图论习题
图论习题答案

习题一1. 一个工厂为一结点;若两个工厂之间有业务联系,则此两点之间用边相联;这样就得到一个无向图。
若每点的度数为3,则总度数为27,与图的总度数总是偶数的性质矛盾。
若仅有四个点的度数为偶数,则其余五个点度数均为奇数,从而总度数为奇数,仍与图的总度数总是偶数的性质矛盾。
2. 若存在孤立点,则m 不超过K n-1的边数, 故 m <= (n-1)(n-2)/2, 与题设矛盾。
3.4. 用向量(a 1,a 2,a 3)表示三个量杯中水的量, 其中a i 为第i 杯中水的量, i = 1,2,3.以满足a 1+a 2+a 3 = 8 (a 1,a 2,a 3为非负整数)的所有向量作为各结点, 如果(a 1,a 2,a 3)中某杯的水倒满另一杯得到 ( a ’1, a ’2, a ’3 ) , 则由结点到结点画一条有向边。
这样可得一个有向图。
本题即为在此图中找一条由( 8, 0, 0 )到( 4, 4, 0 )的一条有向路,以下即是这样的一条:5. 可以。
7. 同构。
同构的双射如下:8. 记e 1= (v 1,v 2), e 2= ( v 1,v 4), e 3= (v 3,v 1), e 4= (v 2,v 5), e 5= (v 6,v 3), e 6= (v 6,v 4), e 7= (v 5,v 3), e 8= (v 3,v 4), e 9 = (v 6,v 1), 则邻接矩阵为: 关联矩阵为:∑∑∑∑∑∑∑==+====-=++=-==---=--=ni i n i i n i n i n i ni i i n i i n i i i i a a n n a a a n n n a n a v v 1111121212/)1()1(2)1(])1[(。
, 所以 因为 ,+ 的负度数,则为结点的正度数,为结点记-----22 222 i i C a a ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------100110000001001000010100010011010100000001001100000111, 001101000100000000001001010000001010⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡( 8, 0, 0 ) ( 5, 3, 0 ) ( 5, 0, 3 ) ( 2, 3, 3 ) ( 2, 5, 1 )(7, 0, 1 ) ( 7, 1, 0 ) ( 4, 4, 0 )( 4, 1, 3 )边列表为:A= (1,1,3,2,6,6,5,3,6), B= (2,4,1,5,3,4,3,4,1). 正向表为:A= (1,3,4,6,6,7,10), B= (2,4,5,1,4,3,3,4,1).习题二1. 用数学归纳法。
离散数学图论部分经典试题及答案

离散数学图论部分综合练习一、单项选择题1.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010*******11100100110则G 的边数为( ).A .6B .5C .4D .32.已知图G 的邻接矩阵为, 则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所示,以下说法正确的是 ( ) .A .{(a, e )}是割边B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d , e )}是边割集οο ο ο οca b edο f图一图二图三7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的 应该填写:D8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ).A .G 连通且边数比结点数少1B .G 连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割ο οο οc a b f集是 .3.若图G=<V , E>中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点 数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 . 应该填写:等于出度6.设完全图K n 有n 个结点(n 2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 . 9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题1.如图六所示的图G 存在一条欧拉回路.2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路.v 123图六图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题1.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}(1)试给出G 的图形表示; (2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)写出其邻接矩阵;(2)求出每个结点的度数; (4)画出图G 的补图的图形. 3.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试(1)给出G 的图形表示; (2)写出其邻接矩阵; (3)求出每个结点的度数; (4)画出其补图的图形. 4.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形; (2)写出G 的邻接矩阵;(3)求出G 权最小的生成树及其权值.5.用Dijkstra 算法求右图中A 点到其它各点的最短路径。
图论习题

9. 若图G=(V, E)是连通图,且eE,证 明:
(1)e属于每一棵生成树的充要条件是{e} 为G的割集;
(2)e不属于G的任何一棵生成树的充要条 件是e为G中的环。
提示:反证
分析: (1) e属于每一棵生成树, 要证G删去e后
0
P(G2) ......
