2019届高考物理总复习第七章静电场第三节电容器与电容带电粒子在电场中的运动课后达标
2019年高考物理复习 第七章 静电场 第3讲 电容器与电容 带电粒子在电场中的运动 讲义

板块一 主干梳理·夯实基础
【知识点1】 常见电容器 电容器的电压、电荷量和电容的关系 Ⅰ1.电容器
(1)组成:由两个彼此绝缘又相互靠近的导体组成。
(2)带电量:一个极板所带电荷量的绝对值。
(3)电容器的充电、放电
①充电:使电容器带电的过程,充电后电容器两极板带上等量的异种电荷,电容器中储存电场能。
D.若紧贴B板内侧插入一块一定厚度的陶瓷片,P将向上运动
答案C
解析电容器和电源相连,则两极板间的电压恒定,若增大A、B两金属板的间距,根据公式C= 可知,电容减小,根据公式C= ,可得电容器两极板上所带电荷量减小,故电容器放电,R中有向左的电流,A项错误;由于两极板间的电压不变,若增大A、B两金属板的间距,根据公式E= 可得两极板间的电场强度减小,微粒P受到的电场力小于重力,将向下运动,B项错误;若紧贴A板内侧插入一块一定厚度的金属片,相当于两极板间的距离减小,则电场强度增大,电场力大于重力,P向上运动,C项正确;若紧贴B板内侧插入一块一定厚度的陶瓷片,相当于εr增大,但两极板间的电场强度不变,电场力不变,微粒P仍静止,D项错误。
(2)在非匀强电场中:W=qU= mv2- mv 。
2.偏转问题
(1)条件分析:不计重力的带电粒子以速度v0垂直于电场线方向飞入匀强电场。
(2)运动性质:类平抛运动。
(3)处理方法:利用运动的合成与分解。
①沿初速度方向:做匀速直线运动,运动时间t= 。
②沿电场方向:做初速度为零的匀加速运动。
③基本过程,如图所示
2. [2017·湖南株洲质检]如图所示,R是一个定值电阻,A、B为水平正对放置的两块平行金属板,两板间有一带电微粒P处于静止状态,则下列说法正确的是( )
高考物理一轮复习 第七章 静电场 第3讲 电容器 带电粒子在电场中的运动

2.解决带电粒子在电场中的直线运动问题的两种思路 (1)根据带电粒子受到的电场力,用牛顿第二定律求出加 速度,结合运动学公式确定带电粒子的运动情况.此方法只 适用于匀强电场. (2)根据电场力对带电粒子所做的功等于带电粒子动能的 变化求解.此方法既适用于匀强电场,也适用于非匀强电 场.
【典例 2】 如图(a)所示,两平行正对的金属板 A、B 间 加有如图(b)所示的交变电压,一重力可忽略不计的带正电粒 子被固定在两板的正中间 P 处.若在 t0 时刻释放该粒子,粒 子会时而向 A 板运动,时而向 B 板运动,并最终打在 A 板上.则 t0 可能属于的时间段是( )
4.如图所示,a、b两个带正电的粒子, 电荷量分别为q1与q2,质量分别为m1和m2. 它们以相同的速度先后垂直于电场线从同 一点进入平行板间的匀强电场后,a粒子打在B板的a′点,b 粒子打在B板的b′点,若不计重力,则( )
A.电荷量q1大于q2 B.质量m1小于m2 C.粒子的电荷量与质量之比mq11>mq22 D.粒子的电荷量与质量之比mq11<mq22
A.3∶2
B.2∶1
C.5∶2
D.3∶1
解析:A 因两粒子同时经过一平行于正极板且与其相距
25l 的平面,电荷量为 q 的粒子通过的位移大小为25l,电荷量为
-q 的粒子通过的位移大小为35l,由牛顿第二定律知它们的加
速度大小分别为 a1=qME、a2=qmE,由运动学公式有25l=12a1t2
=2qME t2
第3讲 电容器 带电粒子在电场中的运动
【基础知识必备】 一、常见电容器 电容器的电压、电荷量和电容的关系 1.常见电容器 (1)组成:由两个彼此__绝__缘___又相互_靠__近___的导体组成. (2)带电荷量:一个极板所带电荷量的_绝__对__值____.
人教版高考物理一轮总复习精品课件 第七章 静电场 第3节 电容器 带电粒子在电场中的运动

变,C 错误;根据电容器电容的定义式可知,当云层底面积增大时,正对面积 S 增
大,该电容器的电容 C 将增大,D 正确。
2.(2021湖南永州高三二模)如图所示,平行板电容器充电后与电源断开,正
极板接地,P为两板间的一点。静电计的金属球与电容器的负极板连接,外
壳接地。若保持负极板不动,将正极板缓慢向左平移一小段距离(静电计所
F。(请用科学计数法计数,小数点后保留2位小数)
(2)电容器释放的电荷量
(3)5.07×10-4
解析 (1)电容器充电的过程中,正电荷由电源的正极移动到电容器的正极
板,负电荷由电源的负极移动到电容器的负极板,所以电容器的上极板带正
电,A错误;电容器充电的过程中,电路中的电流不断减小,B错误;电容器放
C= ,C=
,E= ,联立则有
4π
4π
E=
,由于电容器所带电荷量不变,
r
则极板间电场强度不变,距离增大,由公式 U=Ed 可知两板间的电势差增大,A
正确;由于两板所带电荷量一定,因此两板间的距离增大,两极板间的电场强
度大小不变,因此细线上的张力不变,B 错误;由于上极板的电势为零,且带电
2.偏转问题
场。
(2)运动性质: 匀变速曲线 运动。
(3)处理方法:利用运动的合成与分解。
①沿初速度方向:做 匀速 运动。
②沿电场方向:做初速度为零的 匀加速 运动。
加速度: =
运动时间
=
=
a.能飞出平行板电容器: =
0
1
1 2
2
b.打在平行极板上: = = · ,
高考物理一轮总复习 第七章 第3讲 电容器与电容 带电粒子在电场中的运动(含解析)

电容器与电容 带电粒子在电场中的运动[基础知识·填一填][知识点1] 电容器及电容 1.电容器(1)组成:由两个彼此 绝缘 又相互靠近的导体组成. (2)带电荷量:一个极板所带电荷量的 绝对值 . (3)电容器的充、放电①充电:使电容器带电的过程,充电后电容器两极板带上等量的 异种电荷_ ,电容器中储存电场能.②放电:使充电后的电容器失去电荷的过程,放电过程中 电能 转化为其他形式的能.2.电容(1)定义:电容器所带的 电荷量 与两个极板间的 电势差 的比值. (2)定义式: C =Q U.(3)单位:法拉(F)、微法(μF)、皮法(pF).1 F = 106μF= 1012pF. (4)意义:表示电容器 容纳电荷 本领的高低.(5)决定因素:由电容器本身物理条件(大小、形状、相对位置及电介质)决定,与电容器是否 带电 及 电压 无关.3.平行板电容器的电容(1)决定因素:正对面积、介电常数、两板间的距离. (2)决定式: C =εr S4πkd.判断正误,正确的划“√”,错误的划“×”.(1)电容器所带的电荷量是指每个极板所带电荷量的代数和.(×) (2)电容器的电容与电容器所带电荷量成反比.(×) (3)放电后的电容器电荷量为零,电容也为零.(×) [知识点2] 带电粒子在电场中的运动 1.加速问题(1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20.(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.偏转问题(1)条件分析:不计重力的带电粒子以速度v 0垂直于电场线方向飞入匀强电场. (2)运动性质: 匀变速曲线 运动. (3)处理方法:利用运动的合成与分解. ①沿初速度方向:做 匀速 运动.②沿电场方向:做初速度为零的 匀加速 运动. 判断正误,正确的划“√”,错误的划“×”. (1)带电粒子在匀强电场中只能做类平抛运动.(×)(2)带电粒子在电场中,只受电场力时,也可以做匀速圆周运动.(√) (3)带电粒子在电场中运动时重力一定可以忽略不计.(×) [知识点3] 示波管1.装置:示波管由电子枪、偏转电极和荧光屏组成,管内抽成真空,如图所示. 2.原理(1)如果在偏转电极XX ′和YY ′之间都没有加电压,则电子枪射出的电子沿直线传播,打在荧光屏 中心 ,在那里产生一个亮斑.(2)YY ′上加的是待显示的 信号电压 ,XX ′上是机器自身产生的锯齿形电压,叫做扫描电压.若所加扫描电压和信号电压的周期相同,就可以在荧光屏上得到待测信号在一个周期内变化的图象.[教材挖掘·做一做]1.(人教版选修3-1 P32第1题改编)(多选)如图所示,用静电计可以测量已充电的平行板电容器两极板之间的电势差U ,电容器已带电,则下列判断正确的是( )A .增大两极板间的距离,指针张角变大B .将A 板稍微上移,静电计指针张角变大C .若将玻璃板插入两板之间,则静电计指针张角变大D .若减小两板间的距离,则静电计指针张角变小解析:ABD [电势差U 变大(小),指针张角变大(小).电容器所带电荷量一定,由公式C =εr S 4πkd 知,当d 变大时,C 变小,再由C =QU得U 变大;当A 板上移时,正对面积S 变小,C 也变小,U 变大;当插入玻璃板时,C 变大,U 变小;而两板间的距离减小时,C 变大,U 变小,所以选项A 、B 、D 正确.]2.(人教版选修3-1 P39第2题改编)两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edhU B .edUhC.eU dhD.eUh d解析:D [电子从O 点到A 点,因受电场力作用,速度逐渐减小.