初一数学最新教案-一元一次方程002 精品
《一元一次方程》的优秀教案(9篇)精选全文完整版

可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
七年级数学《一元一次方程》教学设计

人教版七上第三章一元一次方程3.1从算式到方程“一元一次方程”教学设计一、内容和内容解析“一元一次方程”是新人教版《义务教育教科书数学》七年级上册,第三章“一元一次方程”第一节“从算式到方程”的第一节内容.主要是让学生初步体会从算式到方程是数学的进步;了解一元一次方程的基本概念;重点是学会找出实际问题中的相等关系,设未知数,并把相关的量用含未知数的式子表示出来,列出方程.本节内容既是小学方程的延续,又是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程及函数等的基础.同时一元一次方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材.本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭.二、目标和目标解析根据《义务教育数学课程标准》(2011年版),依据教材内容和本班学生的实际情况,确定本节课的学习目标如下.(1)通过“老师年龄与学生年龄的几次对话和思考”,让学生初步感知到方程在处理某些相对复杂问题时的简便和进步.(2)通过学生自学,初步形成一元一次方程的概念;同时通过辨析练习,加强学生对概念的理解.(3)通过解决故事中的几个生活问题,让学生体会方程是刻画现实世界的一种有效的数学模型;“能够找出实际问题中的相等关系、设未知数、用数学式子列出方程”,体会用方程来建立数学模型的思想.(4)通过贴近生活的看似随意的引入以及解决故事中的生活问题,让学生充分感知数学是为应用而生,感受到数学的应用价值,培养学生获取信息,分析问题,解决问题的能力;以及通过处理孙子算经的经典问题和介绍《九章算术》的数学成就,让学生感受上数学文化的源远流长;感受古人智慧的结晶,在增强民族自豪感的同时,继续保持探索数学奥秘的好奇和热情.针对本节课的学习目标,设计了如下的评价任务评价任务1:学生通过思考几年后老师的年龄是孩子的2倍,感觉列算式解决这个问题相当棘手,部分学生自然联想到用方程来处理.此时,学生感受到继续学习方程的必要性及方程的简便和进步.评价任务2:学生通过自学,锻炼学生的独立思考能力,初步形成一元一次方程的概念;通过辨析练习,让学生体验自学的成就感,同时在纠错中体会到数学概念的严谨性,逐步培养学生的自学能力.评价任务3:在突破重难点的教学中,本节课主要是通过填空的形式以及精心设置的问题,让学生在自主思考,小组讨论、合作探究,小组竞争,成果展示,反思质疑等过程中,逐步总结和完善列方程处理实际问题的步骤,并让学生体会从多角度去思考问题,解决问题的思维方式.极大地激发了学生的学习积极性和热情,充分地体验到了成功的乐趣,增强了克服困难的决心和勇气。
七年级《一元一次方程》教学设计(最终5篇)

七年级《一元一次方程》教学设计(最终5篇)第一篇:七年级《一元一次方程》教学设计七年级《一元一次方程》教学设计作为一位杰出的教职工,总不可避免地需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。
怎样写教学设计才更能起到其作用呢?下面是小编收集整理的七年级《一元一次方程》教学设计,欢迎阅读,希望大家能够喜欢。
教学目标:进一步认识方程,理解一元一次方程的概念,会根据题意列简单的一元一次方程。
认识方程的解的概念。
掌握验根的方法。
体验用尝试法解一元一次方程的思想方法。
重点:一元一次方程的概念难点:尝试检验法教学过程:1、温故方程是含有xx的xx.归纳:判断方程的两要素:①有未知数②是等式(通过填空让学生简单回顾方程概念,并总结方程两要素)2、知新根据题意列方程:(1)一件衣服按8折销售的售价为72元,这件衣服的原价是多少元?设这件衣服的原价为x元,8折后售价为xx可列出方程、(2)有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?设x年后树高为5m,可列出方程_______(3)物体在水下,水深每增加10.33米承受的压力就会增加1个大气压、当“蛟龙”号下潜至3500米时,它承受的压力约为340个大气压、问当它承受压力增加到500个大气压时,它又继续下潜了多少米?设它又继续下潜了x米,x米增加大气压个。
可列出方程、(教师引导学生列出方程)80%x=72观察比较方程:(学生根据方程特点填空)等式的两边的代数式都是xx___;每个方程都只含有___个未知数;且未知数的指数是_____(教师总结)这样的方程叫做一元一次方程.(教师提问:需满足几个特点,学生回答后总结一元一次方程概念)1、两边都是整式2、只含有一个未知数3、未知数的指数是一次、(教师引出课题——5.1一元一次方程)3、(接下来一起将前面所学新知与旧知融会贯通)1、下列各式中,哪些是方程?哪些是一元一次方程?(1)5x=0(2)1+3x(3)y2=4+y(4)x+y=5(5)(6)3m+2=1–m(这里需要让学生较快的先找出方程(1)、(3)、(4)、(5)、(6),并说说为什么剩下的不是方程。
初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。
符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。