0
...... ...... ...... 0
0
0 ...... P(Gr )
因为Gi是连通图,Gi的秩是连通分支Gi的 结点个数-1,所以 rank(G)=rank(Gi)=n-r。
本题背景:
1 线性相关/线性无关
如果对m个向量1, 2, …., mFm,
(3)1,2,3,4,5,5
(4)2,2,2,3,3,4
(西南交大1995考研)
(1) V1={a, c, e}, V2={b, d, f}. (2) 不可能画出图。(顶点度数之和为偶数)
(3) 不可能画出图和二分图。由于有两个结点 的度数为5,则该两个结点的度数必与其余5个 结点有边相连(因为是简单图),所以其余4 个结点度数至少为2,但有一个结点的度数为1。
1. n个结点的简单图G,n>2且n奇数,G 和G补图中度数为奇数的结点个数是否相 等?请证明或给出反例。
(西南交大2001考研)
解:一定相等。
因为n>2且n奇数,则对于奇数个结点的 完全图,每个结点的度数必为偶数。若G 中度数为奇数的结点个数是m,则G的补 图中m个结点的度数为(偶数-奇数)=奇 数。 G中度数为偶数的结点,在G的补图 中这些结点的度数仍为(偶数-偶数)=偶 数。
图论复习题

图论复习题(二)图论复习题一、选择题1.设图G =<V , E >,v ∈V ,则下列结论成立的是 ( C ) . A .deg(v )=2∣E ∣ B . deg(v )=∣E ∣ C .E v Vv 2)deg(=∑∈ [PPT 23] D .Ev Vv =∑∈)deg(定理1 图G=(V ,E )中,所有点的次之和为边数的两倍 2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( B ).A .6B .5C .4D .33、 设完全图K n 有n 个结点(n ≥2),m 条边,当( C )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数解释:K n 每个结点的度都为n -1,所以若存在欧拉回路则n -1必为偶数。
n 必为奇数。
4.欧拉回路是( B )A. 路径B. 简单回路[PPT 40]C. 既是基本回路也是简单回路D.既非基本回路也非简单回路5.哈密尔顿回路是( C )A. 路径B. 简单回路C. 既是基本回路也是简单回路D.既非基本回路也非简单回路[PPT 40]:哈密尔顿回路要求走遍所有的点,即是基本回路的点不重复,也可以是简单回路的边不重复。
6.设G 是简单有向图,可达矩阵P(G)刻划下列关系中的是( C ) A 、点与边 B 、边与点 C 、点与点 D 、边与边7.下列哪一种图不一定是树(C )。
A.无简单回路的连通图B. 有n 个顶点n-1条边的连通图C. 每对顶点间都有通路的图D. 连通但删去一条边便不连通的图8.在有n 个结点的连通图中,其边数(B )A.最多有n-1条B.至少有n-1条C.最多有n 条D.至少有n 条9.下列图为树的是(C )。
A 、>><><><=<},,,,,{},,,,{1d c b a a a d c b a GB 、>><><><=<},,,,,{},,,,{2d c d b b a d c b a GC 、>><><><=<},,,,,{},,,,{3a c d a b a d c b a GD 、>><><><=<},,,,,{},,,,{4d d c a b a d c b a G 10、下面的图7-22是(C )。
图论习题

课前练习一、填空题1、图G 是简单图当且仅当 。
2、简单图G 是二部图当且仅当 。
3、若简单图G 满足(G)δ≥3,则G 中存在长度至少为 的圈。
4、连通图G 具有欧拉通路,而无欧拉回路的充要条件为 。
5、一颗树有两个2度分支点,一个3度分支点,三个4度分支点,则该树有 片树叶。
6、设T 为高为k 的二叉树,则T 最多有 个顶点。
7、设图G 是具有6条边、4个顶点的平面图,则图G 的面数为 。
