高三数学第一轮复习正余弦定理、解斜三角形知识精讲

合集下载

高三数学一轮复习正弦定理和余弦定理

高三数学一轮复习正弦定理和余弦定理

•∴sinA>0,sinB>0,
•∴sinAcosA=sinBcosB.
整理课件
20
即 sin2A=sin2B. 又 2A、2B∈(0,2π), ∴2A=2B 或 2A+2B=π. 即 A=B 或 A+B=π2. 因此△ABC 是等腰三角形或直角三角形.
解析:根据正弦定理sianA=sibnB得:sin2A=sin630°⇒sinA
= 22,又a<b,∴A<B,A=45°.
•答案:C
整理课件
8
2.△ABC的内角A、B、C的对边分别为a、b、c.若a、
b、c成等比数列,且c=2a,则cosB等于( )
1
3
A.4
B.4
2 C. 4
2 D. 3
整理课件
•a2[sin(A+B)-sin(A-B)]
•=b2[sin(A+B)+sin(A-B)]
•∴2a2cosAsinB=2b2cosBsinA.
•由正弦定理可得:
•sin2AcosAsinB=sin2BcosBsinA.
•即sinAsinB·(sinAcosA-sinBcosB)=0.
•∵A、B∈(0,π),
sAinBC=sBinCA.
于是 AB=ssiinnCABC=2BC=2 5.
(2)在△ABC 中,根据余弦定理,得
cosA=AB2+2AABC·A2-C BC2=2
5
5 .
于是 sinA= 1-cos2A=整理5课5件.
14
从而 sin2A=2sinAcosA=45, cos2A=cos2A-sin2A=35.
由正弦定理得 sinB=bsianA,
因为 b2=ac 且∠A=60°,

2023届高三数学一轮复习专题 解三角形 讲义 (解析版)

2023届高三数学一轮复习专题  解三角形  讲义 (解析版)

单元(或主题)教学设计模板以下内容、形式均只供参考,参评者可自行设计。

教学过程既可以采用表格式描述,也可以采取叙事的方式。

如教学设计已经过实施,则应尽量采用写实的方式将教学过程的真实情景以及某些值得注意和思考的现象和事件描述清楚;如教学设计尚未经过实施,则应着重将教学中的关键环节以及教学过程中可能出现的问题及处理办法描述清楚。

表格中所列项目及格式仅供参考,应根据实际教学情况进行调整。

问题,体验数学在解决实际问题中的作用,提升学生数学抽象、数学建模、直观想象、数学运算的数学核心素养。

重点:掌握正弦定理、余弦定理及面积公式,并能正确应用定理解三角形难点:能应用正弦定理、余弦定理等知识和方法解决一些测量与几何计算有关的实际问题。

3.单元(或主题)整体教学思路(教学结构图)第一课时,正弦定理及可以解决的问题第二课时,余弦定理及可以解决的问题第三课时,三角形内角和定理、正弦定理、余弦定理的选择第1课时教学设计课题正弦定理课型新授课□章/单元复习课□专题复习课√习题/试卷讲评课□学科实践活动课□其他□1.教学内容分析本课时是解三角形复习课的起始课,由实际问题出发引起学生对定理及变形的回忆,提升学生数学建模、直观想象的核心素养;由几个典型的例题,归纳出正弦定理可以解决的类型,再由定理本身出发再次分析定理可以解决的类型,提升学生逻辑推理、数学运算的核心素养,提高学生对数学符号解读的能力。

再析定理,进而推出“三角形面积公式”,提升学生逻辑推理的核心素养。

3、你还有哪些收获?活动意图说明对于本节课的重点内容强化提问,既检测又强化重点。

“你还有哪些收获”,希望学生能够答出:三角形面积公式、SSA 的情况可能出现两解、取舍的方法、方程和数形结合的思想方法等。

环节六:课堂检测教的活动61、 在中,已知 45,30,10A C c cm ︒︒===,求a 边. 2、 在△ABC 中,π32,6,2===B b c ,求∠A 。

