实验1:计算图像的基本统计指标

合集下载

图像基本运算实验指导

图像基本运算实验指导

图像的缩放
1 、实验内容 对一幅图像实现按比例缩小和不按比例任意缩小的效果,以及图像的成倍放大和 不按比例放大效果。 2 、实验原理 数字图像的比例缩放是指将给定的图像在 x 方向和 y 方向按相同的比例缩放 a 倍, 从而 获得一幅新的图像,又称为全比例缩放。如果 x 方向和 y 方向缩放的比例不同,则图像的比 例缩放会改变原始图像像素间的相对位置,产生几何畸变。设原始图像中的点 A0 ( x0 , y0 ) 比 例缩放后,在新图中的对应点为 A1 ( x 1 , y1 ) ,则 A0 ( x0 , y0 ) 和 A1 ( x 1 , y1 ) 之间坐标关系可表 示如下:
J = i m 2 d o u b l e ( J ) ; K = I + 0 . 3 * J ; % 两幅图像相加 s u b p l o t ( 1 , 3 , 1 ) ; i m s h o w ( I ) ; t i t l e ( ' 人物图' ) ; s u b p l o t ( 1 , 3 , 2 ) ; i m s h o w ( J ) ; t i t l e ( ' 背景图' ) ; s u b p l o t ( 1 , 3 , 3 ) ; i m s h o w ( K ) ; t i t l e ( ' 相加后的图' ) ; i m w r i t e ( K , ' i _ l e n a 1 . j p g ' ) ; (2 )选取一幅混合图像,如上图相加得到的图像 i _ l e n a . j p g , 将混合图像与背景图像 做减法运算,程序如下,结果如图(b ) 。 A = i m r e a d ( ' i _ l e n a 1 . j p g ' ) ; B = i m r e a d ( ' r i c e . p n g ' ) ; C = A 0 . 3 * B ; % 混合图减去背景图 s u b p l o t ( 1 , 3 , 1 ) ; i m s h o w ( A ) ; t i t l e ( ' 混合图' ) ; s u b p l o t ( 1 , 3 , 2 ) ; i m s h o w ( B ) ; t i t l e ( ' 背景图' ) ; s u b p l o t ( 1 , 3 , 3 ) ; i m s h o w ( C ) ; t i t l e ( ' 分离后的图' ) ; (3 )选取一幅尺寸为 2 5 6 ×2 5 6 的灰度图,如 i _ l e n a . j p g 。设置掩膜模板,对于需要 保留下来的区域,掩膜图像的值置为 1,而在需要被抑制掉的区域,掩膜图像的值置为 0。 程序如下,结果如图(c) 。 A = i m r e a d ( ' i _ l e n a . j p g ' ) ; A = i m 2 d o u b l e ( A ) ; s u b p l o t ( 1 , 2 , 1 ) ; i m s h o w ( A ) ; t i t l e ( ' 原图' ) ; B = z e r o s ( 2 5 6 ) ; % 设置模板 B ( 4 0 : 2 0 0 , 4 0 : 2 0 0 ) = 1 ; K = A . * B ; % 两幅图像相乘 s u b p l o t ( 1 , 2 , 2 ) ; i m s h o w ( K ) ; t i t l e ( ' 局部图' ) ; 4 、实验结果与分析 (1 ) 、实验结果如图 3 . 8 所示。

反映图像平均信息的参数

反映图像平均信息的参数

反映图像平均信息的参数
图像平均信息是图像理解的关键,用于把图像的每个特征抽象为一个数字。

它能准确地捕
捉图像的全部特性,形成一个特征向量,从而对复杂的图像场景进行解释。

主要有两种方法来反映图像平均信息:像素均值和像素标准标准化。

像素均值是整体图像
中每个像素点的灰度值,它是图像所有灰度值的平均值。

计算一幅图像的像素均值很容易,但它只能反映进行灰度调节后的像素值的平均值,对于复杂的图像分析任务而言,它的效
果并不好。

像素标准化是图像平均信息的另一种方法,它是将每个像素值与原始集合中所有像素值的
方差度量进行标准化,以便将图像中所有像素值均等量化到-1到1之间。

这种方法可以解决灰度调整后图像像素均值改变带来的问题,并可以更加准确地反映图像中所有像素值的
变化。

最近,研究人员还提出了一种更加有效的方法来反映图像像素的平均信息,即将灰度直方
图归一化到[0,1]之间的方法,它可以解决像素均值和标准化这两个方法所遇到的问题,
并可以提高图像检测算法的准确性和效率。