8、一个图为非平面图当且仅当 。
9、S V ⊂,S 是图G 的极大独立集,则()V G S -是图G 的 。
10、带权为1,3,5,7,8,11,13的最优二叉树T 的权W(T)= 。
二、解答题1、求下图G 1的色多项式,并指出其色数、点连通度和边连通度。
图G 12、(1)证明自补图的阶数n 4k =或者n 4k 1=+,k 为某个自然数。
(2)找出所有4阶的自补图。
3、(1)证明:设G 是有v 个顶点ε条边,且G 是自对偶平面图,则2v 2ε=-。
(2)已知一颗无向树T 有三个3度结点,一个二度结点,其余都是1度结点。
①T 有几个1度结点?②试画出两棵满足上述度数要求的非同构的无向树。
4、通过布尔变量的运算,求下图3的全部极小支配集。
V 16 图3图G 25、用破圈法求下图G 3中的一颗最小生成树,写出具体过程,并计算生成树的权。
图G 36、设简单图,, |V|=n, |E|=m,G V E =<> 若有212n m C -≥+,则G 是哈密尔顿图。
7、证明:5K 不是平面图.8、证明:若,(,1)m n K m n ≥是哈密顿图,则必有.m n = 9、若,m n K 是树,求,m n 应满足的条件.132411253e 6e 1e 2e 3e 4e 5e 7e 8e 9。
图论习题参考答案

二、应用题题0:(1996年全国数学联赛)有n(n≥6)个人聚会,已知每个人至少认识其中的[n/2]个人,而对任意的[n/2]个人,或者其中有两个人相互认识,或者余下的n-[n/2]个人中有两个人相互认识。
证明这n个人中必有3个人互相认识。
注:[n/2]表示不超过n/2的最大整数。
证明将n个人用n个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G。
由条件可知,G是具有n个顶点的简单图,并且有(1)对每个顶点x,)(xN G≥[n/2];(2)对V的任一个子集S,只要S=[n/2],S中有两个顶点相邻或V-S中有两个顶点相邻。
需要证明G中有三个顶点两两相邻。
反证,若G中不存在三个两两相邻的顶点。
在G中取两个相邻的顶点x1和y1,记N G(x1)={y1,y2,……,y t}和N G(y1)={x1,x2,……,x k},则N G(x1)和N G(y1)不相交,并且N G(x1)(N G(y1))中没有相邻的顶点对。
情况一;n=2r:此时[n/2]=r,由(1)和上述假设,t=k=r且N G(y1)=V-N G(x1),但N G(x1)中没有相邻的顶点对,由(2),N G(y1)中有相邻的顶点对,矛盾。
情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。
若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。
故k ≠r+1,同理t ≠r+1。
所以t=r,k=r 。
记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。
若x i0y j0∈E ,则w ,x i0, y j0两两相邻,矛盾。
图论测试题及答案

图论测试题及答案一、选择题1. 在图论中,如果一个图的每个顶点的度数都是偶数,那么这个图一定存在欧拉路径吗?A. 是的B. 不一定C. 没有欧拉路径D. 无法确定答案:B2. 图论中的哈密顿路径是指什么?A. 经过图中所有顶点的路径B. 经过图中所有顶点的回路C. 经过图中某些顶点的路径D. 经过图中某些顶点的回路答案:A3. 如果一个图是完全图,那么它的边数是多少?A. 顶点数的一半B. 顶点数的平方C. 顶点数的两倍D. 顶点数减一答案:B二、填空题4. 在无向图中,如果存在一条路径,使得每个顶点只被经过一次,并且起点和终点相同,这样的路径被称为________。
答案:欧拉回路5. 图论中的二分图是指图中的顶点可以被分成两个不相交的集合,使得同一个集合内的顶点之间没有边,而不同集合之间的顶点之间有边,这种图也被称为________。
