量子力学基础

合集下载

第01章 量子力学基础

第01章  量子力学基础
2 n x d n x px n P x n d sin (i sin )dx 0 l0 l dx l 0
l l
d2 2 n x 2 n2 h2 n x 2 ˆ x n ( x) p sin sin dx 2 l l l l2 l n 2 2 h2 n2 h2 2 2 n ( x) 2 n ( x) l 4 l 4
h2 E1 8ml 2
能级公式表明体系的最低能量不能为零,由于箱内势能
V=0,这就意味着粒子的最低动能恒大于零,这个结果称为
零点能效应。最低动能恒大于零意味着粒子永远在运动,即 运动是绝对的。在分子振动光谱、同位素效应和热化学数据理论
计算等问题中,零点能都有实际意义。
C 波函数与几率密度
2 n x n ( x) sin l l
0 0<x<l ∞ x≤0或x≥l
理。
V(x)=
(1)Schrodinger方程及其解
箱外: ( x) 0
2 d 箱内:H T V 2 0 2m 2m dx 2 2 2
定态Schrodinger方程为
d ( x) E ( x) 2 2m dx
2 c2 l
2 n x n ( x) sin l l
n2 h2 En 8ml 2
n=1,2,3,…
(2)求解结果的讨论
n2 h2 En 8ml 2
2 n x n ( x) sin l l
A 能量量子化
能级公式表明,束缚态微观粒子的能量是不连续的,此即 微观体系的能量量子化效应。相邻两能级的间隔为
★ 根据边界条件确定方程的特解
因为必须是连续和单值的,即 (0)= (l)=0,故有