根据题意和图示判断,电子仅受电场力,不计重力.这样,我们可以用能量守恒定律来研究问题,即12mv 20=eU OA .因E =U d ,U OA =Eh =Uh d ,故12mv 20=eUhd,故选项D 正确.] 3.(人教版选修3-1 P39第4题改编)如图所示,含有大量11H 、21H 、42He 的粒子流无初速度进入某一加速电场,然后沿平行金属板中心线上的O 点进入同一偏转电场,最后打在荧光屏上.下列有关荧光屏上亮点分布的说法正确的是( )A .出现三个亮点,偏离O 点最远的是11H B .出现三个亮点,偏离O 点最远的是42He C .出现两个亮点 D .只会出现一个亮点 答案:D4.(人教版选修3-1 P36思考与讨论改编)如图是示波管的原理图,它由电子枪、偏转电极(XX ′和YY ′)、荧光屏组成.管内抽成真空.给电子枪通电后,如果在偏转电极XX ′和YY ′上都没有加电压,电子束将打在荧光屏的中心O 点.(1)带电粒子在 __________ 区域是加速的,在 ________ 区域是偏转的. (2)若U YY ′>0,U XX ′=0,则粒子向 ________ 板偏转,若U YY ′=0,U XX ′>0,则粒子向 ________ 板偏转.答案:(1)Ⅰ Ⅱ (2)Y X考点一 平行板电容器的动态分析[考点解读]1.两类典型问题(1)电容器始终与恒压电源相连,电容器两极板间的电势差U 保持不变. (2)电容器充电后与电源断开,电容器两极板所带的电荷量Q 保持不变. 2.动态分析思路 (1)U 不变①根据C =Q U =εr S4πkd 先分析电容的变化,再分析Q 的变化.②根据E =U d分析场强的变化. ③根据U AB =Ed 分析某点电势变化. (2)Q 不变①根据C =Q U =εr S4πkd先分析电容的变化,再分析U 的变化.②根据E =U d=4k πQεr S分析场强变化.[典例赏析][典例1] (多选)如图所示,平行板电容器与直流电源连接,下极板接地,一带电油滴位于电容器中的P 点且处于静止状态,现将上极板竖直向上移动一小段距离,则( )A .带电油滴将沿竖直方向向上运动B .P 点电势将降低C .电容器的电容减小,极板带电荷量减小D .带电油滴的电势能保持不变[解析] BC [电容器与电源相连,两极板间电压不变,下极板接地,电势为0.油滴位于P 点处于静止状态,因此有mg =qE .当上极板向上移动一小段距离时,板间距离d 增大,由C =εr S 4πkd 可知电容器电容减小,板间场强E 场=Ud 减小,油滴所受的电场力减小,mg>qE ,合力向下,带电油滴将向下加速运动,A 错;P 点电势等于P 点到下极板间的电势差,由于P 到下极板间距离h 不变,由φP =ΔU =Eh 可知,场强E 减小时P 点电势降低,B 对;由C =Q U可知电容器所带电荷量减小,C 对;带电油滴所处P 点电势下降,而由题图可知油滴带负电,所以油滴电势能增大,D 错.]分析平行板电容器动态变化的三点关键1.确定不变量:先明确动态变化过程中的哪些量不变,是电荷量保持不变还是极板间电压不变.2.恰当选择公式:灵活选取电容的决定式和定义式,分析电容的变化,同时用公式E =U d分析极板间电场强度的变化情况.3.若两极板间有带电微粒,则通过分析电场力的变化,分析其运动情况的变化.[题组巩固]1.(2016·全国卷Ⅰ)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上,若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变解析:D [据C =εr S4πkd 可知,将云母介质移出电容器,C 变小,电容器接在恒压直流电源上,电压不变,据Q =CU 可知极板上的电荷量变小,据E =U d可知极板间电场强度不变,故选D.]2.(2018·北京卷) 研究与平行板电容器电容有关因素的实验装置如图所示.下列说法正确的是( )A .实验前,只用带电玻璃棒与电容器a 板接触,能使电容器带电B .实验中,只将电容器b 板向上平移,静电计指针的张角变小C .实验中,只在极板间插入有机玻璃板, 静电计指针的张角变大D .实验中,只增加极板带电荷量,静电计指针的张角变大,表明电容增大解析:A [当用带电玻璃棒与电容器a 板接触,由于静电感应,从而在b 板感应出等量的异种电荷,从而使电容器带电,故选项A 正确;根据电容器电容的决定式:C =εr S 4πkd ,将电容器b 板向上平移,即正对面积S 减小,则电容C 减小,根据C =QU可知, 电荷量Q 不变,则电压U 增大,则静电计指针的张角变大,故选项B 错误;根据电容器电容的决定式:C =εr S4πkd,只在极板间插入有机玻璃板,则介电常数εr 增大,则电容C 增大,根据C =Q U可知, 电荷量Q 不变,则电压U 减小,则静电计指针的张角减小,故选项C 错误;根据C =Q U可知,电荷量Q 增大,则电压U 也会增大,而电容由电容器本身决定,C不变,故选项D 错误.]考点二 带电粒子在电场中的直线运动[考点解读]1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =Ud,v 2-v 20=2ad .3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 2非匀强电场中:W =qU =E k2-E k1.[典例赏析][典例2] (2019·湖南长沙模拟)如图所示,在A 点固定一正电荷,电荷量为Q ,在离A 高度为H 的C 处由静止释放某带同种电荷的液珠,开始运动瞬间向上的加速度大小恰好等于重力加速度g .已知静电力常量为k ,两电荷均可看成点电荷,不计空气阻力.求:(1)液珠的比荷;(2)液珠速度最大时离A 点的距离h ;(3)若已知在点电荷Q 的电场中,某点的电势可表示成φ=kQr,其中r 为该点到Q 的距离(选无限远的电势为零).求液珠能到达的最高点B 离A 点的高度r B .[解析] (1)设液珠的电荷量为q ,质量为m ,由题意知,当液珠在C 点时k QqH2-mg =mg 比荷为q m =2gH 2kQ(2)当液珠速度最大时,k Qq h2=mg 得h =2H(3)设BC 间的电势差大小为U CB ,由题意得U CB =φC -φB =kQ H -kQr B对液珠由释放处至液珠到达最高点(速度为零)的全过程应用动能定理得qU CB -mg (r B -H )=0即q ⎝ ⎛⎭⎪⎫kQ H -kQr B -mg (r B -H )=0解得:r B =2H ,r B =H (舍去). [答案] (1)2gH 2kQ(2)2H (3)2H带电体在匀强电场中的直线运动问题的解题步骤[题组巩固]1.(多选)如图所示,带电小球自O 点由静止释放,经C 孔进入两水平位置的平行金属板之间,由于电场的作用,刚好下落到D 孔时速度减为零.对于小球从C 到D 的运动过程,已知从C 运动到CD 中点位置用时t 1,从C 运动到速度等于C 点速度一半的位置用时t 2,下列说法正确的是( )A .小球带负电B .t 1<t 2C .t 1>t 2D .将B 板向上平移少许后小球可能从D 孔落下解析:AB [由题图可知,A 、B 间的电场强度方向向下,小球从C 到D 做减速运动,受电场力方向向上,所以小球带负电,选项A 正确;由于小球在电场中受到的重力和电场力都是恒力,所以小球做匀减速直线运动,其速度图象如图所示,由图可知,t 1<t 2,选项B 正确,C 错误;将B 板向上平移少许时两板间的电压不变,根据动能定理可知,mg (h +d )-qU =0,mg (h +x )-qUx d ′=0,联立得x =h h +d -d ′d ′<d ′,即小球不到D 孔就要向上返回,所以选项D 错误.]2.(2017·江苏卷)如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点解析:A [设A 、B 板间的电势差为U 1,B 、C 间电势差为U 2,板间距为d ,电场强度为E ,第一次由O 点静止释放的电子恰好能运动到P 点,根据动能定理得:qU 1=qU 2=qEd ,将C 板向右移动,B 、C 板间的电场强度:E =U 2d =Q C 0d =4πkQεr S不变,所以电子还是运动到P 点速度减小为零,然后返回,故A 正确,B 、C 、D 错误.]考点三 带电粒子在匀强电场中的偏转[考点解读]1.运动规律(1)沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0b.不能飞出电容器:y =12at 2=qU 2mdt 2,t =2mdyqU(2)沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =qUmd离开电场时的偏移量:y =12at 2=qUl 22mdv2离开电场时的偏转角:tan θ=v y v 0=qUl mdv202.