总之,图像平均信息对于图像处理和分析有着重要意义,已有的技术如像素均值和像素标
准化都可以提取图像的平均信息,而且最近被提出的灰度直方图归一化方法也可以帮助进
一步提高图像分析的准确性。

计算图像的基本统计指标

计算图像的基本统计指标

实验:计算图像的基本统计指标程序一:将图像反白I=imread('football.jpg');subplot(221);imshow(I);J=rgb2gray(I);subplot(222);imshow(J);Ave=mean2(J)SD=std2(double(J))s=size(J);all_white=255*ones(s(1),s(2));all_white_uint8=uint8(all_white);K=imsubtract(all_white_uint8,J);subplot(223);imshow(K);imwrite(K,'football_ivers.jpg');图像与结果:Ave=73.9462SD=37.1148程序二:利用imfinfo函数了解图像文件的基本信息imfinfo('football.jpg')结果:ans =Filename: 'D:\MATLAB7\toolbox\images\imdemos\football.jpg' FileModDate: '01-Mar-2001 17:52:38'FileSize: 27130Format: 'jpg'FormatVersion: ''Width: 320Height: 256BitDepth: 24ColorType: 'truecolor'FormatSignature: ''NumberOfSamples: 3CodingMethod: 'Huffman'CodingProcess: 'Sequential'Comment: {}程序三:利用corr2函数读入图像的二维相关系数I=imread('D:\others\桌面\1328601068WrNpsR.jpg');I_Gray=rgb2gray(I);subplot(221);imshow(I);subplot(223);imshow(I_Gray);J=imread('D:\others\桌面\1328601069mBgB8C.jpg');J_Gray=rgb2gray(J);subplot(222);imshow(J);subplot(224);imshow(J_Gray);rfg=corr2(I_Gray,J_Gray) %两张图片的相关系数图像与结果:rfg =0.5729程序四:确定像素的平均值,计算像素的标准偏移I=imread('D:\others\图片\p_large_Y3Z5_6720000222835c3f.jpg');subplot(211);imshow(I);J=rgb2gray(I);subplot(212);imshow(J);Ave_RGB=mean2(I) %原图片的平均值Ave_Gray=mean2(J) %灰度图片的平均值SD_RGB=std2(double(I)) %原图片的标准偏移SD_Gray=std2(double(J)) %灰度图片的标准偏移图像与结果:Ave_RGB =162.5189Ave_Gray =171.7345SD_RGB =40.3650SD_Gray =27.6878程序五:改变图像大小(imresize)Img=imread('D:\others\图片\p_large_Y3Z5_6720000222835c3f.jpg'); subplot(211);imshow(Img);Img_New=imresize(Img,[600,900]);subplot(212);imshow(Img_New);imwrite(Img_New,'D:\others\图片\p_large_Y3Z5_6720000222835c3f.jpg'); 图像与结果:程序六:旋转图像(imrotate)Img=imread('D:\others\图片\p_large_Y3Z5_6720000222835c3f.jpg'); subplot(221);imshow(Img);Img_New2=imrotate(Img,25); %将图片顺时针旋转25度subplot(222);imshow(Img_New2);imwrite(Img_New2,'D:\others\图片\p_large_Y3Z5_6720000222835c3f.jpg'); Img_New3=imrotate(Img,-25); %将照片逆时针旋转25度subplot(223);imshow(Img_New3);imwrite(Img_New3,'D:\others\图片\p_large_Y3Z5_6720000222835c3f.jpg'); 图像与结果:。

数字图像处理实验一图像的基本操作和基本统计指标计算实验报告.doc

数字图像处理实验一图像的基本操作和基本统计指标计算实验报告.doc

实验一图像的基本操作和基本统计指标计算一、实验目的熟悉MATLAB图像处理工具箱,在掌握MATLAB基本操作的基础上,本课程主要依靠图像处理工具箱验证和设计图像处理算法。

对于初学者来说,勤学多练、熟悉MATLAB图像处理工具箱也是学号本课程的必经之路。

了解计算图像的统计指标的方法及其在图像处理中的意义。

了解图像的几何操作,如改变图像大小、剪切、旋转等。

二、实验主要仪器设备(1)台式计算机或笔记本电脑(2)MATLAB(安装了图像处理工具箱,即Image Processing Toolbox(IPT))(3)典型的灰度、彩色图像文件三、实验原理(1)将一幅图像视为一个二维矩阵。