高三第一轮复习正弦定理、余弦定理与三角形面积公式

高三第一轮复习正弦定理、余弦定理与三角形面积公式

解斜三角形正弦定理、余弦定理与三角形面积公式【提纲挈领】主干知识归纳ABC 的6个基本元素: a,b,c,A,B,C .其中三内角 A,B,C 所对边边长分别为 a,b,c .1.正弦定理变式: a 2Rsin A,b2Rsin B,c 2RsinC2.余弦定理3. 三角形面积公式12ac sin B 2R sin A sin B sinC.2( 2 )秦九韶 —海伦公式: S ABC 方法规律总结1. 基本量观念: ABC 的 6个基本元素: a,b,c,A,B,C .已知三个基本量(至少一个为边)确定一个 三角形,正余弦定理是“量化”依据,是初中全等三角形判定定理由定性向定量的转换 .2. 方程观念: 正余弦定理和面积公式是方程的粗坯, 是解三角形的依据, 从三角形 6 个基本元素来说是“知 三求三” .有两条主线:一是统一为边(消角)的关系,归结为边为元的代数方程;二是统一为角(消边) 的关系,归结为三角方程 . 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理 更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的 正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.3. 转化思想:利用正余弦定理实现边角间的相互转化 .4. 利用正弦定理解三角形主要是以下两类: (1)已知两边和一对角; (2)已知两角和一边 . 利用余弦定理解三角形主要是以下两类: (1)已知三边;( 2)已知两边及其夹角 . 对于复杂问题需综合利用正余弦定理实现边角关系向统一转化 .【指点迷津】【类型一】定理的推导与证明【例 1】(2011 陕西理 18)叙述并证明余弦定理 .【解析】 : 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦之积 的两abc sin A sin B sinC2R (其中 R 是 ABC 的外接圆的半径)a 2b 2c 222bc cos A ,b 2c 2 a 22ca cos B , c 2a 2b 22abcosC .变式:cosA2 2 2b c a,cosB2bc a 2 b 2,cosC2acb 22ab1 )S ABC11ab sin C bcsin A22p(p a)(p b)(p c),其中 pabc 2倍.或:在ABC 中,a,b,c 为A,B,C 的对边,有a 2b 2c 2 2bc cos A 2 2 2b ac 2ac cos B 2 2 2ca b2ab cosC证法一 如图uuuv uuuv BCuuuv uuuv uuuv uuuv(AC AB)?(AC AB)uuuv 2 uuuv uuuv uuuv 2 AC 2AC?AB ABI )证明: sinB cosA ;3(II) 若sinC sin A cosB ,且 B 为钝角,求 A,B,C .4 sinA sin A以 sinB cosA ;(II)解析】 :(I )由题根据正弦定理结合所给已知条件可得 ,所uuuv 2 ACuuu v ACuuuvAB COSA uuu v 2AB22b 22bc cos A c 22 2 2即 a b c 2bc cos A2 2 2同理可证 b a c 2ac cos B2 2 2c a b 2ab cosC证法二 已知 ABC 中 A,B,C 所对边分别为 a,b,c, 以 A 为原点, AB 所在直线为 x 轴,建立直角坐标 系,则 C(bcosA,bsinA),B(c,0) ,2 2 2 2a 2 BC 2 (bcosA c)2 (bsin A)2b 2 cos 2 A 2bc cos A c 2 b 2 sin 2 A 2 2 2b ac 2ac cos B同理可证2 2 2 b c a 2ca cosB, c 2 a 2 b 2 2ab cosC.类型二】解三角形例 1】【 2015 湖南,文 17】设 ABC 的内角 A,B,C 的对边分别为 a,b,c,abtanA .cosA sinB43 2 3 根据两角和公式化简所给条件可得 sinC sin AcosB cosAsin B,可得 sin 2 B ,结合 44所给角 B 的范围可得角 B,进而可得角 A, 由三角形内角和可得角 C.答案】(I )略; (II ) A 30o ,B 120o ,C 30.o例 2】[2014·辽宁卷] 在△ ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c ,且 a>c.已知BA ·BC =2,cosB1 =31,b = 3.求:(1)a 和 c 的值; (2)cos(B -C)的值. → →1 [解析 ]: (1)由 BA ·BC =2 得 c ·a ·cos B = 2,又 cos B = 3,所以 ac =6.由余弦定理,得 a 2+c 2=b 2+2accos B ,又 b =3,所以 a 2+ c 2= 9+2× 2= 13.ac = 6, a = 2 , a = 3,解2 2 得 或a 2+ c 2= 13, c = 3 c = 2. 因为 a >c ,所以 a = 3,c = 2.sin B = 1 - cos 2B=sin C =c 2·2 2= 4 2sin C =b sin B =3· 3 =9因为 a =b >c ,所以 C 为锐角,求 AD 的长 .(2)在△ ABC中,由正弦定理,得 因此所以cos (B -C )=cos Bcos C +sin Bsin C =13×79+ 2 2 4 2 23 × =.3 9 27.[答案 ](1)a =3,c =2.(2)23. 27.例3【】2015安徽,理16】在 ABC 中,A3,AB6,AC3 2 ,点 D 在 BC 边上, AD BD ,22 3cos C = 1-sin 2C = 4 2 2= 7.9=9.3答案】 10 类型三】三角形的面积【例 1】(2013年课标Ⅱ卷(文))△ABC 的内角 A,B,C 的对边分别为 a,b,c, 已知 b=2,B= ,C= , 则△ ABC D . -1的面积为A.() 2 +2B. +1C. 2 - 2【解析】: 由正弦定理有 2cc 2 2,又sin Asin[( )] 2 6 ,6 4 4sin sin6 4所以 S ABC 1 bcsin A 1 2 2 2 2 6 3 1. 2 2 4 答案: B例 2】【2015 天津,理 13】在 ABC 中,内角 A,B,C 所对的边分别为 a,b,c ,已知 ABC 的面 积为 3 15 , b c 2,cos A 1, 则 a 的值为4【答案】 8【例 3】[2014·新课标全国卷Ⅰ ] 已知 a ,b ,c 分别为△ ABC 三个内角 A ,B ,C 的对边, a =2,且(2+b )·(sin A -sin B )= (c - b )sin C ,则△ ABC 面积的最大值为 .[解析]: 根据正弦定理和 a =2可得(a +b )(a -b )=(c -b )c ,故得 b 2+ c 2- a 2= bc ,根据余弦定理得 cos A = b 2+ c 2- a 2 1 π b2bc =12,所以A =3.根据b 2+c 2-a 2=bc 及基本不等式得 bc ≥2bc -a 2,即bc ≤4,所以△ ABC 面积 2bc 2 3 的最大值为 1× 4× 3= 3.22答案: 3 【同步训练】【一级目标】基础巩固组 一、选择题b c ,则 b ( )答案】的面积是 (答案: C13. 在△ABC 中,角 A 、B 、C 所对应的边为 a,b,c ,若 cosA,b 3c ,则sinC 的值为()1设C 的内角 , C 的对边分别为 a , b , c .若2 , c 23 , cos3,且2解析】 由余弦定理得:B .2C .22 D .3即b 26b 80 ,解得: b 2 c 22bc cos 2,所以b 2 2 3 2b 2 或b 4 ,因为 bc ,所以 b 2 ,故选 B .2.[2014 江·西卷 ] 在△ABC 中, 内角 A ,B , C 所对的边分别是 a , b ,c.若 c 2=(a -b )2+6, πC = 3 ,则△ABCA .3B.9 23C.3 3C. 2D . 3 3解析】:由余弦定理得, cos C =a +b -c =2ab -6=12,所以2ab2abab =6,所以 S △ ABC = 21absin C = 3 2 3312223 A .BC .D.33 33【解析】:由 cosA 1,b33c及a2 b2 c 22bccosA,得a 2 b 2 c 2故△ABC 答案: A 是直角三角形,且 B , 所以 sinC21 cosA . 34. [2014 ·新课标全国卷Ⅱ ] 钝角三角形 ABC 的面积是 12,AB =1,BC = 2,则 AC =( )A .5B. 5C .2D . 1【解析】:根据三角形面积公式, 得 21BA ·BC ·sin B =21,即12× 1× 2×sin B = 12,得 sin B = 22,其中C<A. 若 B 为锐角,则 B = π4 ,所以 AC = 1+2-2×1× 2× 22=1=AB ,易知 A 为直角,此时△ ABC 为直角三角形,所以 B 为钝角,即 B = 34π,所以 AC = 1+2-2×1× 2× - 22 = 5. 答案: B的面积为答案: D 二、填空题【答案】 77.【 2015北京,理 12】在△ABC 中, a 4,答案】 1→ → π8. [2014·山东卷] 在△ABC 中,已知AB ·AC =tan A ,当 A = 时,△ ABC 的面积为 ______ 65.在 OAB 中,OA (2cos,2sin ),OB (5cos ,5sin ),若 OAOB5,则 OAB3 B .2C . 5 353 D.2解析】:由条件知 OA2,OB5,cos AOB1,所以 2SOAB2553 26.【 2015福建,理 12】若锐角 ABC 的面积为 10 3 ,且 AB5,AC,则 BC 等于b 5,c 6,则 sin2A sinC→ → π → → 2解析】:因为AB ·AC =|AB |· |AC|cos A =tan A ,且A =6,所以|AB|·|AC|=32,所以△ABC 的面积 S1 → → 12 π1 =2|AB|·|AC|sin A =2×3×sin 6=6答案: 16三、解答题29.【 2015新课标 1,文17】已知 a, b, c 分别是 ABC 内角 A,B,C 的对边, sin 2B 2sin AsinC . I )若 a b ,求 cosB; II )若 B 90o ,且 a2, 求 ABC 的面积 .2【解析】 :(I )先由正弦定理将 sin 2B 2sin AsinC 化为变得关系,结合条件 a b ,用其中一边把 另外两边表示出来,再用余弦定理即可求出角 B 的余弦值;(II )由( I )知b 2 = 2ac ,根据勾股定理和 即可求出 c ,从而求出 ABC 的面积 .试题解析:(I )由题设及正弦定理可得 b 2 =2ac . 又a=b ,可得 b=2c ,a=2c ,II )由(1)知b 2 =2ac .2 2 2因为B = 90°,由勾股定理得 a 2+c 2 =b 2. 故a 2+c 2 = 2ac ,得 c=a= 2. 所以 D ABC 的面积为 1. 1 【答案】(I ) (II )1410. 【2015浙江,文 16】在 ABC 中,内角 A ,B ,C 所对的边分别为 a, b,c .已知 tan ( A ) 2.4sin2A( 1)求 2 的值; sin 2 A + cos 2A(2)利用正弦定理得到边 b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积由余弦定理可得 cosB =a 2 +c 2 -b 22ac(2)若 B,a 3,求 ABC 的面积 . 4解析】 (1) 利用两角和与差的正切公式,得到tanA1,利用同角三角函数基本函数关系式得到结论;3答案: A 2. [2014·重庆卷] 已知△ ABC 的内角 A ,B ,C 满足 sin 2A +sin (A -B +C )=sin (C -A -B )+12,面积 S 满足 1≤S ≤2,记 a ,b ,c 分别为 A ,B ,C 所对的边,则下列不等式一定成立的是 ( )A .bc (b +c )>8B .ab (a +b )>16 2C . 6≤abc ≤12D . 12≤ abc ≤ 24[解析 ]: 因为 A +B + C =π,所以 A +C =π- B , C =π- (A + B ),所以由已知等式可得 sin 2A +sin ( π 11 -2B )=sin [π-2(A +B )]+2,即 sin 2 A + sin 2B =sin 2(A +B )+2,sin [( A +B )+(A -B )]+sin [(A +B )-(A -B )]=sin 2(A +B )+12, 2 sin ( A + B )cos (A -B )=2sin (A + B )cos (A +B )+12,112sin ( A + B )[cos (A - B )- cos (A + B )]= ,所以 sin Asin Bsin C = .28 1由 1≤S ≤ 2,得1≤2bcsin A≤2.由正弦定理得 a =2Rsin A ,b =2Rsin B ,c =2Rsin C ,所以 1≤2R 2·sinAsin Bsin C ≤ 2,所以 1≤R 4 ≤2,即 2≤ R ≤22,所以 bc (b +c )>abc =8R 3sin Asin Bsin C = R 3≥8.试题解析: (1) 由 tan ( 4 sin2A 2cos A 所以 sin2A 1A ) 2,得 tanA32sin AcosA 2 2sin AcosA cos A 2tanA (2)由tanA13可得, 2tanA 1sinA 10 ,cos A 3 10 10 10 a 3,B ,由正弦定理知: b 3 5 . 4又sinC sin (A B ) sin AcosB cos Asin B 2551 12 5 所以 S ABC ab sin C3 3 5229.答案】 (1) 2 ;(2)9 5 二级目标】能力提升题组 一、选择题 1.在△ ABC 中, 内角 A,B,C 的对边分别是b ,c ,若 a 2 b 2 3bc , sin C 2 3sin B ,则 A= A ) 300 B ) 600 C ) 120 D )1500 解析】 由由正弦定理得2R2 3b 2R2 3b , 所以 22b +c -a cosA=2bcc 23bc 2 3bc 2bc2bc3,所以 A=3002所以所以所以13答案: A 二、填空题13.【 2015广东,理 11】设 ABC 的内角 A , B ,C 的对边分别为 a ,b ,c ,若 a 3, sin B2πC ,则 b622 答案】 2 2 ,1. 3 ,1.高考链接】a=1 ,则 b=【答案】1.三、解答题4. 【 2015 山东,文 17】ABC 中,角 A ,B ,C 所对的边分别为 a,b,c .已知3cos B ,sin (A3 B) 6 ,ac 2 3 求sinA 和c9的值.解析】在ABC 中,由36 cosB ,得 sin B33因为 A BC ,所以 sinC sin(A B) 69因为 sinC sinB ,所以 C B , C 为锐角, cosC539因此 sin A sin(B C) sin BcosC cosBsinC5 3 3 63922 3由asinAc, 可得 a sinCcsin A sinC22c 32 3c ,又 ac 6 92 3 ,所以 c1.1. (2016 年全国 II 理 13)△ ABC 的内角 A 、B 、C 的对边分别为 a 、 b 、 c ,若 cosA4,cosC54b2 2 c1【解析】:由余弦定理有52bc21,解得b21.51b2 2 c13132b21【答b132. 【2015 浙江,理16】在ABC 中,内角A,B ,C所对的边分别为a ,b,c,已知A1)求tanC 的值;2)若ABC的面积为7,求b的值.答案】(1)2;(2)b 3.3.【2015江苏,15】在ABC中,已知AB 2,AC 3,A 60 .1)求BC 的长;2)求sin2C的值.因此sin 2C 2sin CcosC 2 21 2 7 4 3 .7 7 7【答案】( 1) 7 ;(2) 4 374. 【2015新课标 2,理17】 ABC 中, D 是BC 上的点, AD 平分 BAC , ABD 面积是 ADC 面积的 2 倍. sin B (Ⅰ ) 求 sin C答案】 (Ⅰ)1 ;(Ⅱ)BD2,AC 1. 2(Ⅱ )若 AD 1, DC2 2 求 BD 和 AC 的长.。