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 2y =12at 2=12·qU 1md ·⎝ ⎛⎭⎪⎫l v 02tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.[典例赏析][典例3] 如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L =0.4 m ,两板间距离d =4×10-3m ,有一束由相同带电微粒组成的粒子流,以相同的速度v 0从两板中央平行极板射入,开关S 闭合前,两板不带电,由于重力作用微粒能落到下极板的正中央,已知微粒质量为m =4×10-5kg ,电荷量q =+1×10-8C ,g 取10 m/s 2.求:(1)微粒入射速度v 0为多少?(2)为使微粒能从平行板电容器的右边射出电场,电容器的上极板应与电源的正极还是负极相连?所加的电压U 应取什么范围?[审题指导] 开关闭合前,微粒做平抛运动,开关闭合后,微粒做类平抛运动,两个过程的分析方法相同,都要用到运动的合成与分解.[解析] (1)开关S 闭合前,由L 2=v 0t ,d 2=12gt 2可解得v 0=L2gd=10 m/s. (2)电容器的上极板应接电源的负极.当所加的电压为U 1时,微粒恰好从下板的右边缘射出,即d 2=12a 1⎝ ⎛⎭⎪⎫L v 02, 又a 1=mg -qU 1dm,解得U 1=120 V当所加的电压为U 2时,微粒恰好从上极板的右边缘射出,即d 2=12a 2⎝ ⎛⎭⎪⎫L v 02, 又a 2=q U 2d-mg m,解得U 2=200 V所以120 V ≤U ≤200 V.[答案] (1)10 m/s (2)与负极相连,120 V ≤U ≤200 V带电粒子在电场中偏转问题求解通法1.解决带电粒子先加速后偏转模型的通法:加速电场中的运动一般运用动能定理qU =12mv 2进行计算;在偏转电场中的运动为类平抛运动,可利用运动的分解进行计算;二者靠速度相等联系在一起.2.计算粒子打到屏上的位置离屏中心的距离Y 的四种方法: (1)Y =y +d tan θ(d 为屏到偏转电场的水平距离).(2)Y =⎝ ⎛⎭⎪⎫L2+d tan θ(L 为电场宽度). (3)Y =y +v y ·d v 0.(4)根据三角形相似Y y =L2+d L2.[题组巩固]1.(多选)如图所示,带电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相等的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则( )A .A 和B 在电场中运动的时间之比为1∶2 B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1解析:ABC [粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2,选项A 正确;竖直方向由h =12at 2得a =2ht 2,它们沿竖直方向下落的加速度大小之比为a A ∶a B =4∶1,选项B 正确;根据a =qE m 得m =qEa,故m A ∶m B =1∶12,选项C 正确;A 和B 的位移大小不相等,选项D 错误.]2.(2016·北京卷23题改编)如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m ,电荷量为e ,加速电场电压为U 0,偏转电场可看做匀强电场,极板间电压为U ,极板长度为L ,板间距为d .(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U =2.0×102 V ,d =4.0×10-2m ,m =9.1×10-31 kg ,e =1.6×10-19 C ,g =10 m/s 2. 解析:(1)根据动能定理,有eU 0=12mv 20, 电子射入偏转电场时的初速度v 0=2eU 0m 在偏转电场中,电子的运动时间Δt =Lv 0=L m 2eU 0加速度a =eE m =eU md偏转距离Δy =12a (Δt )2=UL 24U 0d(2)只考虑电子所受重力和电场力的数量级,有重力 G =mg ≈10-29 N 电场力F =eUd ≈10-15 N由于F ≫G ,因此不需要考虑电子所受的重力.答案:(1) 2eU 0m UL 24U 0d(2)见解析 思想方法(十四) 电容器在现代科技生活中的应用[典例] (多选)目前智能手机普遍采用了电容触摸屏,电容触摸屏是利用人体的电流感应进行工作的,它是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂一层ITO(纳米铟锡金属氧化物),夹层ITO 涂层作为工作面,四个角引出四个电极,当用户手指触摸电容触摸屏时,手指和工作面形成一个电容器,因为工作面上接有高频信号,电流通过这个电容器分别从屏的四个角上的电极中流出,且理论上流经四个电极的电流与手指到四个角的距离成比例,控制器通过对四个电流比例的精密计算来确定手指位置.对于电容触摸屏,下列说法正确的是( )A.电容触摸屏只需要触摸,不需要压力即能产生位置信号B.使用绝缘笔在电容触摸屏上也能进行触控操作C.手指压力变大时,由于手指与屏的夹层工作面距离变小,电容变小D.手指与屏的接触面积变大时,电容变大[解析]AD [据题意知,电容触摸屏只需要触摸,由于流经四个电极的电流与手指到四个角的距离成比例,控制器就能确定手指的位置,因此不需要手指有压力,故A正确;绝缘笔与工作面不能形成一个电容器,所以不能在电容屏上进行触控操作,故B错误;手指压力变大时,由于手指与屏的夹层工作面距离变小,电容将变大,故C错误;手指与屏的接触面积变大时,电容变大,故D正确.][题组巩固]1.(2019·汕头模拟)图示为某电容传声器结构示意图,当人对着传声器讲话,膜片会振动.若某次膜片振动时,膜片与极板距离增大,则在此过程中( ) A.膜片与极板间的电容增大B.极板所带电荷量增大C.膜片与极板间的电场强度增大D.电阻R中有电流通过解析:D [根据C=εr S4πkd可知,膜片与极板距离增大,膜片与极板间的电容减小,选项A错误;根据Q=CU可知极板所带电荷量减小,因此电容器要通过电阻R放电,所以选项D正确,B错误;根据E=Ud可知,膜片与极板间的电场强度减小,选项C错误.]2.(多选)电容式加速度传感器的原理如图所示,质量块左、右侧连接电介质、轻质弹簧,弹簧与电容器固定在外框上,质量块可带动电介质移动,改变电容.则( ) A.电介质插入极板间越深,电容器电容越小B.当传感器以恒定加速度运动时,电路中有恒定电流C.若传感器原来向右匀速运动,突然减速时弹簧会压缩D.当传感器由静止突然向右加速时,电路中有顺时针方向的电流解析:CD [由C =εr S 4πkd知,电介质插入越深,εr 越大,即C 越大,A 错;当传感器以恒定加速度运动时,电介质相对电容器静止,电容不变,电路中没有电流,B 错;传感器向右匀速运动,突然减速时,质量块由于惯性相对传感器向右运动,弹簧压缩变短,C 对;传感器由静止突然向右加速时,电介质相对电容器向左运动,εr 增大,C 增大,电源电动势不变,由C =Q U 知,Q 增大,上极板电荷量增大,即电路中有顺时针方向的电流,D 对.。
高考物理一轮复习第7章静电场第3讲电容器带电粒子在电场中的运动课件

例3 如图所示,A、B和C、D为两平行金属板,A、B两板间电势 差为U,C、D始终与电源相连,测得CD间的场强为E.一质量为m、电 荷量为q的带电粒子(重力不计)由静止开始,经A、B加速后穿过C、D发 生偏转,最后打在荧光屏上,已知C、D极板长均为x,荧光屏距C、D 右端的距离为L,问:
(1)粒子带正电还是带负电? (2)粒子打在荧光屏上的位置距O点多远处? (3)粒子打在荧光屏上时的动能为多大?
第七章
静电场
第3讲 电容器 带电粒子在电场中的运动
1
知识 梳理回顾
知识一 电容器、电容
1.电容器 (1)组成:由两个彼此__绝__缘____又互相__靠__近____的导体组成. (2)带电荷量:一个极板所带电荷量的____绝__对__值_______. (3)充、放电: ①充电:把电容器接在电源上后,电容器两个极板分别带上等量的 _异__种__电__荷_____的过程.充电后,两极板上的电荷由于互相吸引而保存下 来;两极板间有__电__场____存在.充电过程中从电源获得的_电__能_____储存 在电容器中.
思维导悟 解决电容器问题的两个常用技巧
1.在电荷量保持不变的情况下,由 E=Ud =CQd=4πεrkSQ知,电场强度 与板间距离无关.
2.针对两极板带电量保持不变的情况,还可以认为一定量的电荷对 应着一定数目的电场线,两极板间距离变化时,场强不变;两极板正对 面积变化时,如图丙中电场线变密,场强增大.
