积,表征煤的孔隙分布情况和孔隙容积。
2. 密度测定法:通过测定煤的质量和体积,计算出煤的密度,可用于判断煤的块度和结构紧密度。
3. 硬度测定法:通过测定煤的硬度,如切割硬度、抗压强度等,评价煤的物理强度和抗磨性能。
4. 粒度分析法:利用特定粒度的筛网或仪器分析,测定煤的颗粒大小和粒度分布,对煤的粉化性能和适用性进行评价。
综上所述,煤工业分析原理涵盖了化学成分分析和物理性质分析两个方面,可以全面了解煤炭的组成和性能特点,为煤炭的选矿、燃烧和利用提供科学依据。
煤的工业分析

其他技术【煤的工业分析】1. 水分(1) 外在水分(Wwz)外在水分是指煤在开采、运输和洗选过程中润湿在煤的外表以及大毛细孔(直径>10-5厘米)中的水。
它以机械方式与煤相连结着,较易蒸发,其蒸汽压与纯水的蒸汽相等.在空气中放置时,外在不分不断蒸发,直至煤中水分的蒸汽压与空气的相对湿度达到平衡时为止,此时失去的水分就是外在水分.含有外在水分的煤称为应用煤, 失去外在水分的煤称为风干煤.外在水分的多少与煤粒度等有关,而与煤质无直接关系.(2)内在水分(Wnz)吸附或凝聚在煤粒内部的毛细孔(直径〈10-5厘米〉中的水,称为内在水分.内在水分指将风干煤加热到105~110时所失去的水分,它主要以物理化学方式(吸附等)与煤相连结着,较难蒸发,故蒸气压小于纯水的蒸汽压. 失去内在水分的煤称为绝对干燥或干煤.2. 分灰1).灰分的来源和种类煤灰几呼全部来源于煤中的矿物质,但煤在燃烧时,矿物质大部分被氧化,分解,并失去结晶水,因此,煤灰的组成和含量与煤中矿物质的组成和含量差别很大.我们一般说的煤的灰分实际上就是煤灰产率,煤中矿物质和灰分的来源,一般可分三种.(1)原生矿物质它是原来存在于成煤植物中的矿物质,质紧密地结合在一起,极难用机械的方法将其分开.它燃烧后形成母体灰分,这部分数量很小(2)次生矿物质当死亡植质堆积和菌解时,由风和水带来的细粘土,砂粒或由水中钙,镁,铁等离子生成的腐植酸盐及FeS2等混入而成,在煤中成包裹体存在.用显微镜观察煤的光片或薄片时,如它们均匀分布在煤中,并且颗粒很细,则很难与煤分离;如它们颗粒较大,比重与差很大,并在煤中分布不均, 则把煤破啐后尚可能将它们洗选掉.煤中的原生矿物质和次生矿物质合称为内在矿物质.来自于内在矿物质的灰分,称为内在灰分.一般次生矿物质在煤中的含量也不多,仅有少数煤层中次生矿物质较多,如迁移堆积抽形成的煤层即如此.(3)外来矿物质这种矿物质原来不含于煤层中,它是由在采煤过程中混入煤中的顶,底板和夹矸层中的矸石所形成的.其数量多少,根据开采条件在很大的范围里波动.它的主要成分为SiO2,A12O3,也有一些CaSO3,CaSO4,FeS2等。
煤炭工业分析方法汇总

煤的工业分析煤中水分、灰分、挥发分、和固定碳四个项目分析的总称。
全水分的测定(空气干燥法):分析步骤:1、在预先干燥并已称量过的称量瓶内称取粒度小于6mm的煤样10~12g,称准至0.01g平摊在称量瓶中。
2、打开称量瓶盖,放入预先鼓风并已加热到105~110℃的干燥箱中,在一直鼓风的条件下,烟煤干燥2h,无烟煤干燥3h。
3、从干燥箱中取出称量瓶,立即盖上盖,在空气中冷却约5min。
然后放入干燥器中冷却至室温(约20min)后称量。
4、进行检查性干燥,每次30min,直到连续两次干燥煤样的质量减少不超过0.01g或质量增加为止。
在后一种情况下,采取质量增加前一次的质量为依据。
水分在2.00﹪以下时,不必进行检查性干燥。
.全水分的测定(微波干燥法):分析步骤:1、按微波干燥水分测定仪说明书进行准备和状态调节。
2、在预先干燥并已称量过的称量瓶内称取粒度小于6mm的煤样10~12g,称准至0.01g平摊在称量瓶中。
3、打开称量瓶盖,放入测定仪的旋转盘的规定区内。
4、关上门,接通电源,仪器按预先设定的程序工作,直到工作程序结束。