量子力学三大理论基础

量子力学三大理论基础

量子力学三大理论基础量子力学是描述微观世界中粒子运动规律的理论体系,其发展史可追溯到20世纪初。

在量子力学的研究中,有三大理论基础是至关重要的,它们分别是波粒二象性、不确定性原理和量子叠加原理。

波粒二象性波粒二象性是最早提出的量子力学的基础概念,指的是微观粒子既具有粒子的特征,如位置和能量,又具有波动的特征,如干涉和衍射。

这个概念首次被德国物理学家德布罗意提出,他认为粒子也像波一样存在一种波动。

之后的实验证实了电子、中子等粒子都具有波动性质,确立了波粒二象性的观念。

波粒二象性的概念不仅揭示了微观世界的新规律,也为量子力学的发展提供了坚实的基础。

通过波粒二象性,我们可以更好地理解微观世界中粒子的行为,例如解释干涉实验结果和电子双缝干涉现象等。

不确定性原理不确定性原理是由著名的物理学家海森堡提出的,其核心思想是在同一时刻无法确定一个粒子的位置和动量。

简单来说,当我们对一个粒子的位置进行测量时,其动量将变得不确定,反之亦然。

这个原理的提出打破了牛顿力学中确定性的观念,揭示了微观世界的一种新奇特性。

不确定性原理的发现对于我们理解和描述微观粒子的行为起到了至关重要的作用。

它不仅给出了一种全新的解释,也为量子力学的进一步发展奠定了基础。

量子叠加原理量子叠加原理是量子力学中的另一个重要基本原理,它表明一个量子系统可以处于多个态的叠加态。

换句话说,在某些情况下,一个粒子不仅可以处于A态或B态,还可以同时处于A态和B态的叠加态。

这种叠加态的出现在经典力学中是难以想象的,但在量子力学中却是一种普遍现象。

量子叠加原理为我们提供了一种全新的量子态描述方式,丰富了我们对于微观粒子行为的认识。

通过对叠加态的研究,科学家们不断深化对量子力学的理解,推动了量子技术和量子计算等领域的发展。

总结以上所述的波粒二象性、不确定性原理和量子叠加原理构成了量子力学的三大理论基础。

这三个基本概念为我们揭示了微观世界中粒子行为的规律,为科学家们探索更深奥的量子世界提供了宝贵的线索。

量子力学的基础概念

量子力学的基础概念

量子力学的基础概念量子力学是描述微观领域中粒子行为的物理学理论,它构建了一种不同于经典力学的框架,以解释原子、分子、凝聚态物质等微观领域的现象和行为。

本文将介绍量子力学的基础概念,包括波粒二象性、不确定性原理、量子态和测量等内容。

1. 波粒二象性波粒二象性是量子力学的核心概念之一,它表明微观粒子既具有粒子性质又具有波动性质。

根据德布罗意假说,所有物质粒子都具有波动性,波长与粒子动量成反比。

这一假说在实验中得到了验证,例如电子衍射和干涉实验。

波粒二象性的存在使得量子力学与经典物理有根本性的不同。

2. 不确定性原理不确定性原理是量子力学的重要基础,由海森堡提出。

它指出,在对粒子的某一性质进行测量时,无法同时准确测量它的动量和位置。

也就是说,位置和动量的精确测量是不可能的。

不确定性原理改变了我们对物理世界的认识,揭示了微观领域的不可预测性和局限性。

3. 量子态量子态是描述量子系统的状态,通常用波函数表示。

波函数包含了关于粒子位置、动量和其他性质的概率分布信息。

根据量子力学的计算方法,可以通过波函数预测微观粒子的行为和性质。

量子态还包括叠加态和纠缠态等特殊的量子态,它们展示了量子力学独特的特性。

4. 测量在量子力学中,测量是得到粒子性质信息的过程。

与经典物理不同,量子力学中的测量会导致系统塌缩到一个特定的量子态。

这个过程是不可逆的,而且测量结果是随机的。

根据测量理论,只有对某个性质进行测量后,才能确定该性质的具体取值。

总结:量子力学是一门革命性的物理学理论,它揭示了微观世界的本质和行为规律。

通过对波粒二象性、不确定性原理、量子态和测量等基础概念的介绍,我们可以更好地理解和应用量子力学的理论框架。

这些基本概念为我们解释和预测微观粒子的行为提供了扎实的基础,并在现代科技的发展中发挥着重要作用。

量子力学的发展和应用仍在继续,我们对于微观世界的认知也将逐步深化。

量子力学基础

量子力学基础

结论
对微观粒子,讨论其运动轨道及速度是没有意义的。 波函数所反映的只是微观粒运动的统计规律。 区别 宏观物体:讨论它的位置在哪里 宏观物体:讨论它的位置在哪里 位置 微观粒子:研究它在那里出现的几率有多大 微观粒子:研究它在那里出现的几率有多大 几率
波函数的性质
(1) 波函数具有归一性 粒子在整个空间出现的几率:W = ∫ dw = (2) 单值性: 单值性: (3) 连续性 (4) 有限性 波函数的统计解释(玻恩诠释 波函数的统计解释 玻恩诠释) 玻恩诠释
不确定关系
ℏ ∆X ⋅ ∆Px ≥ h ∆X ⋅ ∆Px ≥ 2 ∆t ⋅ ∆E ≥ h ℏ ∆t ⋅ ∆E ≥ 2 尔格秒),因而在宏观 ℏ 是一个小量(1.05 × 10 −27 世界中,不能得到直接体现。
假如:X的位置完全确定,即∆X → 0 ,则粒子的 动量就完全不能确定,即∆Px → ∞ , 假如粒子处于 Px 数值完全确定的状态时( ∆Px → 0 ) ,则无法在X方向上把粒子固定住,即X的位置是 完全不确定的。
若体系具有一系列不同的可能状态, 若体系具有一系列不同的可能状态,{Ψ1, Ψ2···}, } 则它们的线性组合Ψ=C1Ψ1,+C2Ψ2+··· 也是该体系的 则它们的线性组合Ψ 一个可能的状态。其中C 为任意复常数。 一个可能的状态。其中C1, C2 ···为任意复常数。 为任意复常数 态叠加原理:统计规律中的几率幅相加律。 (而不是几率的相加律)
量子学说
能量量子化(能量子)的观点违背日常生活经 验,当时没有被人接受,而普朗克本人也 踌躇不前。 其实,从这个假说出发,如果再向前一步 ,就可以得出电磁场能量具有不连续性的 结论,甚至可以得出电磁场包括光在内还 有粒子性的结论,但他没有迈出这关键的 一步。