高三数学一轮复习 第八节 解三角形教案 新人教版

高三数学一轮复习 第八节   解三角形教案 新人教版

第8课 解三角形【考点导读】1.掌握正弦定理,余弦定理,并能运用正弦定理,余弦定理解斜三角形;2.解三角形的基本途径:根据所给条件灵活运用正弦定理或余弦定理,然后通过化边为角或化角为边,实施边和角互化. 【基础练习】1.在△ABC 中,已知BC =12,A =60°,B =45°,则AC =.2.在ABC ∆中,若sin :sin :sin5:7:8A B C =,则B ∠的大小是______________.3.在ABC△中,若1tan 3A =,150C =,1BC =,则AB = .4.在△ABC 中,若22tan tan ba B A =,则△ABC 的形状是等腰三角形或直角三角形. 5.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为 . 6.△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B=30°,△ABC 的面积为23,那么b【范例解析】例1.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,已知20a c +=,2C A =,3cos 4A =. (1)求ca的值;(2)求b 的值. 分析:利用2C A =转化为边的关系.解:(1)由sin sin 232cos sin sin 2c C A A a A A ====. (2)由20,3.2a c c a +=⎧⎪⎨=⎪⎩得8,12.a c =⎧⎨=⎩.由余弦定理2222cos a b c bc A =+-得: 218800b b -+=,解得:8b =或10b =, 若8b =,则A B =,得4A π=,即3cos 24A =≠矛盾,故10b =. 点评:在解三角形时,应注意多解的情况,往往要分类讨论.例2.在三角形ABC 中,已知2222()sin()()sin()a b A B a b A B +-=-+,试判断该三角形的形状. 分析一:边化角解法一:由已知得:22[sin()sin()][sin()sin()]a A B A B b A B A B --+=---+,3π 2233化简得222cos sin 2cos sin a A B b B A =,由正弦定理得:22sin cos sin sin cos sin A A B B B A =, 即sin sin (sin cos sin cos )0A B A A B B -=,又,(0,)A B π∈,sin sin 0A B ∴⋅≠,sin 2sin 2A B ∴=.又2,2(0,2)A B π∈,22A B ∴=或22A B π=-,即该三角形为等腰三角形或直角三角形. 分析二:角化边解法二:同解法一得:222cos sin 2cos sin a A B b B A =,由正余弦定理得:2222222222b c a a c b a b b a bc ac+-+-=,整理得:22222()()0a b c a b ---=,即a b =或222c a b =+,即该三角形为等腰三角形或直角三角形.点评:判断三角形形状主要利用正弦或余弦定理进行边角互化,从而利用角或边判定三角形形状. 例3.如图,已知△ABC 是边长为1的正三角形,M ,N 分别是边AB 、AC 上的点, 线段MN 经过△ABC 的中心G ,设∠MGA =α(233ππα≤≤). (1)试将△AGM 、△AGN 的面积(分别记为S 1与S 2)表示为α的函数; (2)求221211y S S =+的最大值与最小值. 分析:利用正弦定理建立目标函数. 解:(1)因为G 是边长为1的正三角形ABC 的中心, 所以AG =2323⨯=,∠MAG =6π, 由正弦定理GM GA sin sin 66πππα=(--)得GM 6sin 6πα=(+) 则S 1=12GM ∙GA ∙sin α=sin 12sin 6απα(+),同理可求得S 2=sin 12sin 6απα(-).(2)221211y S S =+=222144sin sin sin 66ππααα〔(+)+(-)〕=72(3+22cos sin αα) 因为233ππα≤≤,所以当α=3π或α=23π时,y 取得最大值y max =240;当α=2π时,y 取得最小值y min =216.点评:本题关键是选取变量,建立目标函数,根据目标函数求最值.AB CNMGαD例3例4.如图,D 是直角△ABC 斜边BC 上一点,AB =AD ,记∠CAD =α,∠ABC =β. (1)证明:sin cos 20αβ+=; (2)若AC,求β.分析:识别图中角之间的关系,从而建立等量关系. (1)证明:C βα=+,2C B π=-,22πβα∴=+,sin cos 20αβ∴+=(2)解:AC,2sin βαββ∴===(0,)2πβ∈,sin β∴=,3πβ∴=.点评:本题重点是从图中寻找到角之间的等量关系,从而建立三角函数关系,进而求出β的值. 【反馈演练】1.在ABC ∆中,,75,45,300===C A AB 则BC =_____________. 2.ABC ∆的内角∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a ,b ,c 成等比数列,且2c a=,则c o s B =_____.3.已知ABC ∆顶点的直角坐标分别为(34)A ,,(00)B ,,(0)C c ,.若A ∠是钝角,则c 的取值范围 ___________ . 4.已知ABC ∆的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 5.在ABC ∆中,若2a b c =+,2sin sin sin A B C =,则∆的形状是____等边___三角形.6.若ABC ∆的内角A 满足2sin 23A =,则sin cos A A += . 7. ABC ∆的三个内角为ABC 、、,则cos 2cos 2B CA ++的最大值为. 8.在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①tan 1tan AB= ;② 1sin sin A B <+≤③ 1cos sin 22=+B A ; ④ C B A 222sin cos cos =+.其中正确的序号有______②④_____. 9.如果111A BC ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,给出下列结论:①111A B C ∆和222A B C ∆都是锐角三角形; ②111A B C ∆和222A B C ∆都是钝角三角形;③111A B C ∆是钝角三角形,222A B C ∆是锐角三角形; ④111A B C ∆是锐角三角形,222A B C ∆是钝角三角形.BDCαβ A例433- 34 25(,)3+∞ 332其中,正确结论的序号有____④_____. 10.在ABC ∆中,已知2AC =,3BC =,4cos 5A =-. (Ⅰ)求sinB 的值;(Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值. 解:(Ⅰ)在ABC ∆中,3sin 5A ===,由正弦定理,sin sin BC AC A B =.所以232sin sin 355AC B A BC ==⨯=. (Ⅱ)因为4cos 5A =-,所以角A 为钝角,从而角B 为锐角,于是cos 5B ===2217cos 22cos 12125B B =-=⨯-=,2sin 22sin cos 25525B B B ==⨯⨯=. sin 2sin 2cos cos 2sin 666B B B πππ⎛⎫+=+ ⎪⎝⎭171252=⨯= 11.在ABC ∆中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值. 解:(1)ABC ∆的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪⎝⎭5x xππππ⎛⎫⎫=++<+<⎪⎪6666⎝⎭⎭,所以,当xππ+=62,即xπ=3时,y取得最大值12.在ABC∆中,1tan4A=,3tan5B=.(Ⅰ)求角C的大小;(Ⅱ)若ABC∆解:(Ⅰ)π()C A B=-+,1345tan tan()113145C A B+∴=-+=-=--⨯.又0πC<<,3π4C∴=.(Ⅱ)34C=π,AB∴边最大,即AB=.又tan tan0A B A Bπ⎛⎫<∈ ⎪2⎝⎭,,,,∴角A最小,BC边为最小边.由22sin1tancos4sin cos1AAAA A⎧==⎪⎨⎪+=⎩,,且π2A⎛⎫∈ ⎪⎝⎭,,得sin17A=.由sin sinAB BCC A=得:sin2sinABC ABC==所以,最小边BC.。