(2)利用MATLAB图像处理工具箱读、写和显示图像文件。

①调用imread函数将图像文件读入图像数组(矩阵)。

例如“I=imread(‘tire.tif’);”。

其基本格式为:“A=imread(‘filename.fmt’)”,其中,A为二维矩阵,filename.为文件名,fmt 为图像文件格式的扩展名。

②调用imwrite函数将图像矩阵写入图像文件。

例如“imwrite(A,’test_image.jpg’);”。

其基本格式为“imwrite(a,filename.fmt)”。

③调用imshow函数显示图像。

例如“imshow(‘tire.tif’);”。

其基本格式为:I为图像矩阵,N为显示的灰度级数,默认时为256。

(3)计算图像有关的统计参数。

四、实验内容(1)利用MATLAB图像处理工具箱和Photoshop读、写和显示图像文件。

(2)利用MATLAB计算图像有关的统计参数。

五、实验步骤(1)利用“读图像文件I/O”函数读入图像Italy.jpg。

(2)利用“读图像文件I/O”的iminfo函数了解图像文件的基本信息:主要包括Filename(文件名)、FileModDate(文件修改时间)、Filesize(文件尺寸)、Format(文件格式)、FormatVersion (格式版本)、Width(图像宽度)、Height(图像高度)、BitDepth(每个像素的位深度)、ColorType (彩色类型)、CodingMethod(编码方法)等。

计算图像的基本统计指标Read课件

计算图像的基本统计指标Read课件
灰度中值可以反映图像的亮度分布情况,对于二值化图像, 中值的大小决定了二值化的阈值。
灰度熵
总结词
灰度熵是一种衡量图像信息复杂度的指标,表示图像中像素灰度级分布的不确定 性或随机性。
详细描述
灰度熵计算公式为-sum(p(i)*log2(p(i))),其中p(i)表示灰度值为i的像素出现的概 率。较大的熵值意味着图像具有较高的信息量。
PART 03
图像的结构特性
边缘检测
边缘检测是图像处理中的基本操 作,用于识别图像中的边缘和轮
廓。
边缘检测算法通过分析图像中的 像素强度变化来检测边缘,通常 使用一阶或二阶导数来检测边缘

常见的边缘检测算法包括Sobel 、Prewitt、Canny等。
角点检测
01
角点检测是图像处理中 的一项重要任务,用于 识别图像中的角点。
灰度游程长度矩阵
灰度游程长度矩阵(RLM)是一种描述图像中连续相同灰 度级像素组成的“游程”的统计方法。它通过计算游程的 长度、方向和变化频率,来描述图像的纹理特征。
灰度游程长度矩阵可以用于图像的边缘检测、纹理分类和 增强等应用。
灰度自相关函数
灰度自相关函数(ACF)是一种描述图像中像素灰度级与其相邻像素灰度级之间 关系的函数。它通过计算像素灰度级与其相邻像素灰度级的相似程度,来描述图 像的纹理特征。
马尔科夫随机场模型
总结词
马尔科夫随机场模型是一种概率图模型,用于描述图像中像素之间的空间依赖关系。
详细描述
马尔科夫随机场模型基于马尔科夫链蒙特卡洛方法,通过定义像素之间的转移概率和状态概率,能够 模拟图像中的纹理、边缘和形状等特征。马尔科夫随机场模型在图像分割、图像恢复和图像识别等领 域有广泛应用。

图像的数据分析

图像的数据分析

图像的数据分析图像数据分析是计算机视觉领域中的一个重要分支,它通过提取和分析图像中的数据,从而获取图像中蕴含的信息。

在图像数据分析中,常用的方法包括图像预处理、特征提取、特征选择、分类和聚类等。

图像预处理是图像数据分析的第一步,它包括图像去噪、图像增强、图像分割等。

图像去噪是为了消除图像中的噪声,提高图像质量;图像增强是为了增强图像中的某些特征,使得图像更容易被分析;图像分割是将图像分割成若干个部分,以便于分析每个部分的特征。