5、打开门,取出称量瓶,盖上盖,立即放入干燥器中冷却至室温(约20min)后称量。
如果仪器有自动称量装置,则不必取出称量。
分析水分的测定(空气干燥法):分析步骤:1、在预先干燥并已称量过的称量瓶内称取粒度小于0.2mm的空气干燥煤样(1±0.1g),称准至0.0002g平摊在称量瓶中。
2、打开称量瓶盖,放入预先鼓风并已加热到105~110℃的干燥箱中。
在一直鼓风的条件下,烟煤干燥1h,无烟煤干燥1.5h。
(预先鼓风是为了使温度均匀)3、从干燥箱中取出称量瓶,立即盖上盖,放入干燥器中冷却至室温(约20min)后称量。
4、进行检查性干燥,每次30min,直到连续两次干燥煤样的质量减少不超过0.0010g或质量增加为止。
在后一种情况下,采取质量增加前一次的质量为依据。
水分在2.00﹪以下时,不必进行检查性干燥。
煤炭的工业分析

煤炭的工业分析
O1煤的工业分析煤的工业分析又叫技术分析或实用分析,是评价煤的基本依据。
它包括煤的水分、灰分、挥发分产率和固定碳四个项目的测定。
通常,水分、灰分、挥发分产率都直接测定,固定碳不作直接测定,而是用差减法进行计算。
有时也将上述四个测定项目叫做半工业分析,再加上煤的发热量和煤中全硫的测定,则称为全工业分析。
02
常用符号和基准
分析实验项目及符号:
水分:M
moisture
灰分:A
ash
挥发分:V
vo1ati1ecompound
固定碳:FC
fixedcarbon
发热量:Q
quantityofproducedheat
矿物质:MM minera1matter
C、H、0、N、S及煤炭中化学成分仍以元素名称为代表符号。
收到基(ar):就其含义而言,是从收到的一批煤样中取出具有代表性的煤样,以此种状态的煤样测定的结果并以此基表
示的值,称为收到基。
空气干燥基(ad):是指煤样所处环境与水蒸气压达到平衡时的煤样。
在新标准中规定:煤样若在空气中连续干燥1小时后质量变化不超过0.10%,则认为达到空气干燥状态。
干基(d):以无水状态的煤样为标准的分析结果表示方法。
干燥无灰基(daf):它是以假想的无水无灰状态的煤为基准的分析结果表示方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a、将管式高温炉升温至1150℃,用另一组铂锗一铂热电偶高温计测定燃烧管中高温带的位置、长度及500℃的位置。
b、调节送样程序控制器,使煤样预分解及高温分解的位置分别处于500℃和1150℃处。
c、在燃烧管出口处充填洗净、干燥的玻璃纤维棉:在距出口端约80一100mm之处,充填厚度约3mm的硅酸铝棉。
d. 将盛有煤样的灰皿放在灰分快速测定仪的传送带上,灰皿即自动送入炉中。
e. 当灰皿从炉内送出时,取下,放在耐热瓷板或石棉板上,在空气中冷却5min左右,移入干燥器中冷却至室温(约20min)后,称量。
。
4.3分析结果的计算
空气干燥煤样的灰分按式(4)计算:
(4)
式中:Aad——空气干燥煤样的灰分产率,%;
m1——煤样干燥后失去的质量,g;
m——煤样的质量,g。
3.2方法B(空气干燥法)
3.2.1方法提要
称取一定量的空气干燥煤样,置于105~110℃干燥箱中,在空气流中干燥到质量恒定。然后根据煤样的质量损失计算出水分的百分含量。
3.2.2仪器、设备
3.2.2.1干燥箱:带有自动控温装置,内装有鼓风机,并能保持温度在105~110℃范围内。
二、试剂和材料
( l)三氧化钨(HC 10一1129)。
( 2)变色硅胶:工业品。
( 3)氢氧化钠(GB/T629 ):化学纯。
( 4)电解液:碘化钾(GB/T1272)、浪化钾(GB/T649)各5g,冰乙酸(GB/T676 ) 10mL溶于250一300mL水中。
( 5)燃烧舟:长70一77mm,素瓷或刚玉制品,耐温1200℃以上.