大学物理理论:量子力学基础

大学物理理论:量子力学基础

大学物理理论:量子力学基础1. 介绍量子力学是现代物理学的重要分支,它描述了微观粒子的行为和性质。

本文将介绍一些关于量子力学的基本概念和原理。

2. 原子结构和波粒二象性2.1 光电效应光电效应实验证明了光具有粒子性。

解释光电效应需要引入光量子(光子)概念,并讨论能量、动量和波长之间的关系。

2.2 德布罗意假设德布罗意假设认为微观粒子也具有波动性。

通过计算微观粒子的德布罗意波长,可以得出与经典物理不同的结果。

3. 波函数和不确定性原理3.1 波函数及其统计解释波函数描述了一个系统的状态,并包含了关于该状态各个可观测量的信息。

通过波函数,可以计算出一系列平均值,用来描述系统的特征。

3.2 不确定性原理不确定性原理指出,在某些情况下,无法同时准确地确定一个粒子的位置和动量。

这涉及到测量的本质和粒子与波的性质之间的关系。

4. 玻尔模型和量子力学4.1 玻尔模型玻尔模型是描述氢原子中电子运动的经典物理学模型。

它通过量子化角动量来解释氢原子光谱,并提供了首个对原子结构和能级分布的定性解释。

4.2 泡利不相容原理泡利不相容原理说明电子在同一能级上必须具有不同的状态。

这为填充多电子原子如何达到稳态提供了解释。

5. 薛定谔方程及其解析方法5.1 薛定谔方程薛定谔方程是量子力学中最基本的方程。

它描述了波函数随时间演化的规律,以及如何通过波函数求得可观测量的平均值。

5.2 解析方法介绍几种求解薛定谔方程的解析方法,如分离变量法、变换法等,并通过示例问题演示其使用过程和计算结果。

6. 哈密顿算符与算符方法6.1 哈密顿算符哈密顿算符是用于描述系统总能量的数量。

介绍哈密顿算符的概念和性质,并讨论如何通过其本征值和本征函数求解问题。

6.2 算符方法算符是量子力学中描述可观测量的数学工具,介绍常见的一些算符,如位置算符、动量算符等,并讨论它们之间的对易关系。

结论量子力学作为现代物理学的基石,为我们理解微观世界提供了全新的视角。

量子力学基础

量子力学基础
14 此公式在短波区域与曲线相符,长波区域偏差 大。
③、普朗克公式
1900年,马克思·普朗克,根据能量量子化 的假设拟合实验曲线得出一个经验公式:
此式与实验曲线完全符合,称为普朗克公式。
(普朗克荣获1918年诺贝尔物理学奖)
15
普朗克
二、普朗克能量量子化假设
①、组成黑体腔壁的分子、原子可看作是带电 的线性谐振子,可以吸收和辐射电磁波。
⑶、普朗克公式
如何给出与实验曲线符合的表示式(即M与T、λ的关系)?
①、瑞利—金斯公式 瑞利 (J.W.S.Rayleigh,1842—1919,英国人,1904年因发现 氩获诺贝尔物理学奖) 1877年用经典电磁理论和能 量按自由度均分原理得出:
Mλ(T )= C1λ-4T
金斯(1890年)从另一个角度也给出此结论,故称为瑞 利—金斯公式
②、谐振子只能处于某些特定的能量状态,每
一状态的能量只能是最小能量ε0的整数倍。
而ε0是谐振子处于最低能量状态的能量,它与谐振子的振动频率 成正比,即ε0=hυ,
因此谐振子的能量为
E = nε0=nh, 式中n =1、2、3……为正整数,称为量子数, 16 ε0= h是最小能量称为量子。
普朗克公式的推演
电子被镍晶体衍射实验
戴维孙
电子衍射实验证明了德布罗意物质波的假设, 下图是一束细电子射线穿过金属箔后生成的衍 射图样。按照衍射圆环的距离、金属晶格的大 小,算出的波长几和理论值一致。
由于C.P.汤姆孙和戴维孙的贡献,获得了 1937年诺贝尔物理学奖。
电子束透过多晶铝箔的衍射
K
44
汤姆孙
三、不确定关系 (测不准关系)
电子绕核作圆周运动,其稳定状态满足电子的角动量L