高三第一轮复习正弦定理、余弦定理与三角形面积公式

高三第一轮复习正弦定理、余弦定理与三角形面积公式

解斜三角形正弦定理、余弦定理与三角形面积公式【提纲挈领】主干知识归纳ABC ∆的6个基本元素:C B A c b a ,,,,,.其中三内角C B A ,,所对边边长分别为c b a ,,.1.正弦定理R CcB b A a 2sin sin sin ===(其中R 是ABC ∆的外接圆的半径)变式:C R c B R b A R asin 2,sin 2,sin 2===2.余弦定理A bc c b a cos 2222-+=,B ca a c b cos 2222-+=,C ab b a c cos 2222-+=. 变式:abc a b C ac b a c B bc a c b A 2cos ,2cos ,2cos 222222222-+=-+=-+=.3.三角形面积公式 (1).sin sin sin 2sin 21sin 21sin 212C B A R B ac A bc C ab S ABC====∆ (2)秦九韶—海伦公式:,))()((c p b p a p p S ABC ---=∆其中2cb a p ++=. 方法规律总结1.基本量观念:ABC ∆的6个基本元素:C B A c b a ,,,,,.已知三个基本量(至少一个为边)确定一个三角形,正余弦定理是“量化”依据,是初中全等三角形判定定理由定性向定量的转换.2.方程观念:正余弦定理和面积公式是方程的粗坯,是解三角形的依据,从三角形6个基本元素来说是“知三求三”.有两条主线:一是统一为边(消角)的关系,归结为边为元的代数方程;二是统一为角(消边)的关系,归结为三角方程. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.3.转化思想:利用正余弦定理实现边角间的相互转化.4.利用正弦定理解三角形主要是以下两类:(1)已知两边和一对角;(2)已知两角和一边. 利用余弦定理解三角形主要是以下两类:(1)已知三边;(2)已知两边及其夹角. 对于复杂问题需综合利用正余弦定理实现边角关系向统一转化.【指点迷津】【类型一】定理的推导与证明 【例1】(2011陕西理18)叙述并证明余弦定理.【解析】: 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦之积的两倍.或:在∆ABC 中,a,b,c 为A,B,C 的对边,有2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+-证法一 如图2a BC BC =•u u u v u u u v()()AC AB AC AB =-•-u u u v u u u v u u u v u u u v222AC AC AB AB =-•+u u u v u u u v u u u v u u u v222cos b bc A c =-+即2222cos ab c bc A =+-同理可证2222cos b a c ac B =+-2222cos c a b ab C =+-证法二 已知∆ABC 中A,B,C 所对边分别为a,b,c,以A 为原点,AB 所在直线为x 轴,建立直角坐标系,则(cos ,sin),(,0)C b A b A B c ,2222(cos )(sin )a BC b A c b A ∴==-+22222cos 2cos sin b A bc A c b A =-++ 2222cos b a c ac B =+-同理可证2222222cos ,2cos .b c a ca B c a b ab C =+-=+-【类型二】解三角形【例1】【2015湖南,文17】设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =.(I )证明:sin cos B A =;(II) 若3sin sincos 4C A B -=,且B 为钝角,求,,A B C . 【解析】:(I )由题根据正弦定理结合所给已知条件可得sin sin cos sin A AA B=,所以sin cos B A = ;(II)222AC AC AB COSA AB=-•+u u u v u u u v u u u v u u u v根据两角和公式化简所给条件可得3sin sin cos cos sin 4C A B A B -==,可得23sin 4B =,结合所给角B 的范围可得角B,进而可得角A,由三角形内角和可得角C.【答案】(I )略;(II)30,120,30.A B C ===o o o【例2】[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求: (1)a 和c 的值; (2)cos(B -C )的值.[解析]:(1)由BA →·BC →=2得c ·a ·cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B ,又b =3,所以a 2+c 2=9+2×2=13. 解⎩⎨⎧ac =6,a 2+c 2=13,得⎩⎨⎧a =2,c =3或⎩⎨⎧a =3,c =2. 因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-()132=223.由正弦定理,得sin C =c b sin B =23·2 23= 4 29.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4 292=79.所以cos(B -C )=cos B cos C +sin B sin C =13×79+2 23×4 29=2327.[答案](1)a =3,c =2.(2)2327. 【例3】【2015安徽,理16】在ABC ∆中,3,6,324A AB AC π===点D 在BC 边上,AD BD =,求AD 的长.【答案】10【类型三】三角形的面积【例1】(2013年课标Ⅱ卷(文))△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为 ( )A .2+2B .+1C .2-2D .-1【解析】:由正弦定理有224sin6sin2=⇒=c c ππ,又462)]46(sin[sin +=+-=πππA ,所以1346222221sin 21+=+⨯⨯⨯==∆A bc S ABC . 答案:B【例2】【2015天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315 ,12,cos ,4b c A -==- 则a 的值为 .【答案】8【例3】[2014·新课标全国卷Ⅰ] 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )·(sinA -sinB )=(c -b )sinC ,则△ABC 面积的最大值为________.[解析]: 根据正弦定理和a =2可得(a +b )(a -b )=(c -b )c ,故得b 2+c 2-a 2=bc ,根据余弦定理得cos A =b 2+c 2-a 22bc =12,所以A =π3.根据b 2+c 2-a 2=bc 及基本不等式得bc ≥2bc -a 2,即bc ≤4,所以△ABC 面积的最大值为12×4×32= 3.答案:3【同步训练】【一级目标】基础巩固组 一、选择题1设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,3cos A =b c <,则b =( )A 3B .2C .22D .3【解析】由余弦定理得:2222cos a b c bc =+-A ,所以(2223223223b b =+-⨯⨯即2680bb -+=,解得:2b =或4b =,因为bc <,所以2b =,故选B .【答案】B2.[2014·江西卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC的面积是( )A .3 B.9 32 C.3 32D .3 3【解析】:由余弦定理得,cos C =a 2+b 2-c 22ab =2ab -62ab =12,所以ab =6,所以S △ABC =12ab sin C =3 32.答案:C3. 在△ABC 中,角A 、B 、C 所对应的边为c b a ,,,若c b A3,31cos ==,则C sin 的值为( )A .31 B .32C .322 D.33【解析】:由.,cos 23,31cos 222222c b a A bc c b a c b A -=-+===得及 故△ABC 是直角三角形,且,2π=B 所以31cos sin ==A C .答案:A4.[2014·新课标全国卷Ⅱ] 钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1【解析】:根据三角形面积公式,得12BA ·BC ·sin B =12,即12×1×2×sin B =12,得sin B =22,其中C <A .若B 为锐角,则B =π4,所以AC =1+2-2×1×2×22=1=AB ,易知A 为直角,此时△ABC 为直角三角形,所以B 为钝角,即B =3π4,所以AC =1+2-2×1×2×⎝⎛⎭⎫-22= 5. 答案:B5.在OAB ∆中,)sin 5,cos 5(),sin 2,cos 2(ββαα==OB OA ,若5-=⋅OB OA ,则OAB∆的面积为( )A .3 B .23C .35 D.235【解析】:由条件知,21cos ,5,2-=∠==AOB OB OA 所以235235221=⨯⨯⨯=∆OAB S .答案:D 二、填空题6.【2015福建,理12】若锐角ABC ∆的面积为103 ,且5,8AB AC == ,则BC 等于________.【答案】77.【2015北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】18.[2014·山东卷] 在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.【解析】:因为AB ·AC =|AB →|·|AC →|cos A =tan A ,且A =π6,所以|AB →|·|AC →|=23,所以△ABC 的面积S=12|AB →|·|AC →|sin A =12×23×sin π6=16. 答案:16三、解答题9.【2015新课标1,文17】已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若ab =,求cos ;B(II )若90B=o ,且a = 求ABC ∆的面积.【解析】:(I )先由正弦定理将2sin 2sin sin B A C =化为变得关系,结合条件a b =,用其中一边把另外两边表示出来,再用余弦定理即可求出角B 的余弦值;(II )由(I )知22b ac =,根据勾股定理和即可求出c ,从而求出ABC ∆的面积. 试题解析:(I )由题设及正弦定理可得22b ac =.又ab =,可得2bc =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==. (II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222ac ac +=,得c a ==所以D ABC 的面积为1. 【答案】(I )14(II )1 10. 【2015浙江,文16】在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos AA A+的值; (2)若B ,34a π==,求ABC ∆的面积.【解析】(1)利用两角和与差的正切公式,得到1tan3A =,利用同角三角函数基本函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.试题解析:(1)由tan(A)24π+=,得1tan 3A =, 所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin CA B A B A B =+=+=,所以11sin 3922ABCS ab C ∆==⨯⨯=. 【答案】(1)25;(2)9【二级目标】能力提升题组一、选择题1.在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22ab -=,sin C B =,则A=(A )030 (B )060 (C )0120 (D )0150【解析】由由正弦定理得2c c R =⇒=,所以cosA=222+c -a 2b bc ==A=300答案:A2.[2014·重庆卷] 已知△ABC 的内角A ,B ,C 满足sin 2A +sin(A -B +C )=sin(C -A -B )+12,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( )A .bc (b +c )>8B .ab (a +b )>16 2C .6≤abc ≤12D .12≤abc ≤24[解析]: 因为A +B +C =π,所以A +C =π-B ,C =π-(A +B ),所以由已知等式可得sin 2A +sin(π-2B )=sin[π-2(A +B )]+12,即sin 2A +sin 2B =sin 2(A +B )+12,所以sin[(A +B )+(A -B )]+sin[(A +B )-(A -B )]=sin 2(A +B )+12,所以2 sin(A +B )cos(A -B )=2sin(A +B )cos(A +B )+12,所以2sin(A +B )[cos(A -B )-cos(A +B )]=12,所以sin A sin B sin C =18.由1≤S ≤2,得1≤12bc sin A ≤2.由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,所以1≤2R 2·sinA sinB sinC ≤2,所以1≤R 24≤2,即2≤R ≤2 2,所以bc (b +c )>abc =8R 3sin A sin B sin C =R 3≥8.答案:A 二、填空题3.【2015广东,理11】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =,1sin 2B =,6C =π,则b = .【答案】1. 三、解答题4. 【2015山东,文17】ABC ∆中,角A B C ,,所对的边分别为,,a b c .已知36cos ()23B A B ac =+==求sin A 和c 的值. 【解析】在ABC ∆中,由3cos B =6sin B =因为A B C π++=,所以6sin sin()9C A B =+=,因为sin sin C B <,所以C B <,C 为锐角,3cos 9C =, 因此sin sin()sin cos cos sin A B C B C B C =+=+65336223=+=.由,sin sin a cA C =可得22sin 323sin 6cc A a c C ===,又23ac =1c =. 22【高考链接】1. (2016年全国II 理13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若135cos ,54cos ==C A ,a =1,则b = .【解析】:由余弦定理有⎪⎪⎩⎪⎪⎨⎧-+=-+=b c b bcc b 2113521542222,解得1321=b . 【答案】1321=b2. 【2015浙江,理16】在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (1)求tan C 的值;(2)若ABC ∆的面积为7,求b 的值.【答案】(1)2;(2)3b=.3.【2015江苏,15】在ABC ∆中,已知ο60,3,2===A AC AB.(1)求BC 的长; (2)求C 2sin 的值.因此212743sin 2C 2sin Ccos C 27==⨯⨯=. 【答案】(1)7;(2)43 4. 【2015新课标2,理17】ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆面积是ADC ∆面积的2倍.(Ⅰ) 求sin sin B C∠∠; (Ⅱ)若1AD =,2DC =,求BD 和AC 的长.【答案】(Ⅰ)12;(Ⅱ)1,2==AC BD .。