煤的工业分析方法
1范围
2规范性引用文件
3水分的测定
3.1方法A(通氮干燥法)
3.1.1方法提要
称取一定量的空气干燥煤样,置于105~110℃干燥箱中,在干燥氮气流中干燥到质量恒定。然后根据煤样的质量损失计算出水分的百分含量。
3.1.2试剂
3.1.2.1氮气:纯度99.9%,含氧量小于100ppm。
3.1.2.2无水氯化钙(HGB3208):化学纯,粒状。
二、试剂和材料
1)艾士卡试剂:以2份质量的化学纯轻质氧化镁与1份质量的化学纯无水碳酸钠混匀并研细至粒度小于0 . 2mm后,保存在密闭容器中。
2)盐酸(GB/T622)溶液:( l + l)水溶液。
3)氯经钡(GB/T52)溶液:100 g/L.
4)甲基检溶液:20g/L。
5)硝酸银(GB/T670)溶液:10g / L,加入几滴硝酸(CB/T626 ).贮于深色瓶中.
6)溶液冷却或静置过夜后用致密无灰定量滤纸过滤,并用热水洗至无氯离子为止【用硝酸银检验】
7)将带沉淀的滤纸移入已知质量的瓷钳祸中,先在低温下灰化滤纸,然后在温度为800一850℃的马弗炉内灼烧20-40min,取出柑锅,在空气中稍加冷却后放入干燥器中冷却到室温(约25-30min ),称量。
8)每配制一批艾氏剂或更换其他任一试剂时,应进行2个以上空白试验(除不加煤样外,全部操作相同),硫酸钡质量的极差不得大于0 . 0010g,取算术平均作为空白值.
3.1.3.4干燥塔:容量250mL,内装干燥剂。
图1 玻璃称量瓶
3.1.3.5流量计:量程为100~1 000mL/min。
3.1.3.6分析天平:感量0.0001g。
3.1.4分析步骤
3.1.41用预先干燥和称量过(精确至0.0002g)的称量瓶称取粒度为0.2mm以下的空气干燥煤样1±0.1g,精确至0.0002g,平摊在称量瓶中。
6)瓷增锅:容量30mL和10一20mL两种。
三、仪器设备
1)分析天平:感量0.000lg
2)马弗炉:附测温和控温仪表,能升温到900℃,温度可调并可通风。
四、试验步骤
1)于30mL柑祸内称取粒度小于0 . 2mm的空气干燥煤样1g(称准至0.0002g)和艾氏剂艳(称准至0.1g),仔细混合均匀,再用lg(称准至0 . 1g)艾氏剂覆盖.( 2)将装有煤样的柑祸移入通风良好的马弗炉中,在1一2h内从室温逐渐加热到800-850℃,并在该温度下保持1一2h。
五、结果计算
测定结果按(1)计算:
m2 ―空白试验的硫酸钡质量,g ;0.1374 ―由硫酸钡换算为硫的系数;m ―煤样质量,g .
六、精密度
全硫测定的精密度如表1规定:表1
2库仑自动滴定法定硫
一、方法原理
煤样在催化剂作用下,于空气流中燃烧分解,煤中硫生成二氧化碳并被碘化钾溶液吸收,以电解碘化钾溶液所产生的碘进行滴定,根据电解所消耗的电量计算煤中全硫的含量.