⑤中点 S 为虚射点:tan θ=vv0y=vv02ty/t2=yl . 2
【小题自测】 2.三个质量相等的带电微粒(重力不计)以相同的水平速度沿两极板 的中心线方向从O点射入,已知上极板带正电,下极板接地,三微粒的 运动轨迹如图所示,其中微粒2恰好沿下极板边缘飞出电场,则
高物理 必考静电场电容器与电容 带电粒子在电场中的运动

冠夺市安全阳光实验学校第3节 电容器与电容 带电粒子在电场中的运动知识点1 电容器、电容、平行板电容器 1.电容器(1)带电量:一个极板所带电荷量的绝对值. (2)电容器的充、放电①充电:使电容器带电的过程,充电后电容器两极板带上等量的异种电荷,电容器中储存电场能.②放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能.2.电容(1)意义:表示电容器容纳电荷本领的物理量.(2)定义式:C =Q U =ΔQΔU.(3)单位:法拉(F),1 F =106μF=1012pF. 3.平行板电容器(1)影响因素:平行板电容器的电容与正对面积成正比,与电介质的相对介电常数成正比,与两极板间的距离成反比.(2)决定式:C =εr S4πkd,k 为静电力常量.知识点2 带电粒子在电场中的运动1.带电粒子在电场中的加速(1)处理方法:利用动能定理:qU =12mv 2-12mv 20.(2)适用范围:任何电场.2.带电粒子在匀强电场中的偏转(1)研究条件:带电粒子垂直于电场方向进入匀强电场.(2)处理方法:类似于平抛运动,应用运动的合成与分解的方法.①沿初速度方向做匀速直线运动,运动时间t =lv 0.②沿电场方向,做初速度为零的匀加速直线运动.错误!知识点3 示波管1.示波管装置示波管由电子枪、偏转电极和荧光屏组成,管内抽成真空.如图631所示.图6312.工作原理(1)如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出的电子束沿直线运动,打在荧光屏中心,在那里产生一个亮斑.(2)YY′上加的是待显示的信号电压.XX′上是机器自身产生的锯齿形电压,叫做扫描电压.若所加扫描电压和信号电压的周期相同,就可以在荧光屏上得到待测信号在一个周期内随时间变化的稳定图象.1.正误判断(1)电容器所带的电荷量是指每个极板所带电荷量的代数和.(×)(2)电容器的电容与电容器所带电荷量成反比.(×)(3)带电粒子在匀强电场中只能做类平抛运动.(×)(4)带电粒子在电场中,只受电场力时,也可以做匀速圆周运动.(√)(5)示波管屏幕上的亮线是由于电子束高速撞击荧光屏而产生的.(√)(6)带电粒子在电场中运动时重力一定可以忽略不计.(×)2.(对电容器电容的理解)根据电容器电容的定义式C=QU,可知( ) 【:96622112】A.电容器所带的电荷量Q越多,它的电容就越大,C与Q成正比B.电容器不带电时,其电容为零C.电容器两极板之间的电压U越高,它的电容就越小,C与U成反比D.以上说法均不对【答案】D3.(示波管的原理)(多选)如图632所示,示波管是示波器的核心部件,它由电子枪、偏转电极和荧光屏组成.如果在荧光屏上P点出现亮斑,那么示波管中的( )图632A.极板X应带正电B.极板X′应带正电C.极板Y应带正电D.极板Y′应带正电【答案】AC4.(带电粒子在电场中的直线运动)两平行金属板相距为d,电势差为U,一电子质量为m、电荷量为e,从O点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图633所示,OA=h,此电子具有的初动能是( )图633A.edhUB.edUhC.eUdhD.eUhd【答案】D[核心精讲]1.分析比较的思路(1)先确定是Q 还是U 不变:电容器保持与电源连接,U 不变;电容器充电后与电源断开,Q 不变.(2)用决定式C =εr S4πkd确定电容器电容的变化.(3)用定义式C =QU 判定电容器所带电荷量Q 或两极板间电压U 的变化.(4)用E =Ud分析电容器极板间场强的变化.2.两类动态变化问题的比较[题组通关]1.(2016·全国乙卷)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器( ) 【:96622113】A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变D 平行板电容器电容的表达式为C =εS4πkd,将极板间的云母介质移出后,导致电容器的电容C 变小.由于极板间电压不变,据Q =CU 知,极板上的电荷量变小.再考虑到极板间电场强度E =Ud,由于U 、d 不变,所以极板间电场强度不变,选项D 正确.2.(2015·安徽高考)已知均匀带电的无穷大平面在真空中激发电场的场强大小为σ2ε0,其中σ为平面上单位面积所带的电荷量,ε0为常量.如图634所示的平行板电容器,极板正对面积为S ,其间为真空,带电荷量为Q .不计边缘效应时,极板可看做无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引力大小分别为( )图634A.Q ε0S 和Q 2ε0S B.Q 2ε0S 和Q 2ε0S C.Q 2ε0S 和Q 22ε0SD.Q ε0S 和Q 22ε0SD 每块极板上单位面积所带的电荷量为σ=QS ,每块极板产生的电场强度为E =σ2ε0,所以两极板间的电场强度为2E =Q ε0S.一块极板在另一块极板处产生的电场强度E ′=Q 2ε0S ,故另一块极板所受的电场力F =qE ′=Q ·Q2ε0S =Q 22ε0S,选项D 正确.[核心精讲]1.带电粒子在电场中运动时是否考虑重力的处理方法(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都要考虑重力.2.解决带电粒子在电场中的直线运动问题的两种思路(1)运动状态的分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力方向与运动方向在同一条直线上,做加(减)速直线运动.(2)用功与能的观点分析:电场力对带电粒子做的功等于带电粒子动能的变化量,即qU =12mv 2-12mv 20.[师生共研]●考向1 仅在电场力作用下的直线运动(多选)如图635所示为匀强电场的电场强度E 随时间t 变化的图象.当t =0时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,则下列说法中正确的是( )图635A .带电粒子将始终向同一个方向运动B .2 s 末带电粒子回到原出发点C .3 s 末带电粒子的速度为零D .0~3 s 内,电场力做的总功为零CD 设第1 s 内粒子的加速度为a 1,第2 s 内的加速度为a 2,由a =qEm可知,a 2=2a 1,可见,粒子第1 s 内向负方向运动,1.5 s 末粒子的速度为零,然后向正方向运动,至3 s 末回到原出发点,粒子的速度为0,由动能定理可知,此过程中电场力做功为零,综上所述,可知C 、D 正确.●考向2 带电粒子在电场力和重力作用下的直线运动问题(2014·安徽高考)如图636所示,充电后的平行板电容器水平放置,电容为C ,极板间距离为d ,上极板正中有一小孔.质量为m 、电荷量为+q 的小球从小孔正上方高h 处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g ).求:图636(1)小球到达小孔处的速度;(2)极板间电场强度大小和电容器所带电荷量;(3)小球从开始下落运动到下极板处的时间. 【规范解答】 (1)由v 2=2gh 得v =2gh . (2)在极板间带电小球受重力和电场力作用,有qE -mg =ma 且v 2-0=2ad ,得E =mg h +dqd由U =Ed 、Q =CU 得Q =C mg h +dq.(3)由题得h =12gt 21、0=v +at2、t =t 1+t 2,综合可得t =h +dh2h g.【答案】 (1)2gh (2)mg h +dqdC mg h +d q (3)h +d h2hg[题组通关]3.平行板间加如图637所示周期性变化的电压,重力不计的带电粒子静止在平行板,从t =0时刻开始将其释放,运动过程无碰板情况,则能定性描述粒子运动的速度图象的是( )图637A 粒子从0时刻在电场中做匀加速直线运动,在T2时刻电场反向,粒子做匀减速直线运动,在T 时刻速度减为零,以后循环此过程,故本题只有选项A 正确.4.(2017·汕头模拟)如图638所示,M 和N 是两个带等量异种电荷的平行正对金属板,两板与水平方向的夹角为60°.将一个质量为m 、电荷量为q的带正电小球从靠近N 板的位置由静止释放,释放后,小球开始做匀加速直线运动,运动方向与竖直方向成30°角.已知两金属板间的距离为d ,重力加速度为g ,则( ) 【:96622114】图638 A .N 板带负电B .M 、N 板之间的场强大小为3mgqC .小球从静止到与M 板接触前的瞬间,合力对小球做的功为3mgdD .M 、N 板之间的电势差为-mgdqD 小球带正电,受到的电场力方向与电场方向相同,所以N 板带正电,A 错误;小球的运动方向就是小球所受合力方向,而小球的运动方向恰好在小球所受重力方向和电场力方向夹角的平分线上,所以电场力等于mg ,M 、N 板之间的场强大小为E =mg q ,B 错误;M 、N 板之间的电势差为U =-Ed =-mgdq,D 正确;小球从静止到与M 板接触前的瞬间,重力和电场力做的功都是mgd ,合力对小球做的功为2mgd ,C 错误.[核心精讲]1.带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 2y =12at 2=12·qU 1md ·⎝ ⎛⎭⎪⎫l v 02tan θ=qU 1l mdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.2.带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时,也可以从能量的角度进行求解:qU y =12mv2-12mv 20,其中U y =Udy ,指初、末位置间的电势差. [师生共研](多选)(2015·天津高考)如图639所示,氕核、氘核、氚核三种粒子从同一位置无初速地飘入电场线水平向右的加速电场E 1,之后进入电场线竖直向下的匀强电场E 2发生偏转,最后打在屏上.整个装置处于真空中,不计粒子重力及其相互作用,那么( )图639A .偏转电场E 2对三种粒子做功一样多B .三种粒子打到屏上时的速度一样大C .三种粒子运动到屏上所用时间相同D .三种粒子一定打到屏上的同一位置 【合作探讨】(1)氕核、氘核、氚核三种粒子有什么不同点和相同点?提示:三种粒子的符号分别为:11H 、21H 、31H ,相同点是均带有一个单位的正电荷,q =+e .