答案:二部图三、简答题6. 请简述图论中的最短路径问题,并给出解决该问题的一种算法。
答案:最短路径问题是在图中找到两个顶点之间的最短路径的问题。
解决该问题的一种算法是迪杰斯特拉算法(Dijkstra's algorithm),该算法通过维护一个顶点集合来记录已经找到最短路径的顶点,并迭代更新距离,直到找到从起点到所有顶点的最短路径。
7. 描述图论中的图着色问题,并说明其在实际生活中的应用。
答案:图着色问题是将图的顶点着色,使得任何两个相邻的顶点颜色不同。
在实际生活中,图着色问题可以应用于时间表的安排、频率分配、电路设计等领域,其中每个顶点代表一个任务或频道,而颜色则代表不同的时间段或频率。
结束语:以上是图论测试题及答案,希望能够帮助大家更好地理解和掌握图论的基本概念和算法。
图论复习题

图论及网络总复习题一、选择题1、设G是由5个顶点构成的完全图,则从G中删去()边可以得到树。
A.6 B.5 C.8 D.42、下面哪几种图不一定是树()。
A.无回路的连通图B.有n个结点,n-1条边的连通图C.对每对结点间都有通路的图D.连通但删去任意一条边则不连通的图。
3、5阶无向完全图的边数为()。
A.5 B.10 C.15 D.204、把平面分成x个区域,每两个区域都相邻,问x最大为()A.6 B.4 C.5 D.35、设图G有n个结点,m条边,且G中每个结点的度数不是k,就是k+1,则G中度数为k的节点数是()A.n/2 B.n(n+1) C.nk-2m D.n(k+1)-2m 6、图G1和G2的结点和边分别存在一一对应关系是G1和G2同构的()。
A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件7、设G=<V,E>为有向图,V={a,b,c,d,e,f},E={<a,b>,<b,c>,<a,d>,<d,e>,<f,e>}是()。
A.强连通图B.单向连通图C.弱连通图D.不连通图8、无向图G中的边e是G的割边(桥)的充分必要条件是()。
A.e是重边B.e不是重边C.e不包含在G的任一简单回路中D.e不包含在G的某一简单回路中9、在有n个结点的连通图中,其边数()A.最多有n-1条B.至少有n-1条C.最多有n条D.至少有n条10.设无向简单图的顶点个数为n,则该图最多有()条边。
A.n-1 B.n(n-1)/2 C. n(n+1)/2 D.n211.n个结点的完全有向图含有边的数目()。
A.n*n B.n(n+1) C.n/2 D.n*(n-l)12.在一个无向图中,所有顶点的度数之和等于所有边数()倍。
A.1/2 B.2 C.1 D.413.连通图G是一棵树,当且仅当G中()A.有些边不是割边B.所有边都是割边C.无割边集D.每条边都不是割边14.4个顶点的完全图G,其生成树个数是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《图论及其应用》习题课教材目录第一章图的基本概念1.1 图和简单图1.2 子图与图的运算1.3 路与图的连通性1.4 最短路及其算法1.5 图的代数表示及其特征1.6 极图1.7 交图与团图习题1第二章树2.1 树的概念与性质2.2 树的中心与形心2.3 生成树2.4 最小生成树习题2第三章图的连通度3.1 割边、割点和块3.2 连通度3.3 应用3.4 图的宽距离和宽直径习题3第四章欧拉图与哈密尔顿图4.1 欧拉图4.2 高效率计算机鼓轮的设计4.3 中国邮路问题4.4 哈密尔顿图4.5 度极大非哈密尔顿图4.6 旅行售货员问题4.7 超哈密尔顿图4.8 E图和H图的联系4.9 无限图中的欧拉,哈密尔顿问题习题4第五章匹配与因子分解5.1 匹配5.2 偶图的匹配与覆盖5.3 Tutte定理与完美匹配5.4 因子分解5.5 最优匹配与匈牙利算法5.6 匹配在矩阵理论中的应用习题5第六章平面图6.1 平面图6.2 一些特殊平面图及平面图的对偶图6.3 平面图的判定及涉及平面性的不变量6.4 平面性算法习题6第七章图的着色7.1 图的边着色7.2 顶点着色7.3 与色数有关的几类图7.4 完美图7.5 着色的计数,色多项式习题27.6 List着色7.7 全着色7.8 着色的应用习题7第八章Ramsey定理8.1 独立集和覆盖8.2 Ramsey定理8.3 广义Ramsey数8.4 应用习题8习题 11. 证明在n阶连通图中(1)至少有n-1条边。