3.3分析结果的计算
空气干燥煤样的水分按式(3)计算:
(3)
式中:mad——空气干燥煤样的水分含量,%;
m1——煤样干燥后失去的质量,g;
m——煤样的质量,g。
3.4水分测定的精密度
水分测定的重复性如表1规定:
表1, %
水分(Mad)
重复性
<5
0.20
5~10
0.30
>10
0.40
4灰分的测定
4.1 缓慢灰分法
三、仪器设备
智能库仑测硫仪:由下列各部分构成
( l)管式高温炉:能加热到1200℃以上并有90mm以上长的高温带1150士5℃,附有铂锗一铂热电偶测温及控温装置,炉内装有耐温1300℃以上的异径燃烧管。
( 2)电解池和电磁搅拌器:电解池高120一180mm.容量不少于400mL,内有面积约1500mm2的铂电解电极对和面积约15mm2的铂指示电极对.指示电极响应时间应小于1s,电磁搅拌器转速约500t/min且连续可调。
4.1.1方法提要
4.1.1.2称取一定量的空气干燥煤样,放入马弗炉中,以一定的速度加热到815±10℃,灰化并灼烧到质量恒定。以残留物的质量占煤样质量的百分数作为灰分产率。
4.1.2仪器、设备
4.1.2.1马弗炉:能保持温度为815±10℃。炉膛具有足够的恒温区。炉后壁的上部带有直径为25~30mm的烟囱,下部离炉膛底20~30mm处,有一个插热电偶的小孔,炉门上有一个直径为20mm的通气孔。
3.2.3.2打开称量瓶盖,放入预先鼓风1)并已加热到105~110℃的干燥箱中,在一直鼓风的条件下,烟煤干燥1h,无烟煤干燥1~1.5h。
注:1)预先鼓风是为了使温度均匀。将称好装有煤样的称量瓶放入干燥器中冷却至室温(约20min)后,称量。
3.2.3.3从干燥箱中取出称量瓶,立即盖上盖,放入干燥器中冷却至室温(约20min)后,称量。进行检查性干燥,每次30min,直到连续两次干燥煤样的质量减少不超过0.001g或质量增加时为止。在后一种情况下,要采用质量增加前一次的质量为计算依据。水分在2%以下时,不必进行检查干燥。
3.1.4.4进行检查性干燥,每次30min,直到连续两次干燥煤样质量的减少不超过0.0010g或质量增加时为止。在后一种情况下,要采用质量增加前一次的质量为计算依据。水分在2%以下时,不必进行检查性干燥。
3.1.5分析结果的计算
空气干燥煤样的水分按式(1)计算:
(1)
式中:Mad——空气干燥煤样的水分含量,%;
( 2)测定手续
a、将管式高温炉升温并控制在1150士5℃。
b、开动供气泵和抽气泵并将抽气流量调节到l000mL/min.在抽气下,将250一300mL电解液加入电解池内,开动电磁搅拌器。
c、在瓷舟中放入少量非测定用的煤样,进行测定(终点电位调整试验)。如试验结束后库仑积分器的显示值为0,应再次测定直至显示值不为0。
4)用中速定性滤纸以倾泻法过滤,用热水冲洗3次,然后将残渣移入滤纸中,用热水仔细清洗至少10次,洗液总体积约为250-300mL.
5)向滤液中滴入2一3滴甲基橙指示剂,加盐酸中和后再加入2流,使溶液呈微酸性。将溶液加热到沸腾,在不断搅拌下滴加氯化钡溶液10mL,在近沸状况下保持约2h,最后溶液体积为200 mL左右。
( 3)库仑积分器:电解电流0一350mA范围内积分线性误差应小于士1 %,配有4一6位数字显示器和打印机。
( 4)送样程序控制器:可按指定的程序前进、后退。
( 5)空气供应及净化装置:由电磁泵和净化管组成.供气量约1500m曰而n,抽气量约l000mmL/min,净化管内装氢氧化钠及变色硅胶。
四、试验步骤
3.2.2.2干燥器:内装变色硅胶或粒状无水氯化钙。
3.2.2.3玻璃称量瓶:直径40mm,高25mm,并带有严密的磨口盖(见图1)。
3.2.2.4分析天平:感量0.0001g。
3.2.3分析步骤
3.2.3.1用预先干燥并称量过(精确至0.0002g)的称量瓶称取粒度为0.2m平摊在称量瓶中。
4.1.2.2图4灰皿
4.1.2.3瓷灰皿:长方形,底面长45mm,宽22mm,高14mm(见图4)。
4.1.2.4干燥器:内装变色硅胶或无水氯化钙。
4.1.2.5分析天平:感量0.0001g。
4.1.2.6耐热瓷板或石棉板:尺寸与炉膛相适应。
i.
4.1.3分析步骤
4.1.3.1用预选灼烧至质量恒定的灰皿,称取粒度为0.2mm以下的空气干燥煤样1±0.1g,精确至0.0002g,均匀地摊平在灰皿中,使其每平方厘米的质量不超过0.15g。
3)将增祸从炉中取出,冷却到呈温。用玻璃棒将柑祸中的灼烧物仔细搅松捣碎(如发现有未烧尽的煤粒,应在800一850℃下继续灼烧0 . 5h ),然后移动到400mL烧杯中。用热水冲洗增锅内壁,将洗液收入烧杯,再加入100一150mL刚煮沸的水,充分搅拌。如果此时尚有黑色煤粒漂浮在液面上.则本次测定作废。
d、将程序控制器、管式高温炉、库分积分器、电解池、电磁搅拌器和空气供应及净化装置组装在一起。燃烧管、活塞及电解池之间连接时应口对口紧接并用硅橡胶管封住。