高考数学一轮复习考点知识专题讲解30---正弦定理、余弦定理

高考数学一轮复习考点知识专题讲解30---正弦定理、余弦定理

所以 CD=3+ 3, 又∠ACD=180°-150°=30°,
1
1
1 3( 3+1)
所以 S△ACD=2AC·CD·sin ∠ACD=2×2 3×(3+ 3)×2=
又∠ACB>∠ADC,且∠ADC=45°,所以∠ACB=150°,
在△ABC 中,由余弦定理得 AB2=12+36-2×2 3×6cos 150°=84,所以 AB= 84=2 21.
(2)在△ACD 中,因为∠ACB=150°,∠ADC=45°,
所以∠CAD=105°,
CD
AC
由正弦定理得sin ∠CAD=sin ∠ADC,
(2)设 a=2,c=3,求 b 和 sin (2A-B)的值. ab
[解] (1)在△ABC 中,由正弦定理sin A=sin B,
可得 b sin A=a sin B, π
又由 b sin A=a cos (B-6), π
得 a sin B=a cos (B-6), π
即 sin B=cos (B-6),
所以 CD= 7,所以 AD= 3, 1
所以 S△ABD=2×4× 3×sin ∠DAB= 3.
(1)若已知一个角(角的大小或该角的正弦值、余弦值),一般结合题意求夹这个角的两边 或两边之积,再代入公式求解;(2)若已知三边,可先求一个角的余弦值,再求正弦值,最后代入公 式得面积;(3)若求面积的最值,一般表示为一个内角的三角函数,利用三角函数的性质求解,也可
C.
①求 A;
②若 2a+b=2c,求 sin C.
(1)A [∵a sin A-b sin B=4c sin C,
∴由正弦定理得 a2-b2=4c2,即 a2=4c2+b2.
b2+c2-a2 b2+c2-(4c2+b2) -3c2 1 b

专题24 正弦定理和余弦定理-2020年领军高考数学一轮复习(文理通用)(解析版)