不同点是质量数不同,分别是1、2、3,即质量之比为1∶2∶3.(2)如何分析在E 2中电场力对三种粒子的做功多少?提示:因电场力qE 2为恒力,故由W =qE 2·y 分析,而y 是在E 2中的偏转位移,可由y =E 2l 24E 1d分析.AD 根据动能定理有qE 1d =12mv 21,得三种粒子经加速电场加速后获得的速度v 1=2qE 1d m .在偏转电场中,由l =v 1t 2及y =12qE 2mt 22得,带电粒子经偏转电场的侧位移y =E 2l 24E 1d,则三种粒子在偏转电场中的侧位移大小相等,又三种粒子带电荷量相同,根据W =qE 2y 得,偏转电场E 2对三种粒子做功一样多,选项A 正确;根据动能定理,qE 1d +qE 2y =12mv 22,得到粒子离开偏转电场E 2打到屏上时的速度v 2=2qE 1d +qE 2ym,由于三种粒子的质量不相等,故v 2不一样大,选项B 错误;粒子打在屏上所用的时间t =d v 12+L ′v 1=2d v 1+L ′v 1(L ′为偏转电场左端到屏的水平距离),由于v 1不一样大,所以三种粒子打在屏上的时间不相同,选项C 错误;根据v y =qE 2m t 2及tan θ=v yv 1得,带电粒子的偏转角的正切值tan θ=E 2l2E 1d,即三种带电粒子的偏转角相等,又由于它们的侧位移相等,故三种粒子打到屏上的同一位置,选项D 正确.[题组通关]5.(多选)(2015·江苏高考)如图6310所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球( ) 【:96622115】图6310 A .做直线运动B .做曲线运动C .速率先减小后增大D .速率先增大后减小BC 小球运动时受重力和电场力的作用,合力F 方向与初速度v 0方向不在一条直线上,小球做曲线运动,选项A 错误,选项B 正确;将初速度v 0分解为垂直于F 方向的v 1和沿F 方向的v 2,根据运动与力的关系,v 1的大小不变,v 2先减小后反向增大,因此小球的速率先减小后增大,选项C 正确,选项D 错误.6.如图6311所示,两平行金属板间有一匀强电场,板长为L ,板间距离为d ,在板右端L 处有一竖直放置的光屏M ,一带电荷量为q 、质量为m 的质点从两板射入板间,最后垂直打在M 屏上,则下列结论正确的是( )图6311A .板间电场强度大小为mgqB .板间电场强度大小为mg2qC .质点在板间的运动时间和它从板的右端运动到光屏的时间相等D .质点在板间的运动时间大于它从板的右端运动到光屏的时间C 根据质点垂直打在M 屏上可知,质点在两板运动时向上偏转,在板右端运动时向下偏转,mg <qE ,选项A 、B 错误;根据运动的分解和合成,质点沿水平方向做匀速直线运动,质点在板间的运动时间和它从板的右端运动到光屏的时间相等,选项C 正确、D 错误.[典题示例]如图6312所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h 的A处由静止开始下滑,沿轨道ABC 运动并进入圆环内做圆周运动.已知小球所受电场力是其重力的3/4,圆环半径为R ,斜面倾角为θ=60°,s BC =2R .若使小球在圆环内能做完整的圆周运动,h 至少为多少?(sin 37°=0.6,cos 37°=0.8)图6312【规范解答】 小球所受的重力和电场力都为恒力,故可将两力等效为一个力F ,如图所示.可知F =1.25mg ,方向与竖直方向成37°角.由图可知,小球做完整的圆周运动的临界点是D 点,设小球恰好能通过D 点,即达到D 点时圆环对小球的弹力恰好为零.由圆周运动知识得:F =m v 2D R ,即: 1.25mg =m v 2DR由动能定理有:mg (h -R -R cos 37°)-34mg ×(h cot θ+2R +R sin 37°)=12mv 2D ,联立解得h =7.7R .【答案】 7.7R带电体在匀强电场和重力场组成的复合场中的运动问题,是高中物理教学中一类重要而典型的题型.对于这类问题,若采用常规方法求解,过程复杂,运算量大.若采用“等效法”求解,则能避开复杂的运算,过程比较简捷.先求出重力与电场力的合力,将这个合力视为一个“等效重力”,将a =F 合m视为“等效重力加速度”,再将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解即可.[题组通关]7.(多选)如图6313所示,在地面上方的水平匀强电场中,一个质量为m 、电荷量为+q 的小球,系在一根长为L 的绝缘细线一端,可以在竖直平面内绕O 点做圆周运动.AB 为圆周的水平直径,CD 为竖直直径.已知重力加速度为g ,电场强度E =mgq.下列说法正确的是( )【:96622116】 图6313A .若小球在竖直平面内绕O 点做圆周运动,则它运动的最小速度为gLB .若小球在竖直平面内绕O 点做圆周运动,则小球运动到B 点时的机械能最大C .若将小球在A 点由静止开始释放,它将在ACBD 圆弧上往复运动D .若将小球在A 点以大小为gL 的速度竖直向上抛出,它将能够到达B 点BD 因为电场强度E =mgq,所以小球所受电场力大小也为mg ,故小球所受合力大小为2mg ,方向斜向右下方,与竖直方向夹角为45°,故小球通过圆弧AD 的中点时速度最小,此时满足2mg =m v 2minL,因此小球在竖直面内圆周运动的最小速度v min =2gL ,A 项错误;由功能关系知,物体机械能的变化等于除重力、弹簧的弹力之外的力所做的功,小球在竖直平面内绕O 点做圆周运动,运动到B 点时,电场力做功最多,故运动到B 点时小球的机械能最大,B 项正确;小球在A 点由静止开始释放后,将沿合外力方向做匀加速直线运动,C 项错误;若将小球以gL 竖直向上抛出,经时间t =2gLg回到相同高度,其水平位移s=12·qE mt 2=2L ,故小球刚好运动到B 点,D 项正确.。
2019年高考物理一轮复习 第七章 静电场 第3讲 电容器和电容 带电粒子在电场中的运动讲义
【解题导思】 (1)微粒是做匀速直线运动,还是变速直线运动?
答:微粒受重力和电场力作用,两力的合力不可能为零,不可能做匀 速直线运动,只能是变速直线运动。
(2)带电微粒受到的电场力可能水平向右吗?
答:不可能,微粒做直线运动,合力必沿 AB 直线(合力不为零时), 电场力只能水平向左。
解析 微粒做直线运动的条件是速度方向和合力的方向在同一条直线 上,只有微粒受到水平向左的电场力才能使得合力方向与速度方向相反且 在同一条直线上,由此可知微粒所受的电场力的方向与场强方向相反,则 微粒必带负电,且运动过程中微粒做匀减速直线运动,B 项正确。
答案 D
微考点 2 带电体在电场中的直线运动 核|心|微|讲
与力学的分析方法基本相同:先分析受力情况,再分析运动状态和运动 过程(平衡、加速或减速;是直线还是曲线);然后选用恰当的规律解题。也 可以从功和能的角度分析:带电体的加速(含偏转过程中速度大小的变化)过 程是其他形式的能和动能之间的转化过程。解决这类问题,可以用动能定理 或能量守恒定律。
答案 B
分析平行板电容器动态变化问题的三个关键点 (1)确定不变量:首先要明确动态变化过程中的哪些量不变,一般情况 下是保持电荷量不变或板间电压不变。 (2)恰当选择公式:要灵活选取电容的两个公式分析电容的变化,还要 应用 E=Ud 分析板间电场强度的变化情况。 (3)若两极板间有带电微粒,则通过分析电场力的变化,分析运动情况 的变化。
答案 B
题|组|微|练
3.一水平放置的平行板电容器的两极板间距为 d,极板分别与电池两
极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计)。小孔正上
方d2处的 P 点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容
高考物理一轮复习 专题七 静电场 考点3 电容器 带电粒子在电场中的运动课件
2.平行板电容器的动态分析 (1)电容器动态分析的基本思路 ①确定不变量,分析电压不变或电量不变。 ②用决定式 C∝εdrS分析平行板电容器电容的变化。 ③用定义式 C=QU分析电容器所带电量或两极板间电压的变化。 ④用 E=Ud分析电容器极板间场强的变化。 (2)两类典型的动态变化分析 ①第一类动态变化:两极板间电压 U 恒定不变。(与电源始终相连接)
重难点 一、电容器问题 1.公式 C=QU=ΔΔQU与 C=4επrkSd的不同 (1)公式 C=QU=ΔΔQU是电容的定义式,对任何电容器都适用。对一个确定的电容器,其电容已确定,不 会随其带电荷量的改变而改变。对一个确定的电容器,Q∝U。 (2)公式 C=4επrkSd是平行板电容器的决定式,只对平行板电容器适用。反映了影响电容器大小的因素 C ∝εr,C∝S,C∝1d。
专题七 静电场
考点三 电容器 带电粒子在电场中的 运动
撬点·基础点 重难点
基础点
知识点 1 常见电容器 电容器的电压、电荷量和电容的关系 1.常见电容器 (1)组成:由两个彼此 绝缘 又相互 靠近 的导体组成。 (2)带电荷量:一个极板所带电荷量的 绝对值 。 (3)电容器的充、放电 充电:使电容器带电的过程,充电后电容器两板带上等量的 异种电荷 ,电容器中储存 电场能 。 放电:使充电后的电容器失去电荷的过程,放电过程中 电场能 转化为其他形式的能。
2ay=d Umq。
(2)粒子的偏转角
①以初速度 v0 垂直进入偏转电场:如图所示,设带电粒子质量为 m,带电荷量为 q,偏转电压为 U1, 若粒子飞出电场时偏转角为 θ,则 tanθ=mqUv201dl
结论:动能一定时,tanθ 与 q 成正比,电荷量相同时,tanθ 与动能成反比。 ②粒子从静止开始经加速电场 U0 加速后再进入偏转电场则有:qU0=12mv20 可解得:tanθ=2UU10ld 结论:粒子的偏转角与粒子的 q、m 无关,仅取决于加速电场和偏转电场。
高考物理大一轮复习 第7章 静电场 第3节 电容器与电容 带电粒子在电场中的运动课件.pptx
3. (多选)如图所示,电子由静止开始从 A 极板向 B 极板运动, 当到达 B 极板时速度为 v,保持两板间电压不变,则( )
A.当增大两板间距离时,v 也增大 B.当减小两板间距离时,v 增大 C.当改变两板间距离时,v 不变 D.当增大两板间距离时,电子在两板间运动的时间也增大
15
解析:选 CD.电子从静止开始运动,根据动能定理有 qU=12 mv2-0 可知,从 A 板运动到 B 板动能的变化量等于电场力做的功, 因两极板间电压不变,所以末速度不变,A、B 错误,C 正确;如 果增大两板间距离,由 E=Ud 知 E 变小,由 a=qmE知 a 变小,由 x =12at2 知,t 增大,电子在两板间运动的时间变长,D 正确.