特征提取是图像数据分析的关键步骤,它通过提取图像中的特征,将图像转化为可分析的数字形式。

常用的特征提取方法包括边缘检测、纹理分析、形状分析等。

边缘检测是通过检测图像中的边缘,从而提取图像中的轮廓信息;纹理分析是通过分析图像中的纹理,从而提取图像中的纹理信息;形状分析是通过分析图像中的形状,从而提取图像中的形状信息。

特征选择是在特征提取的基础上,选择最有效的特征,以便于进行分类和聚类。

常用的特征选择方法包括主成分分析、线性判别分析等。

主成分分析是一种常用的特征选择方法,它通过寻找数据中的主成分,从而提取数据中的主要特征;线性判别分析是一种基于统计学的特征选择方法,它通过寻找数据中的线性判别函数,从而提取数据中的判别特征。

分类和聚类是图像数据分析的最终目的,它们通过分析图像中的特征,从而对图像进行分类和聚类。

常用的分类方法包括支持向量机、决策树、神经网络等;常用的聚类方法包括Kmeans聚类、层次聚类等。

支持向量机是一种基于统计学的分类方法,它通过寻找数据中的最优分类超平面,从而对数据进行分类;决策树是一种基于树形结构的分类方法,它通过建立树形结构,从而对数据进行分类;神经网络是一种基于人工神经网络的分类方法,它通过模拟人脑的神经元,从而对数据进行分类。

图像数据分析是一个复杂的过程,需要经过多个步骤才能完成。

通过图像数据分析,我们可以从图像中提取出有价值的信息,为图像识别、图像检索、图像等领域提供有力支持。

数字图像处理实验一图像的基本操作和基本统计指标计算实验报告

数字图像处理实验一图像的基本操作和基本统计指标计算实验报告

实验一图像的基本操作和基本统计指标计算一、实验目的熟悉MATLAB图像处理工具箱,在掌握MATLAB基本操作的基础上,本课程主要依靠图像处理工具箱验证和设计图像处理算法。

对于初学者来说,勤学多练、熟悉MATLAB图像处理工具箱也是学号本课程的必经之路。

了解计算图像的统计指标的方法及其在图像处理中的意义。

了解图像的几何操作,如改变图像大小、剪切、旋转等。

二、实验主要仪器设备(1)台式计算机或笔记本电脑(2)MATLAB(安装了图像处理工具箱,即Image Processing Toolbox(IPT))(3)典型的灰度、彩色图像文件三、实验原理(1)将一幅图像视为一个二维矩阵。

(2)利用MATLAB图像处理工具箱读、写和显示图像文件。

①调用imread函数将图像文件读入图像数组(矩阵)。

例如“I=imread(‘tire.tif’);”。

其基本格式为:“A=imread(‘filename.fmt’)”,其中,A为二维矩阵,filename.为文件名,fmt为图像文件格式的扩展名。

②调用imwrite函数将图像矩阵写入图像文件。

例如“imwrite(A,’test_image.jpg’);”。

其基本格式为“imwrite(a,filename.fmt)”。

③调用imshow函数显示图像。

例如“imshow(‘tire.tif’);”。

其基本格式为:I为图像矩阵,N为显示的灰度级数,默认时为256。

(3)计算图像有关的统计参数。

四、实验内容(1)利用MATLAB图像处理工具箱和Photoshop读、写和显示图像文件。

(2)利用MATLAB计算图像有关的统计参数。

五、实验步骤(1)利用“读图像文件I/O”函数读入图像Italy.jpg。

(2)利用“读图像文件I/O”的iminfo函数了解图像文件的基本信息:主要包括Filename(文件名)、FileModDate(文件修改时间)、Filesize(文件尺寸)、Format(文件格式)、FormatVersion (格式版本)、Width(图像宽度)、Height(图像高度)、BitDepth(每个像素的位深度)、ColorType (彩色类型)、CodingMethod(编码方法)等。

实验一、宏观经济数据的描述统计和图像分析法

实验一、宏观经济数据的描述统计和图像分析法

实验要求:
根据实验教材中所列出的实验步骤,
利用实验室和老师提供的实验软件, 认真完成规定的实验内容,真实地 记录实验中所遇到的各种问题和解 决的方法和过程。实验完成后,应 根据实验情况写出实验报告,内容 包括:1.实验目的;2.实验内容;3.实 验步骤;4.实验结果;5.问题讨论与 实验心得。