学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。
同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。
学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。
二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。
为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。
教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。
本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。
教学方法是“引导分类归纳”。
本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
一元一次方程教案(通用11篇)

一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。
一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。
教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。
想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
七年级《一元一次方程》教学设计(通用6篇)

七年级《一元一次方程》教学设计七年级《一元一次方程》教学设计(通用6篇)作为一名教师,时常需要用到教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
教学设计应该怎么写才好呢?以下是小编整理的七年级《一元一次方程》教学设计,欢迎大家分享。
七年级《一元一次方程》教学设计篇1一、教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法讲练结合、注重师生互动。
四、教学准备课件五、教学过程(师生活动)(一)情境引入教师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)教师可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:问题3:能否用方程的知识来解决这个问题呢?(二)学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.2、教师引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母);(2)根据问题中的相等关系,列出方程.(三)举一反三讨论交流1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.列算式:只用已知数,表示计算程序,依据是间题中的数量关系;列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
七年级数学一元一次方程的教案推荐7篇
七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。
七年级数学解一元一次方程教案精选
七年级数学解一元一次方程教案精选一、教学内容本节课选自七年级数学教材第三章第三节“解一元一次方程”。
具体内容包括方程的定义、解方程的基本步骤、移项、合并同类项、系数化为1等知识点。
二、教学目标1. 理解一元一次方程的概念,掌握解一元一次方程的基本步骤。
2. 能够熟练运用移项、合并同类项等方法解一元一次方程。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点教学难点:移项、合并同类项、系数化为1等操作的理解与运用。
教学重点:一元一次方程的概念及其解法。
四、教具与学具准备1. 教具:黑板、粉笔、教学课件。
2. 学具:练习本、铅笔。
五、教学过程1. 实践情景引入通过生活中的实例,如购物、身高增长等,引导学生了解方程的概念。
2. 知识讲解(1)回顾方程的定义,引导学生理解一元一次方程的特点。
(2)讲解解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1。
(3)通过例题讲解,演示解一元一次方程的过程。
3. 随堂练习(1)让学生独立完成练习题,巩固所学知识。
(2)教师对学生的解答进行点评,指出问题,给予指导。
4. 互动环节学生分组讨论,互相交流解一元一次方程的心得。
六、板书设计1. 一元一次方程的概念2. 解一元一次方程的基本步骤3. 例题解答过程4. 练习题七、作业设计1. 作业题目:(1)解方程:3x 5 = 2x + 1(2)解方程:5(y 2) = 3(y + 4)(3)解方程:4(2x + 3) 6 = 3(3x 2)2. 答案:(1)x = 6(2)y = 11(3)x = 2八、课后反思及拓展延伸1. 反思:本节课学生对一元一次方程的解法掌握情况较好,但部分学生在移项、合并同类项方面还存在困难,需要加强练习。
2. 拓展延伸:引导学生探索一元一次方程的多种解法,如代入法、图解法等,提高学生的解题能力。
重点和难点解析1. 一元一次方程的基本步骤的理解与掌握。