11
(5)带电粒子在电场中,只受电场力时,也可以做匀速圆周运 动.( √ )
(6)示波管屏幕上的亮线是由于电子束高速撞击荧光屏而产生 的.( √ )
(7)带电粒子在电场中运动时重力一定可以忽略不计.( × )
12
2.一充电后的平行板电容器保持两极板的正对面积、间距和
电荷量不变,在两极板间插入一电介质,其电容 C 和两极板间的
4
2.电容 (1)定义:电容器所带的 电荷量与两个极板间的电势差的比值. (2)定义式: C=QU. (3)单位:法拉(F)、微法(μF)、皮法(pF).1 F=106 μF= 1012 pF. (4)意义:表示电容器 容纳电荷 本领的高低. (5)决定因素:由电容器本身物理条件(大小、形状、相对位置 及电介质)决定,与电容器是否 带电 及 电压 无关.
20
1.(2016·高考全国乙卷) 一平行板电容器两极板之间充满云 母介质,接在恒压直流电源上,若将云母介质移出,则电容器( )
【人教版】2020届高考物理一轮复习第7章静电场第3讲电容器带电粒子在电场中的运动课时作业(含解析)
3、电容器 带电粒子在电场中的运动[基础训练]1.(2018·云南曲靖联考)(多选)如图所示电路中,A 、B 为两块竖直放置的金属板,G 是一只静电计,开关S 合上后,静电计指针张开一个角度,下述哪些做法可使指针张角增大( )A .使A 、B 两板靠近一些 B .使A 、B 两板正对面积错开一些C .断开S 后,使B 板向右平移拉开一些D .断开S 后,使A 、B 两板正对面积错开一些答案:CD 解析:图中静电计的金属杆接A 板,外壳和B 板均接地,静电计显示的是A 、B 两极板间的电压,指针张角越大,表示两板间的电压越高.当合上S 后,A 、B 两板与电源两极相连,板间电压等于电源电压不变,静电计指针张角不变;当断开S 后,板间距离增大,正对面积减小,都将使电容器的电容变小,而电容器电荷量不变,由U =Q C可知,板间电压U 增大,从而使静电计指针张角增大.综上所述,选项C 、D 正确.2.(2018·山东菏泽期末)(多选)一平行板电容器充电后与电源断开,负极板接地,在两极板间有一带正电小球(电荷量很小)固定在P 点,如图所示.以U 表示两极板间的电压,E 表示两极板间的场强,E p 表示该小球在P 点的电势能,若保持负极板不动,而将正极板移至图中虚线所示位置,则( )A .U 变小B .U 不变C .E 变大D .E p 不变答案:AD 解析:根据电容器充电后与电源断开可知,Q 不变,将正极板移至图中虚线所示位置,间距d 减小,由C =εr S 4πkd ,知电容C 增大,又U =Q C ,电压U 减小,因E =U d =Q Cd =4πkQ εr S,E 不变,P 点到下极板的距离不变,则P 点与下极板的电势差不变,P 点的电势φ不变,P 点电势能E p =φq 不变,选项A 、D 正确.3.如图所示,从F 处由静止释放一个电子,电子向B 板方向运动,设电源电动势为U (V),下列对电子运动的描述中错误的是( )A .电子到达B 板时的动能是U (eV)B .电子从B 板到达C 板的过程中,动能的变化量为零 C .电子到达D 板时动能是3U (eV) D .电子在A 板和D 板之间做往复运动答案:C 解析:由题图可知,电子在A 、B 板间做加速运动,电场力做的正功为U (eV);电子在B 、C 板间做匀速运动,动能变化量为零;电子在C 、D 板间做减速运动,电场力做的功为-U (eV),电子在D 板处速度为零,故电子在A 板和D 板之间做往复运动,选C.4.如图所示,电子(不计重力,电荷量为e ,质量为m )由静止经加速电场加速,然后从相互平行的A 、B 两板的正中间射入,已知加速电场两极间电压为U 1,A 、B 两板之间电压为U 2,则下列说法中正确的是( )A .电子穿过A 、B 板时,其动能一定等于e ⎝ ⎛⎭⎪⎫U 1+U 22B .为使电子能飞出A 、B 板,则要求U 1>U 2C .若把电子换成另一种带负电的粒子(忽略重力),它将沿着电子的运动轨迹运动D .在A 、B 板间,沿电子的运动轨迹,电势越来越低答案:C 解析:电子穿过A 、B 板时不一定从板的边缘射出,所以动能不一定等于e ⎝ ⎛⎭⎪⎫U 1+U 22,故A 错误.为使电子能飞出A 、B 板,不能只要求U 1>U 2,因为竖直位移还与板长、板间距离有关,故B 错误.电子在A 、B 板间的水平位移x =v 0t ,竖直位移y =12at 2,其中a =eU 2md ,eU 1=12mv 20,联立得y =U 2x24U 1d,与电荷量、质量无关,所以C 正确.在A 、B 板间,电场力对电子做正功,电势能减少,沿电子的运动轨迹电势升高,所以D 错误.5.(2018·湖北宜昌模拟)如图所示,一个带电粒子从粒子源飘入(初速度很小,可忽略不计)电压为U 1的加速电场,经加速后从小孔S 沿平行金属板A 、B 的中线射入,A 、B 板长为L ,相距为d ,电压为U 2.则带电粒子能从A 、B 板间飞出应该满足的条件是( )A.U 2U 1<2dL B.U 2U 1<d LC.U 2U 1<2d 2L2 D.U 2U 1<d 2L2 答案:C 解析:根据qU 1=12mv 2,再根据t =L v 和y =12at 2=12·qU 2md ·⎝ ⎛⎭⎪⎫L v 2,由题意知,y <12d ,解得U 2U 1<2d2L 2,故C正确.6.如图所示的示波管,电子由阴极K 发射后,初速度可以忽略,经加速电场加速后垂直于电场方向飞入偏转电场,最后打在荧光屏上.已知加速电压为U 1,偏转电压为U 2,两偏转极板间距为d ,板长为L ,偏转极板右端到荧光屏的距离为D ,不计重力,求:(1)电子飞出偏转电场时的偏转位移y ; (2)电子打在荧光屏上的偏转距离OP .答案:(1)U 2L 24dU 1 (2)U 2L4dU 1(L +2D )解析:设电子加速后速度为v 0,则eU 1=12mv 20在偏转电场中水平方向:L =v 0t 竖直方向:y =12eU 2dmt 2联立解得y =U 2L 24dU 1.(2)由类平抛运动的推论可得y OP =12L L2+D联立解得OP =y +2D L y =U 2L 24dU 1+U 2LD 2dU 1=U 2L4dU 1(L +2D ).[能力提升]7.(2018·河北张家口模拟)如图所示,P 、Q 为平行板电容器,两极板竖直放置,在两板间用绝缘线悬挂一带电小球.将该电容器与电源连接,闭合开关后,悬线与竖直方向夹角为α,则()A .保持开关闭合,缩小P 、Q 两板间的距离,角度α会减小B .保持开关闭合,加大P 、Q 两板间的距离,角度α会增大C .断开开关,加大P 、Q 两板间的距离,角度α会增大D .断开开关,缩小P 、Q 两板间的距离,角度α不变化答案:D 解析:保持开关闭合,电容器两端的电压不变,减小两板间距离,根据E =Ud,电场强度增大,角度α增大,A 错误;增大两板间距离,场强减小,角度α减小,B 错误;将开关断开,Q 不变,则有E =U d =Q Cd=Q εr S4πkd·d =4πkQεr S,改变距离d ,场强不变,角度α不变,C 错误,D 正确.8.如图所示,在空间中有平行于xOy 平面的匀强电场,一群带正电粒子(电荷量为e ,重力不计,不计粒子间相互作用)从P 点出发,可以到达以原点O 为圆心、R =25 cm 为半径的圆上的任意位置,比较圆上这些位置,发现粒子到达圆与x 轴正半轴的交点A 时,动能增加量最大,为60 eV ,已知∠OAP =30°.则下列说法正确的是( )A .该匀强电场的方向沿x 轴负方向B .匀强电场的电场强度是240 V/mC .过A 点的电场线与x 轴垂直D .P 、A 两点间的电势差为60 V答案:D 解析:到A 点时,动能增加量最大,说明等势面在A 点与圆相切(否则一定还可以在圆上找到比A 点电势低的点,粒子到达这点,动能增加量比到达A 点时动能增加量大),即等势面与y 轴平行,电场力做正功,所以电场沿x 轴正方向,P 、A 两点间的电势差U PA =W e=60 V ,由匀强电场中电场强度与电势差的关系可得E =U PA2R cos 30°cos 30°=160 V/m ,故D 正确,A 、B 、C 错误.9.(多选)两个相同的电容器A 和B 如图所示连接,它们的极板均水平放置,当它们都带有一定电荷并处于静电平衡时,电容器A 中的一带电粒子恰好静止,现在电容器B 的两极板间插入一长度与板长相同的金属块,且两极板的间距d 不变,这时带电粒子的加速度大小为12g ,重力加速度的大小为g .则下列说法正确的是( )A .