2020年领军高考数学一轮复习(文理通用)专题24正弦定理和余弦定理最新考纲掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.基础知识融会贯通1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.在△ABC 中,已知a ,b 和A 时,解的情况3.三角形常用面积公式(1)S =12a ·h a (h a表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).【知识拓展】 1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C 2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ; c =b cos A +a cos B .重点难点突破【题型一】利用正、余弦定理解三角形【典型例题】已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,△ABC 的面积为S ,且.(1)若C =60°且b =1,求a 边的值;(2)当时,求∠A 的大小.【解答】解:(1)由,,∴a =2b •sin C ,∵C =60°且b =1,∴a ;(2)当时,,∵b2+c2﹣2bc•cos A,∴,即,∴,得sin(A)=1.∵A∈(0,π),∴A∈(),则A,得A.【再练一题】在△ABC中,AB=6,.(1)若,求△ABC的面积;(2)若点D在BC边上且BD=2DC,AD=BD,求BC的长.【解答】(本小题满分12分)解:(1)由正弦定理得:,所以sin C=1,,所以,所以.(2)设DC=x,则BD=2x,由余弦定理可得解得:所以.思维升华(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【题型二】和三角形面积有关的问题【典型例题】△ABC的内角A,B,C所对的边分别为a,b,c,已知.(1)求角A;(2)若a=2,求△ABC面积的最大值.【解答】解:(1)由及正弦定理得:,因为sin B≠0,所以,即.因为0<A<π,所以.……………………………………(2)因为a=2,所以,所以,因为,所以当且仅当时S△ABC最大,所以S△ABC最大值为.………………【再练一题】如图所示,在平面四边形ABCD中,若AD=2,CD=4,△ABC为正三角形,则△BCD面积的最大值为.【解答】解:设∠ADC =α,∠ACD =β,由余弦定理得:AC 2=42+22﹣2×4×2cos α=20﹣16cos α,∴cos β,又由正弦定理可得,则sin β,∴S △BCD BC •CD •sin (β)=2BC (sin βcos β)=2BC •(••)=4sin (α)+4,故△BCD 面积的最大值为4+4,故答案为:4+4思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【题型三】正弦定理、余弦定理的简单应用命题点1 判断三角形的形状 【典型例题】已知a .b .c 分别是△ABC 的内角A 、B 、C 的对边,若c <b cos A ,则△ABC 的形状为( ) A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【解答】解:∵c <b cos A ,∴利用正弦定理化简得:sin C =sin (A +B )=sin A cos B +cos A sin B <sin B cos A , 整理得:sin A cos B <0, ∵sin A ≠0, ∴cos B <0. ∵B ∈(0,π),∴B 为钝角,三角形ABC 为钝角三角形. 故选:A .【再练一题】在△ABC中,若22,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【解答】解:∵22,∴c2﹣a2=bc cos A,∴c2﹣a2=bc•,化简可得:c2=a2+b2,∴△ABC是直角三角形.故选:B.命题点2求解几何计算问题【典型例题】在△ABC中,A,B,C的对边分别是a,b,c,且b=2,B=60°,△ABC的面积为,则a+c=()A.4 B.C.2 D.【解答】解:△ABC中,b=2,B=60°,所以△ABC的面积为S ac sin B ac•,解得ac=4;又b2=a2+c2﹣2ac cos B,即4=a2+c2﹣ac=(a+c)2﹣3ac=(a+c)2﹣12,所以(a+c)2=16,解得a+c=4.故选:A.【再练一题】如图,D是直角△ABC斜边BC上一点,∠BAC=90°,.(1)设∠DAC=30°,求角B的大小;(2)设BD=2DC=2x,且,求x的值.【解答】解:(1)在△ABC中,根据正弦定理,有.∵AC DC,∴sin∠ADC sin∠DAC.又∠ADC=∠B+∠BAD=∠B,∴∠ADC,∴∠C=π,∴∠B;(2)设DC=x,则BD=2x,BC=3x,AC x,∴sin B,cos B,AB x.在△ABD中,AD2=AB2+BD2﹣2AB•BD•cos B,即:(2)2=6x2+4x2﹣2x×2x2x2,得:x=2.故DC=2.思维升华(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系.②化角:通过三角恒等变换,得出内角的关系,此时要注意应用A+B+C=π这个结论.(2)求解几何计算问题要注意:①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.基础知识训练1.【贵州省贵阳市2019届高三2月适应性考试(一)】平行四边形ABCD 中,AB=2,AD=3,AC=4,则BD=( ) A .4 BCD【答案】B 【解析】 如图所示:平行四边形ABCD 中,AB=2,AD=3,AC=4, 则:在△ABC 中,AB=2,BC=3,AC=4,利用余弦定理:22249161cos 22234AB BC AC ABC AB BC +−+−∠===−⋅⋅⋅,故:1cos cos 4DAB ABC ∠=−∠=, 则:2222?•DAB BD AD AB AD AB cos ∠=+−, 解得:. 故选:B .2.【辽宁省丹东市2019届高三总复习质量测试】在ABC ∆中,1cos 3A =,2AB =,3BC =,则ABC ∆的面积为( ) A .1 B .2C .12x xD.【答案】C由余弦定理可知2222cos BC AB AC AB AC A =+−⋅⋅ 234150AC AC ⇒−−=3AC ⇒=,因为1cos 3A =,所以sin A ==因此1sin 2ABC S AB AC A ∆=⋅⋅= C. 3.【山东省烟台市2019届高三3月诊断性测试(一模)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c,若1a =cos )cos 0A C C b A ++=,则角A =( )A .23πB .3πC .6πD .56π 【答案】D 【解析】∵1a =cos )cos 0A C C b A ++=,cos cos cos A C C A b A +=−,)cos A C B b A +==−,sin cos B b A =−,sin sin cos A B B A =−, ∵sin 0B >,cos A A =−,即:tan 3A =−, ∵(0,)A π∈, ∴56A π=. 故选:D .4.【山东省淄博市2019届部分学校高三阶段性诊断考试试题】在ABC ∆中,角,,A B C 对边分别是,,a b c ,满足22()6,3c a b C π=−+=,则ABC ∆的面积为( )A .B .2C .2D .32【答案】B,∴22226c a ab b =−++,又,由余弦定理可得: 222222cos c a b ab C a b ab =+−=+−∴ 222226a ab b a b ab −++=+−,解得:6ab =,由三角形面积公式可得1sin 22ABC S ab C ∆==故答案选B 。

[精]高三第一轮复习全套课件4三角函数:第6课时 三角形中的有关问题

第6课时 三角形中的有关问题
要点·疑点·考点
课 前 热 身
能力·思维·方法
延伸·拓展
误 解 分 析
要点·疑点·考点
1.正弦定理: (1)定理:a/sinA=b/sinB=c/sinC=2R(其中R为 △ ABC外 接圆的半径). (2)三角形面积S=absinC/2=bcsinA/2=casinB/2
返回
延伸·拓展
5.在△ABC中,已知a2-a=2(b+c),a+2b=2c-3. ①若sinC : sinA 4 : 13 ,求a,b,c; ②求△ABC的最大角. 【解题回顾】在△ABC中,总有大角对大边的关系存 在,欲求△ABC的最大角(边)或最小角(边),只需找 到相应的最大边(角)或最小边(角).其具体方法应根据 已知条件去选定.一般地,在下表给出的条件下用相 应的定理就能求解对应的三角形:
2.余弦定理: a2=b2+c2-2bccosA, b2=c2+a2-2cacosB, c2=a2+b2-2abcosC
3.三角形中的一些结论:(不要求记忆) (1)tanA+tanB+tanC=tanA· tanB· tanC (2)sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2) (3)cosA+cosB+cosC=4sin(A/2)· sin(B/2)· sin(C/2)+1 (4)sin2A+sin2B+sin2C=4sinA· sinB· sinC (5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1
2.△ABC中,设角A、B、C的对边分别为a、b、c 求证:

高考数学一轮复习 正弦定理、余弦定理及其应用

=__________,cosA2=__________,tanA2=__________.tanA+tanB +tanC=____________.
(3)若三角形三边 a,b,c 成等差数列,则 2b=____________

2sinB

____________

2sin
B 2

cos
A-C 2
解:由正弦定理得ab=ssiinnAB,所以
sinB=
2× 7
sinπ3=
721,
由余弦定理得 a2=b2+c2-2bccosA,所以 7= 4+c2-2c,所
以 c=3(负值舍去).故填 721;3.
(2018·全国卷Ⅰ) △ABC 的内角 A,B,C 的对边 分别为 a,b,c,已知 bsinC+csinB=4asinBsinC,b2+c2
-a2=8,则△ABC 的面积为________.
解:根据题意,结合正弦定理
可得 sinBsinC+sinCsinB=4sinAsinBsinC,即 sinA=12, 结合余弦定理可得 b2+c2-a2=2bccosA=8,
所以 A 为锐角,且 cosA= 23,从而求得 bc=8 3 3,
所以△ABC 的面积为 S=12bcsinA=12×8 3 3×
所 以 AB2 = BC2 + AC2 - 2BC·AC·cosC = 1 + 25 -
2×1×5×-35=32,所以 AB=4 2.故选 A.
(2017·山东)在△ABC 中,角 A,B,C 的对边分
别为 a,b,c.若△ABC 为锐角三角形,且满足 sinB(1+2cosC)
=2sinAcosC+cosAsinC,则下列等式成立的是( )