物理化学-量子力学基础


04 量子力学的应用
量子计算
量子计算
量子计算机
利用量子力学原理进行计算,具有经典计 算无法比拟的优势,如加速某些算法、实 现更高级别的加密等。
利用量子比特作为计算基本单位,能够实 现并行计算,大大提高计算效率。
量子算法
量子纠错码
基于量子力学原理设计的算法,如Shor算 法、Grover算法等,能够解决经典计算机 无法有效解决的问题。
不确定性原理
总结词
指在量子力学中,无法同时精确测量某些对立的物理量,如位置和动量、时间和能量等。
详细描述
不确定性原理是量子力学中的重要原理之一,它表明微观粒子的某些物理量无法同时被精确测量。这是因为测量 一个物理量可能会对另一个物理量产生干扰,从而影响其测量精度。这一原理限制了人们获取微观粒子精确信息 的可能性。
量子态和叠加态
总结词
量子态是指微观粒子所处的状态,可以 用波函数来描述;叠加态是指一个量子 系统可以同时处于多个状态的叠加。
VS
详细描述
在量子力学中,微观粒子的状态由波函数 来描述。波函数是一个复数函数,其模方 的物理意义是粒子处于某个状态的概率幅 。当一个量子系统可以同时处于多个状态 时,这些状态被称为叠加态。叠加态是量 子力学中的基本概念之一,它解释了微观 粒子的一些奇特性质,如干涉和纠缠等。
利用量子力学原理设计的错误纠正码,能 够提高量子计算机的稳定性。
量子通信
01
02
03
04
量子密钥分发
利用量子力学原理实现密钥分 发,能够保证通信的安全性。
量子隐形传态
利用量子纠缠实现信息传输, 能够实现无损、无延迟的通信