(2)如果边数大于n-1,则至少有一条闭通道。
(3)如恰有n-1条边,则至少有一个奇度点。
证明(1) 若对∀v∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ⇒ m≥n>n-1,矛盾!若G中有1度顶点,对顶点数n作数学归纳。
当n=2时,G显然至少有一条边,结论成立。
设当n=k时,结论成立,当n=k+1时,设d(v)=1,则G-v是k阶连通图,因此至少有k-1条边,所以G 至少有k条边。
(2) 考虑v1→v2→⋯→v n的途径,若该途径是一条路,则长为n-1,但图G的边数大于n-1,因此存在v i,v j,使得v i adgv j,这样,v i→v i+1→⋯→v j并上v i v j构成一条闭通道;若该途径是一条非路,易知,图G有闭通道。
(3) 若不然,对∀v∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ⇒ m≥n>n-1,与已知矛盾!2.设G是n阶完全图,试问(1)有多少条闭通道?(2)包含G中某边e的闭通道有多少?(3)任意两点间有多少条路?答(1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n-2)…1.3.证明图1-27中的两图不同构:图1-27证明 容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。
4. 证明图1-28中的两图是同构的证明 将图1-28的两图顶点标号为如下的(a)与(b)图作映射f : f(v i )→u i (1≤ i ≤ 10)容易证明,对∀v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。
5. 证明:四个顶点的非同构简单图有11个。
证明由于四个顶点的简单图至多6条边,因此上表已经穷举了所有情形,由上表知:四个顶点的非同构简单图有11个。
图1-28 (a)v 2 v 3 u 4u (b)6. 设G 是具有m 条边的n 阶简单图。
证明:m =⎪⎪⎭⎫⎝⎛2n 当且仅当G 是完全图。
证明 必要性 若G 为非完全图,则∃ v ∈V(G),有d(v)< n-1 ⇒ ∑ d(v) < n(n-1) ⇒ 2m <n(n-1)⇒ m < n(n-1)/2=⎪⎪⎭⎫⎝⎛2n , 与已知矛盾!充分性 若G 为完全图,则 2m=∑ d(v) =n(n-1) ⇒ m= ⎪⎪⎭⎫ ⎝⎛2n 。
7. 证明:(1)m (K l ,n ) = ln ,(2)若G 是具有m 条边的n 阶简单偶图,则m ≤ ⎥⎦⎥⎢⎣⎢42n 。
证明 (1) K l,n 的总度数为2ln ,所以,m (K l ,n ) = ln 。
(2) 设G 的两个顶点子集所含顶点数分别为n 1与n 2,G 的边数为m,可建立如下的二 次规划:m=n 1n 2 s.t n 1+n 2=nn 1≥1, n 2≥ 1当n 为偶数时,n 1=n 2=n/2时,m 取最大值:m=n 2/4当n 为奇数时,取n 1=(n+1)/2, n 2=(n-1)/2时,m 取最大值:m=(n 2-1)/4所以,m ≤ ⎥⎦⎥⎢⎣⎢42n 。
8. 设△和δ是简单图G 的最大度和最小度,则δ≤2m / n ≤△。
证明∆≤≤∴≥∆⇒∆==≤⇒≥=∑∑∈∈n m n m n v d m n m n v d m Vv Vv 22)(22)(2δδδ9. 证明:若k 正则偶图具有二分类V = V 1∪V 2,则 | V 1| = |V 2|。