高三数学第一轮复习讲解正弦定理和余弦定理

高三数学第一轮复习讲解正弦定理和余弦定理浙江省台州市临海市第六中学高三数学第一轮复习讲解正弦定理和余弦定理1.正弦定理和余弦定理定理正弦定理 abc===2R(R为△ABCsin Asin Bsin C内容外接圆半径) a=2Rsin_A,b=2Rsin_B, c=2Rsin_C; absin A=,sin B =, 2R2Rc变形形式 sin C=;2Ra∶b∶c=sin_A∶sin_B∶sin_C; a+b+ca =. sin A+sin B+sin Csin A2.正弦定理解决的问题有哪两类?提示:(1)已知两角和任一边,求其他边和角; (2)已知两边和其中一边的对角,求其他边和角. 3.余弦定理解决的问题有哪三类?提示:(1)已知三边,求各角;余弦定理 a2=b2+c2-2bccos_A; b2=c2+a2-2cacos_B; c2=a2+b2-2abcos_C. b2+c2-a2cos A=; 2bcc2+a2-b2cos B=; 2caa2+b2-c2cos C =. 2ab(2)已知两边和它们的夹角,求第三边和其他两个角; (3)已知两边和其中一边的对角,求其他角和边.温馨提示:解斜三角形的类型:(1)已知两角一边,用正弦定理,有解时,只有一解.(2)已知两边及其一边的对角,用正弦定理,有解的情况可分为以下情况,在△ABC中,已知a、b和角A时,解的情况如下:A为锐角 A为钝角图形关系式解个数 a=bsin A 一解 bsin A<a<b 两解a≥b 一解 a>b 一解上表中A为锐角时,a<bsin A时,无解;A为钝角时,a=b,a<b均无解. (3)已知三边,用余弦定理有解时,只有一解. (4)已知两边及夹角,用余弦定理,必有一解.4.三角形面积设△ABC的三边分别为a、b、c,所对的三个角分别为A、B、C,其面积为S.1(1)S=ah(h为BC边上的高);21(2)S=absin C.211.(____·高考北京卷)在△ABC中,a=3,b=5,sin A=,则sin B=( ) 315A. B. 595C. D.1 3ab解析:选B.在△ABC中,由正弦定理=,sin Asin B15_35bsin A得sin B===.a392.在△ABC中,若a=18,b=24,A=45°,则此三角形有( ) A.无解 B.两解 C.一解 D.解的个数不确定解析:选B.∵bsin A=122<a<b. ∴三角形的个数有两个.13.(____·兰州调研)在△ABC中,a=32,b=23,cos C=,则△ABC的面积为( )3A.33 B.23 C.43 D.3122解析:选C.∵co s C=,∴sin C=,331122∴S△ABC=absin C=_32_23_=43. 2234.在△ABC中,B=60°,b2=ac,则△ABC的形状为________.解析:由余弦定理得b2=a2+c2-2accos 60°=ac,即a2-2ac+c2=0,∴a=c.又B=60°,∴△ABC为等边三角形.答案:等边三角形 5.(____·高考安徽卷)设△ABC的内角A,B,C所对边的长分别为a,b,c.若b+c=2a,3sin A=5sin B,则角C=________.解析:由3sin A=5sin B,得3a=5b.又因为b+c=2a,57所以a=b,c=b,3352272222?b?+b-?b?a+b-c33所以cos C== 2ab52_b_b31=-. 22π因为C∈(0,π),所以C=.32π答案: 3利用正、余弦定理解三角形(____·高考山东卷)设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c 7=6,b=2,cos B=.9(1)求a,c的值;(2)求sin(A-B)的值.[解] (1)由余弦定理b2=a2+c2-2accos B,得b2=(a+c)2-2ac(1+cos B), 7又b=2,a+c=6,cos B=,9所以ac=9,解得a=3,c=3. (2)在△ABC中,sin B=1-cos2B=42, 9asin B22由正弦定理得sin A==.b3因为a=c,所以A为锐角. 1所以cos A=1-sin2A=.3102因此sin(A-B)=sin Acos B-cos Asin B=.27在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.1.(____·高考浙江卷)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsin A=3acos B.(1)求角B的大小;(2)若b=3,sin C=2sin A,求a,c的值.ab解:(1)由bsin A=3acos B及正弦定理=,sin Asin B得sin B=3cos B.π所以tan B=3,所以B=.3ac(2)由sin C=2sin A及=,得c=2a.sin Asin C由b=3及余弦定理b2=a2+c2-2accos B,得9=a2+c2-ac. 所以a=3,c=23.利用正、余弦定理判定三角形的形状在△ABC中,a,b,c分别为内角A,B,C的对边,且2asin A=(2b+c)sin B +(2c+b)sin C.(1)求A的大小;(2)若sin B+sin C=1,试判断△ABC的形状.[解] (1)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.①由余弦定理得a2=b2+c2-2bccos A,1故cos A=-,A=120°.2(2)由①得sin2A=sin2B+sin2C+sin Bsin C.1又sin B+sin C=1,故sin B=sin C=.2因为0° 判断三角形的形状,主要有如下两种途径:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角三角函数间的关系,通过三角函数恒等变换,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C =π这个结论,在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解. Ac-b2.(1)在△ABC中,sin2=(a,b,c分别为角A,B,C的对边),则△ABC的形状22c为________;(2)在△ABC中,若b=asin C,c=acos B,则△ABC的形状为________.c-b解析:(1)∵sin=,22c2A1-cos Ac-bb∴=,∴cos A=. 22cc222bb+c-a由余弦定理=,c2bc∴a2+b2=c2,∴△A BC为直角三角形.a2+c2-b2bsin B(2)由b=asin C可知=sin C=,由c=acos B可知c=a·,整理得b2+c2 asin A2ac=a2,即三角形一定是直角三角形,A=90°,∴sin C=sin B,∴B =C,故△ABC为等腰直角三角形.答案:(1)直角三角形 (2)等腰直角三角形与三角形面积有关的问题(____·高考湖北卷)在△ABC中,角A,B,C对应的边分别是 a,b,c,已知cos2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=53,b=5,求sin Bsin C的值.[解] (1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0.1解得cos A=或cos A=-2(舍去).2π因为031133(2)由S=bcsin A=bc·=bc=53,得bc=20.2224又b=5,所以c=4.由余弦定理得a2=b2+c2-2bccos A=25+16-20=21,所以a=21.bc从而由正弦定理得sin Bsin C=sin A·sin Aaabc____=2sin2A=_=. a2147三角形面积公式的应用原则111(1)对于面积公式S=absin C=acsin B=bcsin A,一般是已知哪一个角就使用哪一个222公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. CA33.在△ABC中,角A,B,C的对边分别为a,b,c,若acos2 +ccos2 =b. 222(1)求证:a,b,c成等差数列; (2)若B=60°,b=4,求△ABC的面积. 1+cos C1+cos A3解:(1)证明:acos+ccos=a·+c·=b,则a(1+cos C)+c(1+cos222222C2AA)=3b.由正弦定理,得sin A+sin Acos C+sin C+cos Asin C=3sin B,即sin A+sin C+sin(A +C)=3sin B,∴sin A+sin C=2sin B.由正弦定理得,a+c=2b,故a,b,c成等差数列. (2)由B=60°,b=4及余弦定理,得42=a2+c2-2accos 60°. ∴(a+c)2-3ac=16,又由(1)知a +c=2b,代入上式得4b2-3ac=16,解得ac=16,11∴△ABC的面积S=acsin B=acsin 60°=43.22。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第一轮复习:正余弦定理、解斜三角形 【本讲主要内容】 正余弦定理、解斜三角形

【知识掌握】 【知识点精析】 1. 三角形面积计算公式: 设△ABC的三边为a、b、c,三个内角分别为A、B、C,高分别为ha,hb,hc,半周长为P,外接圆、内切圆的半径为R,r。