量子雷达
利用量子力学原理实现探测, 能够探测到传统雷达无法探测

量子力学基础

量子力学基础量子力学是现代物理学的基石之一,它描述了微观世界中粒子的行为和性质。

本文将介绍量子力学的基础知识,包括波粒二象性、波函数、测量和不确定性原理等内容。

一、波粒二象性量子力学的核心观念之一是波粒二象性,即物质既可以表现出粒子的离散性质,又可以表现出波的波动性质。

这一观念由德布罗意提出,他认为任何物体都具有波函数。

二、波函数与波动方程波函数是量子力学中描述微观粒子状态的数学函数。

它可以用来计算粒子的位置、动量和能量等物理量。

根据薛定谔方程,波函数满足定态和非定态的波动方程。

三、量子力学中的测量在量子力学中,测量是指对粒子某个物理量进行观测并得到相应的结果。

与经典物理学不同的是,量子物理学中的测量结果是随机的,只能得到概率分布。

四、不确定性原理不确定性原理是量子力学中的重要概念,由海森堡提出。

不确定性原理指出,在给定的时刻,不能同时准确测量一个粒子的位置和动量。

精确测量其中一个物理量,将会导致对另一个物理量的测量结果存在不确定性。

五、量子力学中的算符在量子力学中,算符是用来描述物理量的操作。

比如,位置算符、动量算符和能量算符等。

根据算符的性质,可以求得粒子的期望值和本征态等信息。

六、量子纠缠和超导量子纠缠是量子力学中的一个重要现象,它描述了两个或多个粒子之间的紧密联系。

超导是一种物质在低温条件下具有零电阻和完全抗磁的特性。

七、量子力学的应用量子力学在许多领域都有广泛的应用,尤其是在量子计算、量子通信和量子传感器等前沿科技领域。

量子力学的发展为人类带来了许多革命性的技术和突破。

八、总结量子力学作为现代物理学的重要理论基础,对我们理解微观世界具有重要意义。

本文介绍了量子力学的基础知识,包括波粒二象性、波函数、测量和不确定性原理等内容。

希望读者通过阅读本文,对量子力学有更深入的了解,并能进一步探索其在科学和技术中的应用前景。

第一章 量子力学基础


1.1.3 氢原子光谱与轨道角动量量子化
1913年, Bohr提出一个新模型: 原子中的电子在确定的分 立轨道上运行时并不辐射能量; 只有在分立轨道之间跃迁时才有 不连续的能量辐射; 分立轨道由“轨道角动量量子化”条件确定:
m、v、r分别是电子的质量、线速度和轨道半径,n是一系列正 整数. 由此解释了氢原子的不连续线状光谱. 1922年, Bohr获诺 贝尔物理学奖.
假设 1
微观体系的状态可用一个状态函数或波函数Ψ(x, y, z, t) 描述, Ψ(x, y, z, t)决定了体系的全部可测物理量. 波函数应具有品优性, 包括单值性、连续性、平方可积性.
z 定态波函数 不含时间的波函数ψ(x,y,z)称为定态波函数。 (定态:概率密 度与能量不随时间改变的状态) z 波函数的具体表示形式 用量子力学处理微观体系时,要设法求出波函数的具体表示形 式。而波函数的具体表达式是由解Schrödinger方程得到的。 例如氢原子的1s态的波函数为: ψ 1s =
n=5 n=4 n=3 n=2
n=1
1.1.3 氢原子光谱与轨道角动量量子化
Bohr模型对于单电子原子在多方面应用得很有成效,也 能解释原子的稳定性. 但它竟不能解释 He 原子的光谱,更不 必说较复杂的原子;也不能计算谱线强度。 量子化条件是对的,半径有问题,角动量是错的; 仍属于经典力学,只是认为附加了一些量子化条件——称 为旧量子论
E = hv
λ= h / p
1.1.4 实物微粒的波粒二象性
1927年,戴维逊、革末用电子束单晶衍射法,G.P.汤姆逊用 多晶透射法证实了物质波的存在. 1929年, de Broglie获诺贝尔物 理学奖;1937年,戴维逊、革末、G.P.汤姆逊也获得诺贝尔奖.

第22章量子力学基础

第22章量⼦⼒学基础第22章量⼦⼒学基础⼀、德布罗意物质波德布罗意认为不仅光具有波粒⼆象性,实物粒⼦也具有波粒⼆象性。

描述实物粒⼦波函数中的、与实物粒⼦的能量E和动量p 的德布罗意关系:戴维孙-⾰末电⼦衍射实验,约恩孙电⼦双缝⼲涉实验都证实了电⼦具有的波动性。

⼆、海森伯不确定关系由于微观粒⼦具有波粒⼆象性,我们就⽆法同时精确地测定微观粒⼦坐标与动量,海森伯提出了如下的不确定关系:1、动量-坐标不确定关系2、时间-能量不确定关系三、波函数微观粒⼦具有波粒⼆象性,它不同于经典的波也不同于经典的粒⼦,要描述微观粒⼦群体随时间的变化,引⼊波函数。

波函数确定后,微观粒⼦的波粒⼆象性就能得到准确的描述。

波函数是微观粒⼦的态函数。

1、波函数的物理意义:某⼀时刻在空间某⼀位置粒⼦出现的⼏率正⽐于该时刻该位置波函数的平⽅,或,即⼏率密度2、波函数的归⼀化条件3、波函数的标准条件,单值有限连续。

四、薛定谔⽅程薛定谔⽅程是量⼦⼒学的基础⽅程,由它可解出粒⼦的波函数1、⾃由粒⼦:,,2、势场中粒⼦:*⾮定态:式中,为哈密顿算符。

定态:五、薛定谔⽅程应⽤实例1、⼀维势箱:⾦属中电⼦、原⼦核中质⼦势能分布的理想化模型。

它的势函数阱内⼀维定态薛定谔⽅程解得满⾜边界条件(标准条件)归⼀化条件的解的波函数能量当n=1时为基态能量,也叫零点能。

相应各量⼦数n的波函数,⼏率密度和能级分布如图:2、⼀维势垒:半导体中p-n结处电⼦和空⽳势能分布的简化模型。

3、隧道效应:粒⼦越过或穿透⾼于其总能量的势垒。

4、原⼦、分⼦运动的量⼦化特征:原⼦振动能量:分⼦转动能⼒:5、电⼦⾓动量:轨道⾓动量:,⾃旋⾓动量:,6、氢原⼦的定态:氢原⼦中电⼦的定态薛定谔⽅程解出来的波函数满⾜有限单值连续的标准条件可得下表中的四个量⼦数。