2. 移项、合并同类项的运算规则及其在实际解题中的应用。
七年级数学《一元一次方程》教案【4篇】
七年级数学《一元一次方程》教案【4篇】七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。
方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。
)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。
教学建议:关于移项法则,不应只强调记忆,更应强调理解。
学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。
方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。
[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。
②在移项时,学生常会犯一些错误,如移项忘记变号等。
这时,教士不要急于求成,而要引导学生反思自己的解题过程。
必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。
5.小结回顾:学生谈本节课的收获与体会。
师强调:移项法则。
七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。
初一数学最新教案-一元一次方程教学设计 精品
一元一次方程教学设计课题:§2.1.1 一元一次方程(一)教学目标:(一)教学知识点:1.使学生了解什么是方程,什么是一元一次方程;2.使学生体会用字母表示数的好处、画示意图有利于分析问题、找相等关系是列方程的重要一步、从算式到方程(从算术到代数)是数学的一大进步.(二)能力训练要求:1.会将实际问题抽象为数学问题(数学模型),通过列方程解决问题.2.认识列方程解决问题的思想以及用字母表示未知数、用方程表示相等关系的符号化方法.3.使学生能结合具体例子认识一元一次方程的定义,体会识未知数、列方程的过程,会用方程表示简单实际问题的相等关系.(三)情感与价值观要求:体会“从算式到方程是数学的进步”,增强用数学的意识,激发学生学习数学的热情。
教学重点:1.知道什么是方程、一元一次方程。
2.会找相等关系、列方程.教学难点:找相等关系列方程.教学方法:引导、转化教学法.教具准备:投影仪、明胶片、相应图片教学过程一.创设问题情境、引入新课[活动1] 问题1:世界上最大的动物是蓝鲸.一只蓝鲸重124吨,比一头大象体重的25倍少一吨.这头大象重几吨?问题2:章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄离翠湖的路程有多远[师生行为] 教师展示问题1、2,提出:你们会用算术方法解决这个实际问题吗?让学生充分发表意见,教师给予肯定或帮助,对各种解法给予解释,并说明问题2的算术解法有难度,说明进一步学习的必要性.二.讲授新课[活动2] 由问题2人手寻求解决问题的方法.1.问题1中若已知大象的重量(比如x吨),如何求蓝鲸的重量?2.问题2中若知道王家庄到翠湖的路程(比如x千米),那么王家庄距青山千米,王家庄距秀水千米,从课本64页得出;从王家庄到青山所用时间是小时,从王家庄到秀水所用的时间是小时.汽车从王家庄到青山的速度为千米/时,从王家庄到秀水的速度为千米/时.[师生行为]教师提出问题,学生思考回答:蓝鲸的重量可表示为(25x-1)吨.教师结合图形与同学一起进行分析:王家庄距青山(x-50)千米,王家庄距秀水(x十70)千米.从王家庄到青山所用的时间是3小时,从王家庄到秀水所用的时间是5小时.汽车从王家庄到青山的速度为x-503千米/时,从王家庄到秀水的速度为x+705千米/时.[活动3]1.引导学生找出相等关系列出方程.x km70 km50 km王家庄青山翠湖秀水2.思考:对上面的问题,你还能列出其他方程吗?如果能,你依据的哪个相等关系?[师生行为]教师与学生一起分析:在问题l中,蓝鲸的重量为124吨,又可表示为(25x-1)吨,蓝鲸的重量保持不变,所以可得出25x-1=124.在问题2中,x-503的意义是;从王家庄到青山这段路程的车速.x+705的意义是:从王家庄到秀水这段路程的车速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程教学设计
教学设计思想:
本节课教师可以用两个课时把内容传授给学生,主要讲授的是方程的概念、一元一次方程的概念以及方程的解和解方程。
教师通过小学的学过的算式引入到现在要学的方程,通过讲授例题引出方程的相关概念,这样同学在教授新课的同时也提高了学生分析问题的能力。
教学目标:
1.知识与技能:
知道什么是方程,什么是一元一次方程;
体会字母表示数的好处,画示意图有利于分析问题、找相等关系是列方程的重要一步,从算式到方程(从算式到代数)是数学的一大进步。
2.过程与方法:
会将实际问题抽象为数学问题,通过列方程解决问题;
认识列方程解决问题的思想以及用字母表示未知数、用方程表示相等关系得符号化方法;
能结合具体例子认识一元一次方程的定义,体会设未知数、列方程的过程,会用方程表示简单实际问题的相等关系。
3.情感、态度与价值观:
增强用数学的意识,激发学习数学的热情。
教学重点:
会根据实际问题列出一元一次方程。
教学难点:
会根据实际问题列出一元一次方程。
教学方法:
讲授法、引导式。
教具准备:
多媒体。
课时安排:
2课时。
教学过程:
(一)引入
这块地有多大?