带电粒子加速度方向向下B .电容器A 的带电量增加为原来的2倍C .金属块的厚度为23dD .电容器B 两板间的电压保持不变答案:AC 解析:带电粒子静止,则有mg =qU d ,得U =mgdq①,当在电容器B 的两极板间插入一长度与板长相同的金属块时,板间距减小,则由C =εr S4πkd 可知,电容器B 的电容C 增大,而两个电容器的总电量不变,电压相等,则知电容器B 两端的带电量增大,电容器A 两端的电量减小,则由C =Q U知电容器A 板间电压减小,场强减小,粒子所受的电场力减小,所以粒子向下加速运动,故A 项正确;带电粒子向下加速运动,根据牛顿第二定律得mg -qU ′d =m g 2②,由①②解得U ′=12mgd q ,则板间电压变为原来的12,根据电容的定义式C =QU,可知电容器A 的带电量变为原来的12,则电容器B 的带电量变为原来的32倍,由电容的定义式C =QU ,可知电容器B 的电容变为原来的3倍,则电容器B 的板间距减小到原来的13,故金属块的厚度为23d ,C 项正确,B 、D 项错误.10.如图所示,矩形区域ABCD 内存在竖直向下的匀强电场,两个带正电的粒子a 和b 以相同的水平速度射入电场,粒子a 由顶点A 射入,从BC 的中点P 射出,粒子b 由AB 的中点O 射入,从顶点C 射出.若不计重力,则a 和b 的比荷之比是()A .1∶2B .2∶1C .1∶8D .8∶1答案:D 解析:如图所示,设AB 长为2h ,BC 长为2l ,对a 粒子有2h =12a a t 2a =q a E 2m a t 2a ,l =v 0t a ,解得2h =q a E 2m a ⎝ ⎛⎭⎪⎫l v 02,对b 粒子有h =12a b t 2b =q b E 2m b t 2b ,2l =v 0t b ,解得h =q b E 2m b ⎝ ⎛⎭⎪⎫2l v 02,可得q am a q b m b=81,D 正确.11.如图甲所示,质量为m 、电荷量为e 的电子经加速电压U 1加速后,在水平方向沿O 1O 2垂直进入偏转电场.已知形成偏转电场的平行板电容器的极板长为L (不考虑电场边缘效应),两极板间距为d ,O 1O 2为两极板的中线,P 是足够大的荧光屏,且屏与极板右边缘的距离也为L .甲乙(1)求电子进入偏转电场时的速度大小v ;(2)若偏转电场两板间加恒定电压,电子经过偏转电场后正好打中屏上的A 点,A 点与极板M 在同一水平线上,求偏转电场所加电压U 2;(3)若偏转电场两板间的电压按如图乙所示做周期性变化,要使电子经加速电场后在t =0时刻进入偏转电场,最后水平击中A 点,求偏转电场电压U 0以及周期T 分别应该满足的条件.答案:见解析 解析:(1)电子经加速电场加速eU 1=12mv 2解得v =2eU 1m.(2)由题意知,电子经偏转电场偏转后做匀速直线运动到达A 点,设电子离开偏转电场时的偏转角为θ,由几何关系得d 2=⎝⎛⎭⎪⎫L +12L tan θ解得tan θ=d3L又tan θ=v y v =eU 2md ·L v v =eU 2L mdv 2=U 2L2U 1d解得U 2=2U 1d23L2.(3)要使电子在水平方向击中A 点,电子必向上极板偏转,且v y =0,则电子应在t =0时刻进入偏转电场,且电子在偏转电场中运动的时间为整数个周期,因为电子水平射出,则电子在偏转电场中的运动时间满足t =Lv =nT T =L nv=L n2eU 1m=L n m2eU 1(n =1,2,3,…) 在竖直方向满足d2=2n ×12a ⎝ ⎛⎭⎪⎫T 22=2n ×12·eU 0md ⎝ ⎛⎭⎪⎫T 22解得U 0=4nU 1d2L2(n =1,2,3,…).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 电容器与电容、带电粒子在电场中的运动[学生用书P323(单独成册)](建议用时:60分钟)一、单项选择题1.一充电后的平行板电容器保持两极板的正对面积、间距和电荷量不变,在两极板间插入一电介质,其电容C 和两极板间的电势差U 的变化情况是( )A .C 和U 均增大B .C 增大,U 减小 C .C 减小,U 增大D .C 和U 均减小解析:选B.由公式C =εr S4πkd 知,在两极板间插入一电介质,其电容C 增大,由公式C=Q U知,电荷量不变时,U 减小,B 正确.2.如图,一平行板电容器的两极板与一电压恒定的电源相连,极板水平放置,极板间距为d ;在下极板上叠放一厚度为l 的金属板,其上部空间有一带电粒子P 静止在电容器中.当把金属板从电容器中快速抽出后,粒子P 开始运动.重力加速度为g .粒子运动的加速度为( )A.l dg B .d -ld g C.ld -lg D .dd -l g 解析:选A.带电粒子在电容器两极板间时受到重力和电场力的作用,最初处于静止状态,由二力平衡条件可得:mg =qUd -l;当把金属板从电容器中快速抽出后,电容器两极板间的电势差不变,但两极板间的距离发生了变化,引起电场强度发生了变化,从而电场力也发生了变化,粒子受力不再平衡,产生了加速度,根据牛顿第二定律ma =mg -q U d,两式联立可得a =l dg .3.(2018·高考原创猜题卷)如图所示,高为h 的固定光滑绝缘斜面,倾角θ=53°,将其置于水平向右的匀强电场中,现将一带正电的物块(可视为质点)从斜面顶端由静止释放,其所受的电场力是重力的43倍,重力加速度为g ,则物块落地的速度大小为( )A .25ghB .2ghC .22ghD .532gh 解析:选D.对物块受力分析知,物块不沿斜面下滑,离开斜面后沿重力、电场力合力的方向运动,F 合=53mg ,x =53h ,由动能定理得F 合·x =12mv 2,解得v =532gh .4.一水平放置的平行板电容器的两极板间距为d ,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方d2处的P 点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移d3,则从P 点开始下落的相同粒子将( )A .打到下极板上B .在下极板处返回C .在距上极板d2处返回D .在距上极板25d 处返回解析:选D.设粒子质量为m ,带电量为q ,由动能定理得,第一次粒子从P 点下落有mg ⎝⎛⎭⎪⎫d +d 2-qU =0;设第二次粒子从P 点下落进入电容器后在距上极板距离为x 处返回,有mg ⎝ ⎛⎭⎪⎫x +d 2-q x 23dU =0,联立解得x =25d ,故选项D 正确.5.(2018·湖北黄冈模拟)静电喷漆技术具有效率高、质量好等优点,其装置示意图如图所示,A 、B 为两块水平放置的平行金属板,间距d =1.0 m ,两板间有方向竖直向上、电场强度大小为E =1.0×103N/C 的匀强电场,在A 板的中央放置一个安全接地的静电油漆喷枪P ,油漆喷枪的半圆形喷嘴可向各个方向均匀地喷出初速度大小均为v 0=1.0 m/s 、质量均为m =5.0×10-14kg 、电荷量均为q =2.0×10-15C 的带负电的油漆微粒,不计微粒所受空气阻力及微粒间的相互作用,油漆微粒最后都落在金属板B 上,重力加速度g =10 m/s 2.下列说法中错误的是( )A .沿水平方向喷出的微粒运动到B 板所需时间为0.2 sB .沿不同方向喷出的微粒,从喷出至到达B 板,电场力做功为2.0×10-12JC .若其他条件均不变,d 增大为原来的2倍,喷涂面积增大为原来的2倍D .若其他条件均不变,E 增大为原来的2倍,喷涂面积减小为原来的12解析:选D.沿水平方向喷出的微粒做类平抛运动,在竖直方向上,加速度a =qE +mgm=2×10-15×103+5×10-135×10-14m/s 2=50 m/s 2,根据d =12at 2得t =2da=0.2 s ,故A 正确.沿不同方向喷出的微粒,从喷出至到达B 板,电场力做功为W =qEd =2×10-15×103×1 J =2.0×10-12J ,故B 正确.若其他条件均不变,d 增大为原来的2倍,根据d =12at 2得,t 变为原来的2倍,则喷涂面积的半径变为原来的2倍,面积变为原来的2倍.故C 正确.若其他条件均不变,E 增大为原来的2倍,则加速度a ′=2×10-15×2×103+5×10-135×10-14m/s 2=90 m/s 2,加速度变为原来的95,时间t 变为原来的53,喷涂面积的半径变为原来的53,面积减小为原来的59,故D 错误.二、多项选择题6.