四个量⼦数表征氢原⼦中电⼦状态的特征,如表所列:⾓量⼦数给定以后,可取磁量⼦数给定以后,可取个值,即……⾃旋量⼦数只取两个值,确定电⼦的⾃旋⾓动量某⼀⽅向上的投影原⼦中不可能有两个或两个以上的电⼦具有完全相同的量⼦态,或者说⼀个原⼦中任何两个电⼦不可能具完全相同的四个量⼦数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 Theoretical description of NMR spectroscopy
同Bloch 方程不同,density matrix formalism 可以严格描述核自旋体系的动力学过程。

2.1 量子力学基础
一 基本假设
第一条基本假设:
微观体系的状态被一个波函数完全描述,从这个波函数可得出体系的所有性质。

波函数一般应满足连续性、有限性和单值性。

第二条基本假设:
力学量用厄密算符表示。

1 算符:运算符号,作用于函数,结果还是函数
2 如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表达式中将动量p 换成算符i ∇得出。

L r p L r p i r =⨯→=⨯=-⨯∇ 3 厄密算符满足:对于任意的两个函数,ψ,φ ψφψφ**⎰⎰= ( )F dx F dx
4 本征值方程: F
φλφ= F 在本征态中的观察值为其本征值。

本征函数族满足正交性,厄密算符的本征函数族有完备性。

厄密算符的本征值为实数。

第三条假设:
态迭加原理:当φ1、φ2、…φn …是体系的可能状态时,它们的线性迭加ψ也是体系的一个可能的状态;也可以说,当体系处于态ψ时,体系部分地处在φ1、φ2、…φn …中。

将体系的状态波函数ψ用厄密算符 F 的本征函数φn 展开 ( F n n n
φλφ=): ψ=
∑c n n n
φ 则在态ψ中测量力学量F 得到结果为λn 的几率是c n 2,力学量F 的平均值为 F F d d c n n n ==**⎰⎰∑ψψτψψτλ 2
第四条基本假设:
体系的状态波函数满足薛定谔方程:i t
H ∂ψ∂ψ=
H 是体系的哈密顿算符。

第五条基本假设:
在全同粒子所组成的体系中, 两全同粒子相互调换不改变体系的状态。

波函数满足一定的对称性。

二 算符的对易关系及测不准关系
两个算符对易 ⇔ 两个算符有组成完备系的共同的本征函数集
若 ( )( )FG GF ik F F G G k
-=⇒-⋅-≥222
4 (测不准关系)
三 算符的矩阵表示
描述状态可用直角坐标系,也可用其他坐标系(表象)
选择一本征系:Q 表象,有分立本征值 ()()Qu x Q u x m m m =
可用u 1(x), ... u m (x) 作为新坐标系 (Hilbert 空间)
F u x Fu x dx nm n m =*
⎰() () 此即F 在Q 表象中的矩阵表示
算符在自身表象中的矩阵表示为对角阵
四 Dirac 符号
经典力学中常用矢量表示一个物理量,而不用具体坐标系
类似地,量子力学中也常用类似的矢量方式描述波函数,而不用具体的表象
m ,m 被分别称为左矢和右矢,或刁矢和刃矢 (bra, ket)
这二类矢量不能相加,相应的各个分量互为共轭复数
矢量分解 A A n n =∑
标量积 A B
正交归一化条件 F F i j ij =δ
厄密算符表示为:对于任意的两个函数,ψ,φ ψφψφ F F = 本征值方程表示为: F φλφ=
其共轭形式为:λφ F = 态迭加原理:ψ=∑c n n n
此处c m m =ψ (归一化的基)
故ψψψ===
∑∑∑c n n n n n n n n n
即n n E n
∑=
此处E 是单位算符 n n 称为投影算符,因为 n n c n n ψ=
薛定谔方程:i t H ∂ψ
∂ψ=
五 角动量算符
经典角动量算符为 L r p L r p i r =⨯→=⨯=-⨯∇
角动量算符的一般定义:
L L i L ⨯=
即 [] , L L i L x y z = [] , L L i L y z x = [] , L L i L z x y =
其中 [] , A B AB BA =-
L 2和 , , L L L x y z 都是对易的,即
[][][] , , , L L L L L L x y z 222
0===
其中 L L L L x y z 22
2
2
=++
自旋角动量算符: S S i S ⨯=
电子自旋 s =1/2
引进一个算符 σ,它和 S 的关系是
S = σ2
自旋算符的矩阵形式:
, , S S S i i z x y =-⎡⎣⎢⎤
⎦⎥=⎡⎣⎢⎤
⎦⎥=-⎡⎣⎢⎤
⎦⎥ 2100120110200
, , σσσz x y i i =-⎡⎣⎢⎤
⎦⎥=⎡⎣⎢⎤
⎦⎥=-⎡⎣⎢⎤
⎦⎥1001011000
2.2 密度算符
1. 密度算符: 设m 是哈密顿算符的本征态,任意力学量F 的期望值为
F F d F c c m F n m n m n
===**
⎰∑ψψψψ ,τ
此处c m m =ψ
实际的核磁系统不是纯态,而是混合态,故还需要进行系综平均 F c c m F n m n m n
=*
∑ ,
设 c c n m m n mn *
== ρρ
有 F Tr F =()ρ
其中ρ即为密度算符,确定了体系的性质,矩阵形式称密度矩阵。