农民赛克斯正在嘀咕,他要支付90元现金以及若干千克小麦种子作为他租赁一块农田的一年地租.对此,他逢人便说,如果小麦种子的价格为每千克6元的话,这笔开销相当于每亩56元,但现在小麦的市场价己涨到每千克8元,所以他所付的地租相当于每亩64元.他认为付得太多了.试问:这块农田有多大?
这是一个方程问题,学习本章知识后,你就会解答.
(二)新授
Ⅰ.方程的概念
问题:小明向小彬询问年龄,小彬说“我的年龄乘2减5得21”。
小明立刻就说出了小彬的年龄,你会嘛?(幻灯片)
师:你会用算式方法解决这个实际问题吗?试着列出等量关系。
生:等量关系:年龄×2-5=21。
师:上面列出的是算式关系式,现在我们可以引入未知数,也就是用x来代替小彬的年龄。
(板书)可设小彬的年龄为x岁,则:
2x-5=21,(直接估算一下结果得x=13)。
师:列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程。
Ⅱ.一元一次方程的概念
先看例题:(幻灯片)
例1 根据下列问题,设未知数并列出方程:
(1)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
(2)用一根长24cm的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长、宽各应是多少?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
解:(1)设x月后这台计算机的使用时间达到2450小时,那么x月里这台计算机使用了150x(即150乘x)小时。
列方程
1700+150x=2450。
(2)设长方形的宽为xcm,那么长为1.5x cm。
列方程
2(x+1.5x)=24
(3)设这个学校的学生数为x,那么女生数为0.52x,男生为(1-0.52)x。
列方程
0.52x-(1-0.52)x=80。
师:上面各方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
像1700+150x,2(x+1.5x),0.52x,(1-0.52)x.等这样的式子,可以表示实际问题中的数量关系,例如,0.52x-(1-0.52)x=80在(3)中表示女生数与男生数的差。
归纳:
上面的分析过程可以表示如下:
分析实际问题的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
Ⅲ. 方程的解与解方程
列方程是解决问题的重要方法,利用方程可以解出未知数。
师:从方程1700+150x=2450,你能估算出x的值吗?
如果x=1,1700+150x的值是:1700+150×1=1850。
如果x=2,1700+150x的值是:1700+150×2=2000。
类似的,我们可以得到下面的表。
x的值 1 2 3 4 5 6 7 …
1700+150x
1850 2000 2150 2300 2450 2600 2750 …
的值
总结:解方程就是求出使方程中等号左右两边相等的未知数的值;
这个值就是方程的解。
(三)练习
1.3x-1是方程嘛?
2.列式表示a与3的差等于-2。
3.上题中列出的式子是方程嘛?如果是,未知数是什么?方程的解是什么?如果不是,说明原因。
板书设计:。