(1)S△=12aha=12bhb=12chc

(2)S△=12absinC=12acsinB=12cbsinA (3)S△=Pr(其中P为周长之半,r为内切圆半径) (4)222)(21ACABACABSABC

2. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即Aasin=Bbsin=Ccsin

(=2R)。 (其中R为外接圆半径) 利用正弦定理,可以解决以下两类有关三角形的问题。 (1)已知两角和任一边,求其两边和一角; (2)已知两边和其中一边的对角,求另一边的对角。(从而进一步求出其的边和角) 3. 余弦定理:三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍,即 a2=b2+c2-2bccosA; ① b2=c2+a2-2cacosB; ② c2=a2+b2-2abcosC。 ③ 在余弦定理中,令C=90°,这时cosC=0,所以c2=a2+b2。 由此可知余弦定理是勾股定理的推广。

由①②③可得:cosA=bcacb2222;

cosB=cabac2222; cosC=abcba2222。 利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其它两个角。 4. 强调几点: (1)利用余弦定理判定△ABC的形状: 222bac△ABC为直角△A+B=2 2c<22ba△ABC为钝角△A+B<2 2c>22ba△ABC为锐角△A+B>2

(2)三角形的四个“心”:

重心:三角形三条中线交点。ACAB一定过BC的中点,通过ABC的重心;

0OAOBOCO是ABC

的重心;

外心:三角形三边垂直平分线相交于一点。在ABC中,222OAOBOCO是ABC的外心;

内心:三角形三内角的平分线相交于一点。向量)(ACACABAB)(R必通过ABC

的内心;0aOAbOBcOCO是ABC的内心; 垂心:三角形三边上的高相交于一点。OAOBOBOCOCOAO是ABC的垂心。 (3)特别提示:两定理的形式、内容、证法及变形应用必须引起足够的重视,通过向量的数量积把三角形和三角函数联系起来,用向量方法证明两定理,突出了向量的工具性,是向量知识应用的实例。 (4)已知两边和其中一边的对边解三角形用正弦定理有两解、一解、无解三种情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”:

设△ABC中,已知a、b、A,则 sinB=sinbAa。 (1)A为锐角时 ①a<bsinA时,sinB>1,无解; ②a=bsinA时,sinB=1,B=90°,一解; ③bsinA<a<b时,两解; ④a≥b时,一解。 (2)A为直角或钝角时 ①a≤b时,无解; ②a>b时,一解。

【解题方法指导】 例1. 在△ABC中,sinA=CBCBcoscossinsin,判断这个三角形的形状。 分析:根据所给条件确定三角形的形状,主要有两种途径:①化边为角;②化角为边。并常用正弦(余弦)定理实施边角转化。 解:应用正弦定理、余弦定理,可得 a=abcbacabaccb22222222,所以b(a2-b2)+c(a2-c2)=bc(b+c) 所以(b+c)a2=(b3+c3)+bc(b+c) 所以a2=b2-bc+c2+bc.所以a2=b2+c2 所以△ABC是直角三角形 评讲:恒等变形是学好数学的基本功,变形的方向是关键.若考虑三内角的关系,本题也可以从已知条件利用三角变换推出cosA=0。

例2. △ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c),求证:A=2B。 剖析:研究三角形问题一般有两种思路:一是边化角,二是角化边。 证明:用正弦定理,a=2RsinA,b=2RsinB,c=2RsinC 代入a2=b(b+c)中,得sin2A=sinB(sinB+sinC)sin2A-sin2B=sinBsinC

22cos1A-22cos1B=sinBsin(A+B)

21(cos2B-cos2A)=sinBsin(A+B) sin(A+B)sin(A-B)=sinBsin(A+B) 因为A、B、C为三角形的三内角,所以sin(A+B)≠0。所以sin(A-B)=sinB 所以只能有A-B=B,即A=2B。 思考讨论 (1)该题若用余弦定理如何解决? 解:利用余弦定理,由a2=b(b+c),得:

cosA=bcacb2222=bccbbcb222)()(=bbc2

cos2B=2cos2B-1=2(acbca2222)2-1=2222ccbbccb)()(-1=bbc2 所以cosA=cos2B 因为A、B是△ABC的内角,所以A=2B

(2)该题根据命题特征,能否构造一个符合条件的三角形,利用几何知识解决? 解:由题设a2=b(b+c),得cba=ab ①

作出△ABC,延长CA到D,使AD=AB=c,连结BD。①式表示的即是DCBC=BCAC,所以△BCD∽△ABC。所以∠1=∠D。 又AB=AD,可知∠2=∠D,所以∠1=∠2 因为∠BAC=∠2+∠D=2∠2=2∠1 所以A=2B 评述:利用正弦定理,需要把命题中边的关系转化为角间关系,从而全部利用三角公式变换求解。 利用余弦定理,需要把命题中角的关系转化为关于边间代数式关系,从而全部利用整式与分式变换求解。若能巧妙地构造几何图形,就可把三角问题简捷地转化为平面几何问题。

【考点突破】 【考点指要】 高考考纲要求:掌握正弦定理、余弦定理,并能初步运用正弦定理、余弦定理解决三角形。 解三角形是三角知识直接联系实际的重要途径,也是高考试题的一个重要内容。除正确运用好正弦定理、余弦定理及已知条件给出的三角函数关系式外,对隐含的很多条件,如三角函数的定义,三角形的内角和、诱导公式、勾股定理、面积公式……等等,都要综合考虑,这样才能有效的解决问题。

以上统计结果不包括解三角形的间接应用,如立体几何中的解三角形问题。 考查通常分为三个层次: 层次一:直接应用正、余弦定理解斜三角形; 层次二:正余弦定理与三角函数的综合应用; 层次三:把正余弦定理及面积公式作为工具来解决其它问题(如实际问题)。近几年的高考题中,涉及到三角形的题目,重点考查正弦、余弦定理,考查的侧重点还在于三角转换.这是命题者的初衷.在应用正、余弦定理解三角形时,我们要熟练掌握四种可解的情形下三角形应满足的条件。另外解决实际问题是解三角形的重要应用,范围涉及到测量、航海、几何、物理学等方面。如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,同学应该能在复杂的实际问题中找出可解的三角形,利用三角形的边角

年份 题号 分值 占总分比例 题型 考查知识 2001全国文 19 12 8% 解答题 余弦定理与三角形面积 2003全国 21 12 8% 解答题 解斜三角形在实际问题中的应用 2003上海 7 4 3% 填空题 正余弦定理的综合应用 2004全国1 17 12 8% 解答题 三角形中的三角函数关系 2004全国1、2 10 5 3.5% 选择题 解三角形

2005全国1 10 5 3.5% 选择题 三角形中的三角函数关系 2005全国2 7 5 3.5% 选择题 三角形中的三角函数关系 2005湖南 16 12 8% 解答题 三角形中的三角函数关系 2006全国1 6 5 3.5% 选择题 余弦定理 2006北京 12 5 3.5% 选择题 正弦定理 2005湖南 16 12 8% 解答题 三角形中的三角函数关系 关系进行求解。 【典型例题分析】 例3. (2006天津17)如图,在ABC中,2AC,1BC,43cosC。 (1)求AB的值; (2)求CA2sin的值。

剖析:所给条件满足用余弦定理解三角形的情形,可以求出AB长,三边已知后,再用正或余弦定理求出单角的三角函数,再进一步求出CA2sin的值。

解法一:由余弦定理得AB=ACBCACBCC2222··cos 又由余弦定理得 cosA=AB2+AC2-BC22AB·AC=528 ∴sinA=148,∴sin2A=5716,cos2A=916 又sinC=74 ∴CA2sin=sin2AcosC+cos2AsinC=5716×34+916×74 = 378 解法二:由余弦定理得AB=ACBCACBCC2222··cos 又sinC=74,由正弦定理得 BCsinA = ABsinC ∴sinA=148 ∵BC不是最大边,∴cosA=528 ∴cos(A+C)= cosA cosC- sinA sinC=528×34 - 148×74 = 24 ∴sin(A+C)= 144 ∴CA2sin=sin[A+(A+C)]

相关文档
最新文档