Tr()代表矩阵的迹,Tr(AB)=Tr(BA)
热平衡态下的密度算符为 exp( )
( )ρ=--H kT tr H kT
密度矩阵的对角元代表极化,非对角元代表相干。

2. 密度算符随时间的演化:
Schrodinger 方程可以改写成
i dc t dt n c t H n n n
n n
()() ∑∑= 两边乘以k
i dc t dt k n c t k H n n n n n
()() ∑∑=
利用正交归一化条件 i
dc t dt c t k H n k n n ()() =∑ 其共轭形式为
-=**∑i dc t dt c t n H k k n n
()() 进一步计算密度算符矩阵元的演化
[]d k m dt dc c dt
c dc dt dc dt
c i c c n H m i c c k H n i k n n H
m i k H n n m i k H
m k H m k m k m k m k n n n m n n n
ρρρρρ==+=-=
-=-*****∑∑∑∑
得Liouville-Neumann 方程
[]d dt i H ρρ=,
如果H 不显含时间,则可证明
ρρ()()
t e e iHt iHt =-0 这里指数算符按幂级数展开定义
3. 约化密度算符:
ρ指整个体系的密度算符,σ指核自旋的密度算符
4. 旋转变换:
1) 在NMR 中通常用到旋转变换,在量子力学中,绕z 轴的旋转用旋转算符U e iI z =-φ表示,
旋转坐标系I x '与实验室坐标系I x 之间有下列关系:
I e I e I I x i I x i I x y z z '-==+φφφφcos sin 2) 旋转对算符A 的影响相当于施加一个相似变换:
A UAU r =-1 旋转算符U 是U 算符:U U -+=1
3) 旋转坐标系中的运动方程:
[]d t dt i t H r r e σσ()(), = 此处 H e
为有效Hamiltonian a. 由于U 为U 算符:U U E -=1
dE dt d UU dt dU dt U U dU dt
==+=---()1110 即dU dt U U dU dt
--=-11 b.
[][]U H
U U H H U U U UHU UHU U U UHU r σσσσσσ, ( ) , -------=-=-=1111111 c. [][]d dt d U U dt U d dt U dU dt U U dU dt iU H U dU dt U U U U U U dU dt iU H U dU dt U U dU dt r r r σσσσσσσσσσσ==++=++=++------------(), , 111111111111
再加入a,b 的结果 [][]d dt
i UHU U dU dt
U dU dt i UHU U dU dt i UHU iU dU dt r
r r r r r r σσσσσσσ=-+=+⎡⎣⎢⎢⎤⎦⎥⎥=-⎡⎣⎢⎢⎤⎦
⎥⎥-------, , ,, 1111111
故有效Hamiltonian 为: H UHU iU dU dt e =---11
4) 当Hamiltonian 显含时间时,通常要寻找一个适当的U 变换,使得有效Hamiltonian 不含时间,即变换至某个时变Hamiltonian 的相互作用表象
射频脉冲的含时Hamiltonian 可通过旋转变换消去
5. 核自旋算符的矩阵形式:
; ; I I i i I x y z =⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦
⎥1201101200121001 本征函数用列向量表示:
α=⎡⎣⎢⎤⎦⎥10; β=⎡⎣⎢⎤⎦
⎥01 其共轭用行向量表示: []α=10; []β=01 其他运算均可通过矩阵形式进行。

相关文档
最新文档