2. 宏观经济指标与宏观经济模型
宏观经济指标体系是综合分析和评价 宏观经济系统所需的一系列变量的集 合。宏观经济指标体系包括综合指标、 部门和地区指标以及与外部系统相关 的指标三类。 (1)综合指标 (表1-1) (2)部门和地区指标 (表1-2) (3)与外部系统相关的指标 (/Default.shtml?id =F)





美国政府进行经济周期监测所确定的先行指标及 其在指数构成中的权重如下: 1)生产及制造业工人平均工作周1.014 2)制造业工人的失业率1.0141 3)消费品和原料的新订单0.973 4)59500家大公司普通股股票价格1.149 5)库存的实际变化0.986 6)M2的货币供应量0.932 7)流动资产总额的变化 8)敏感性物价的变化0.892 9)成套设备的合同及订单0.946 10)新颁发的私人住宅建筑许可证1.054 11)净经济主体的组成 12)销售不畅公司的比例1.081
实验一、宏观经济数据的描述统 计和图像分析法 实验学时:2 实验类型:描述型 实验环境:联网的计算机、Excel软 件、投影仪
实验目的
1.掌握Excel软件对时间序列数据的分析 重点向学生介绍如何使用Excel软件对时间 序列数据进行分析,包括:(1)单序列数 据的分析;(2)群对象的简单统计分析。 2.会使用图像分析法 重点向学生介绍如何使用Excel软件对数据 进行图像分析,要求学生掌握如何合理地 使用饼图、折线图、柱状图等图形来对数 据进行处理,并根据图形情况对数据作出 趋势变化等各种分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 思考题:系数选择的要求.?
.
演示实验:离散余弦变换
▪ 实验内容:在MATLAB的DEMO里运行离散余弦 变换的演示,理解DCT变换的压缩编码的应用。减 少DCT系数重构图像,观察重建图像和原图像的差 别。
▪ 实验步骤
➢ 在MATLAB的Command窗口中键入DEMO; ➢ 打开ToolBox,选择Image Processing; ➢ 运行Discrete Cosine Transform; ➢ 选择不同个数的DCT系数,观察重构图像和误差图像; ➢ 选择不同的图像重复上述步骤。
.
实验内容1
▪ 利用MATLAB图像工具箱读、写和显示图 像文件。
▪ 计算图像的有关统计参数。
.ห้องสมุดไป่ตู้
实验步骤
▪ 利用“读图像文件I/O”函数读入图像。 ▪ 利用“读图像文件I/O”的iminfo函数了解图像
的基本信息。利用“像素和统计处理”函数计算 读入图像的二维相关系数,确定像素颜色值、像 素的平均值、显示像素的信息、计算像素的标准 偏移等。
▪ 利用几何操作剪切图像、改变图像大小。旋转图 像。
▪ 将经上述不同操作后的图像用“读图像文件I/O” 函数分别写入到各自的图像文件中。
.
.
.
>> p1 p1 =
63 35 64 >> m1
.
.
.
.
实验与思考
▪ 1. 在MATLAB里,256级的灰度图像的 灰度级表示是从0~255,还是1~256?
▪ 2.图像的坐标,起始位置的坐标是(1, 1)还是(0,0)?起始位置在左上角 还是右下角?
.
实验要求
▪ 实验报告要求:根据实验步骤,写出实验 程序,并记录实验结果,实验结果包括图 像的显示和统计数据的记录。
▪ 要求课堂完成程序的编制。 ▪ 思考题:
➢ 图像的统计特征对图像处理的意义。 ➢ 比较不同图像的统计特征差别,分析原因。
实验1:计算图像的基本统计指标
.
实验目的
▪ 熟悉MATLAB图像处理工具箱的使用方法; ▪ 了解计算图像的统计指标的方法及其在图
像处理中的意义。
.
实验主要的仪器设备
▪ 微机 ▪ MATLAB软件,并且安装了图像处理工具
箱(Image Processing Toolbox) ▪ 典型的灰度、彩色图像文件
.
实验原理
▪ 可以将一幅图像看成是一个二维矩阵,因 此用MATLAB处理图像十分方便。
▪ 利用MATLAB图像处理工具箱中的读、写 和显示图像文件。
imread,读 Imwrite,写 Imshow,显示
.
计算图像的有关统计参数 ▪ 图像的大小 ▪ 图像的灰度平均值 ▪ 协方差矩阵 ▪ 图像的灰度标准差 ▪ 图像的相关系数
相关文档
最新文档