证明 由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ⇒ ∣V 1∣= ∣V 2 ∣。
10. 证明:由两人或更多个人组成的人群中,总有两人在该人群中恰好有相同的朋友数。
证明将人用图的顶点表示,图的两顶点邻接当且仅当人群中的两人相认识,于是,问题转化为:证明在任意一个简单图中必有一对度数相等的顶点。
若图G为连通单图,则对∀v∈V(G),有1≤d(v)≤n-1,因此,n个顶点中必存在两个顶点,其度数相同;若G为非连通图,设G1为阶数n1的连通分支,则∀v∈V(G1),有1≤d(v)≤n1-1,于是在G1中必存在两个顶点,其度数相同。
11.证明:序列(7,6,5,4,3,3,2) 和(6,6,5,4,3,3,1) 不是图序列。
证明由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2) 不是图序列;(6,6,5,4,3,3,1)是图序列⇔(5,4,3,2,2,0)是图序列,然(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1) 不是图序列。
12.证明:若δ≥2,则G包含圈。
证明只就连通图证明即可。
设V(G)={v1,v2,…,v n},对于G中的路v1v2…v k,若v k与v1邻接,则构成一个圈。
若v i1v i2…v in是一条路,由于δ≥ 2,因此,对v in,存在点v ik与之邻接,则v ik⋯v in v ik构成一个圈。
13.证明:若G是简单图且δ≥2,则G包含长至少是δ+1的圈。
证明设v0v1…v k为G中一条最长路,则v0的邻接顶点一定在该路上,否则,与假设矛盾。
现取与v0相邻的脚标最大者,记为l,则l≥δ,于是得圈v0v1v2⋯v l v0,该圈长为l+1,显然不小于δ+1。
`14.G的围长是指G中最短圈的长;若G没有圈,则定义G的围长为无穷大。
证明:(1)围长为4的k的正则图至少有2k个顶点,且恰有2k个顶点的这样的图(在同构意义下)只有一个。
(2)围长为5的k正则图至少有k2+1个顶点。
证明(1) 设u,v是G中两相邻顶点,则S(u)⋂S(v)=φ,否则,可推出G中的围长为3,与已知矛盾。
因此,G中至少有2(k-1)+2个顶点,即有2k个顶点。
把S(u)⋃⎨v⎬,S(v)⋃⎨u⎬连为完全偶图,则得到2k个顶点的围长为4的图,由作法知,这样的图是唯一的。
(2) 对u∈V(G),设u的邻接顶点为u1,u2,⋯u k,由于G的围长为5,所以,u1,u2,⋯u k互不邻接。
又设u i的邻接顶点为u i1,u i2,⋯u ik-1,(i=1,2,…,k),显然,S(u i)⋂S(u j)=⎨u⎬(i≠j),否则,G 中有长为4的圈,所以,G的顶点数至少有k2+1个。
15.对具有m条边的阶n图G,证明:(1)若m≥n,则G包含圈;(2)若m≥n+4,则G包含两个边不重的圈。
证明(1)若G含有环或平行边,则G有圈。
假定G为n阶简单图。
若G中顶点度大于等于2,则G中有圈。
设G中有一度顶点,去掉该顶点和其关联的边得图G1,由条件,显然有m(G1)≥∣V(G1)∣,若G1中有一度顶点,去掉该顶点和其关联的边得图G2,有m(G2)≥∣V(G2)∣,⋯,如此进行下去,该过程不可能进行到n=1或n=2的情形,否则,不满足m≥n所以,过程进行到Gm,Gm 是度数≥2的图,它含有圈。
(2) 只就m=n+4证明就行了。
设G 是满足m=n+4,但不包含两个边不相交的圈的图族中顶点数最少的一个图。
可以证明G 具有如下两个性质:1) G 的围长g ≥5。
事实上,若G 的围长≤4,则在G 中除去一个长度≤4的圈C 1的一条边,所得之图记为G ',显然,m(G ') ≥ ∣V(G)∣=∣V(G ')∣,由(1),G '中存在圈C 2, 使C 1,C 2的边不相交这与假定矛盾;2)δ (G)≥3。