(2018·成都七中高三月考)如图所示,R 0为热敏电阻(温度降低电阻增大),D 为理想二极管(正向电阻为零,反向电阻无穷大),C 为平行板电容器,C 中央有一带电液滴刚好静止,M 点接地.在开关S 闭合后,下列各项单独操作可能使带电液滴向上运动的是( )A .将热敏电阻 R 0加热B .变阻器 R 的滑动头 P 向上移动C .开关S 断开D .电容器 C 的上极板向上移动解析:选AC.液滴受向上的电场力和向下的重力作用;将热敏电阻R 0加热,则阻值减小,滑动变阻器R 上的电压变大,则电容器两端的电压变大,两板间场强变大,则液滴向上运动,选项A 正确;变阻器R 的滑动头 P 向上移动时,R 的阻值减小,则电容器两端的电压减小,电容器放电,但是由于二极管的单向导电性使得电容器上的电量不变,场强不变,则油滴不动,选项B 错误;开关S 断开时,电容器两端的电压等于电源的电动势,则电容器两板间的场强变大,液滴向上运动,选项C 正确;电容器C 的上极板向上移动时,电容器两板间场强减小,液滴向下运动,故选项D 错误.7.如图甲所示,两平行金属板竖直放置,左极板接地,中间有小孔,右极板电势随时间变化的规律如图乙所示.电子原来静止在左极板小孔处(不计重力作用).下列说法中正确的是( )A .从t =0时刻释放电子,电子将始终向右运动,直到打到右极板上B .从t =0时刻释放电子,电子可能在两板间振动C .从t =T 4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D .从t =T4时刻释放电子,电子必将打到左极板上解析:选AC.根据题中条件作出带电粒子的速度图象,根据速度图象包围的面积分析粒子的运动.由图1知,t =0时释放电子,电子的位移始终是正值,说明一直向右运动,一定能够击中右板,选项A 正确、B 错误.由图2知,t =T 4时释放电子,电子向右的位移与向左的位移大小相等,若释放后的T2内不能到达右板,则之后往复运动,选项C 正确、D 错误.8.如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L =0.4 m ,两极板间距离d =4×10-3m ,有一束由相同带电微粒组成的粒子流以相同的速度v 0从两极板中央平行极板射入,开关S 闭合前,两极板间不带电,由于重力作用,微粒能落到下极板的正中央.已知微粒质量m =4×10-5kg 、电荷量q =+1×10-8C ,g =10 m/s 2,则下列说法正确的是( )A .微粒的入射速度v 0=10 m/sB .电容器上极板接电源正极时微粒有可能从平行板电容器的右边射出电场C .电源电压为180 V 时,微粒可能从平行板电容器的右边射出电场D .电源电压为100 V 时,微粒可能从平行板电容器的右边射出电场解析:选AC.开关S 闭合前,两极板间不带电,微粒落到下极板的正中央,由d 2=12gt 2,L2=v 0t ,联立得v 0=10 m/s ,A 对;电容器上极板接电源正极时,微粒的竖直方向加速度更大,水平位移将更小,B 错;设微粒恰好从平行板右边缘下侧飞出时的加速度为a ,电场力向上,则d 2=12at 21,L =v 0t 1,mg -U 1qd=ma ,联立解得U 1=120 V ,同理微粒在平行板右边缘上侧飞出时,可得U 2=200 V ,所以平行板上板带负电,电源电压为120 V ≤U ≤200 V 时,微粒可以从平行板电容器的右边射出电场,C 对、D 错.9.一个质量为m ,电荷量为+q 的小球以初速度v 0水平抛出,在小球经过的竖直平面内,存在着若干个如图所示的无电场区和有理想上下边界的匀强电场区,两区域相互间隔,竖直高度相等,电场区水平方向无限长.已知每一电场区的场强大小相等,方向均竖直向上,不计空气阻力,下列说法正确的是( )A .小球在水平方向一直做匀速直线运动B .若场强大小等于mg q ,则小球经过每一电场区的时间均相同C .若场强大小等于2mgq,则小球经过每一无电场区的时间均相同D .无论场强大小如何,小球通过所有无电场区的时间均相同解析:选AC.将小球的运动沿着水平方向和竖直方向正交分解,水平方向不受外力,以v 0做匀速直线运动,故A 正确;竖直方向,在无电场区只受重力,加速度为g ,竖直向下,有电场区除重力外,还受到竖直向上的恒定的电场力作用,加速度的大小和方向取决于合力的大小和方向.当电场强度等于mgq时,电场力等于mg ,故在电场区小球所受的合力为零,在无电场区小球匀加速运动,故经过每个电场区时,小球的速度均不等,因而小球经过每一电场区的时间均不相等,故B 错误;当电场强度等于2mgq时,电场力等于2mg ,故在电场区小球所受的合力大小等于mg ,方向竖直向上,加速度大小等于g ,方向竖直向上,根据运动学公式有:经过第一个无电场区y =12gt 21,v 1=gt 1,经过第一个电场区,y =v 1t 2-12gt 22,v 2=v 1-gt 2,联立解得t 1=t 2,v 2=0.接下来小球的运动重复前面的过程,即在竖直方向上每次通过无电场区都是自由落体运动,每次通过电场区都是末速度为零的匀减速直线运动,故C 正确;通过前面的分析可知,小球通过每个无电场区的初速度不一定相同,所以通过无电场区的时间不同,故D 错误.三、非选择题10.(2016·高考四川卷)中国科学院2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器.加速器是人类揭示物质本源的关键设备,在放射治疗、食品安全、材料科学等方面有广泛应用.如图所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移管)组成,相邻漂移管分别接在高频脉冲电源的两极.质子从K 点沿轴线进入加速器并依次向右穿过各漂移管,在漂移管内做匀速直线运动,在漂移管间被电场加速,加速电压视为不变.设质子进入漂移管B 时速度为8×106m/s ,进入漂移管E 时速度为1×107m/s ,电源频率为1×107Hz ,漂移管间缝隙很小,质子在每个管内运动时间视为电源周期的12.质子的比荷取1×108C/k g .求:(1)漂移管B 的长度; (2)相邻漂移管间的加速电压.解析:(1)设质子进入漂移管B 的速度为v B ,电源频率、周期分别为f 、T ,漂移管B 的长度为L ,则T =1f ① L =v B ·T2②联立①②式并代入数据得L =0.4 m .③(2)设质子进入漂移管E 的速度为v E ,相邻漂移管间的加速电压为U ,电场对质子所做的功为W ,质子从漂移管B 运动到E 电场做功W ′,质子的电荷量为q ,质量为m ,则W =qU ④ W ′=3W ⑤W ′=12mv 2E -12mv 2B ⑥联立④⑤⑥式并代入数据得U =6×104V. 答案:(1)0.4 m (2)6×104V11.(2016·高考北京卷)如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m ,电荷量为e ,加速电场电压为U 0.偏转电场可看做匀强电场,极板间电压为U ,极板长度为L ,板间距为d .(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U =2.0×102V ,d =4.0×10-2m ,m =9.1×10-31kg ,e =1.6×10-19C ,g =10 m/s 2.(3)极板间既有静电场也有重力场.电势反映了静电场各点的能的性质,请写出电势φ的定义式.类比电势的定义方法,在重力场中建立“重力势”φG 的概念,并简要说明电势和“重力势”的共同特点.解析:(1)根据功和能的关系,有eU 0=12mv 20电子射入偏转电场的初速度v 0=2eU 0m在偏转电场中,电子的运动时间Δt =L v 0=L m2eU 0偏转距离Δy =12a (Δt )2=12·eU dm (Δt )2=UL 24U 0d .(2)考虑电子所受重力和电场力的数量级,有 重力G =mg ~10-29N 电场力F =eU d~10-15N由于F ≫G ,因此不需要考虑电子所受重力.(3)电场中某点电势φ定义为电荷在该点的电势能E p 与其电荷量q 的比值, 即φ=E p q由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能E G与其质量m的比值,叫做“重力势”,即φG=E G m电势φ和重力势φG都是反映场的能的性质的物理量,仅由场自身的因素决定.答案:(1) 2eU0mUL24U0d(2)见解析(3)见解析。