事实上,若d(v 0)=2,设v 0v 1,v 0v 2∈E(G),作G 1=G-v 0+⎨v 1v 2⎬;若d(v 0)≤1,则 G 1为在G 中除去v 0及其关联的边(d(v 0)=0,任去G 中一条边)所得之图。
显然,m(G 1)=⎜V(G 1)⎜+4,G 1仍然不含两个边不重的圈之图。
但∣V(G 1)∣<∣V(G)∣,与假定矛盾。
由2),n+4=m ≥3n/2 ⇒ n ≤ 8. 但另一方面,由1),在G 中存在一个圈Cg ,其上的顶点之间的边,除Cg 之外,再无其它边,以S 0表示Cg 上的顶点集,故由2),S 0上每个顶点均有伸向Cg 外的的边。
记与S 0距离为1的顶点集为S 1,则S 0的每一个顶点有伸向S 1的边,反过来,S 1中的每个顶点仅有唯一的一边与S 0相连,不然在G 中则含有长不大于g/2+2的圈,这与G 的围长为g 相矛盾,故⎪S 0⎪≤⎪ S 1⎪,于是有:n ≥⎪S 0⎪+⎪ S 1⎪≥g+g ≥10,但这与n ≤8矛盾。
所以,假定条件下的G 不存在。
16. 在图1-13的赋权图中,找出a 到所有其它顶点的距离。
解 1. A 1= {a },t (a ) = 0,T 1 = Φ2.()113b v =3. m 1 = 1, a 2 = v 3 , t (v 3) = t (a ) + l (av 3) = 1 (最小),T 2 ={av 3} 2. A 2 ={a , v 3}, 2)2(21)2(1,v b v b ==3. m 2 = 1, a 3 = v 1 , t (v 1) = t (a ) + l (av 1) = 2 (最小),T 3 ={av 3, av 1} 2. A 3 ={a , v 3, v 1}, 4)3(32)3(22)3(1,,v b v b v b ===3. m 3 = 3, a 4 = v 4 , t (v 4) = t (v 1) + l (v 1v 4) = 3 (最小),T 4 ={av 3, av 1, v 1v 4}2. A 4 = {a , v 3, v 1, v 4},b 1(4) = v 2,b 2(4) = v 2,b 3(4) = v 2, b 4(4) = v 53. m 4 = 4, a 5 = v 5 , t (v 5) = t (v 4) + l (v 4v 5) = 6 (最小),b 图1-13T 5 ={av 3, av 1, v 1v 4, v 4v 5}2. A 5 = {a , v 3, v 1, v 4, v 5},b 1(5) = v 2,b 2(5) = v 2,b 3(5) = v 2 , b 4(5) = v 2, b 5(5) = v 23. m 5 = 4, t (v 2) = t (v 4) + l (v 4v 2) = 7 (最小),T 6 ={av 3, av 1, v 1v 4, v 4v 5, v 4v 2}2. A 6 = {a , v 3, v 1, v 4, v 5, v 2}, b 2(6) = v 6, b 4(6) = b ,b 5(6) = v 6,b 6(6) = v 63. m 6 = 6, a 7 = v 6 , t (v 6) = t (v 2) + l (v 2v 6) = 9 (最小),T 7 ={av 3, av 1, v 1v 4, v 4v 5, v 4v 2, v 2v 6}2. A 7 = {a , v 3, v 1, v 4, v 5, v 2, v 6}, b 4(7) = b ,b 5(7) =b ,b 7(7) =b3. m 7 = 7, a 8 = b , t (b ) = t (v 6) + l (v 6b ) = 11 (最小),T 8 ={av 3, av 1, v 1v 4, v 4v 5, v 4v 2, v 2v 6, v 6b }于是知a 与b 的距离d (a , b ) = t (b ) = 11由T 8导出的树中a 到b 路1426av v v v b 就是最短路。