初中最基本的尺规作图总结

合集下载

最新人教版 初中数学 七年级上册尺规作图_知识点讲解1

最新人教版 初中数学 七年级上册尺规作图_知识点讲解1

如图24.4.2,我们可以先画射线AB,然后用圆 规量出线段MN的长,再在射线AB上截取AC= MN,线段AC就是所要画的线段.
图 24.4.2
2、作一个角等于已知角 已知: AOB(图1) 求作: A`O`B`,使 A`O`B`= AOB
B D
B` D`
O
A C
O`
C`
A`
1、作射线O`A`。 2、以点O为圆心,以任意长为半径作弧,交OA于
C,交OB于D。 3、以点O`为圆心,以OC长为半径作弧,交O`A`于
C`。 4、以点C`为圆心,以CD长为半径作弧,交前弧于D`。 5、经过点D`作射线O`B`,∠A`O`B`就是所求的角。
B D
B` D`
O
A
C
O`
C`
A`
• 证明:
,由作法可知
• △C`O`D`≌△COD(SSS),
• ∴∠C`O`D`=∠COD(全等三角形的对应角相等),
的垂直平分线.
5.过定点作已知直线的垂线 ①.如图,点C在直线l上,试过点C画出直线l的垂 线.
能否利用画线段垂直平分线的方法解决呢?试试看,ห้องสมุดไป่ตู้成
整个作图.
图 24.4.8
以C为圆心,任一线段的长为半径画弧,交l于A、B两点,
则C是线段AB的中点.因此,过C画直线l的垂线转化为
画线段AB的垂直平分线.
• 即∠A`O`B`=∠AOB。
3、平分已知角
已知: AOB(图2) 求作:射线OC,使 AOC= BOC
B
E
C

O
D
A
1、在OA和OB上,分别截取OD、OE,使OD=OE。
• 2、分别以D、E为圆心,大于DE的长为半径作弧,

初中数学考点尺规作图

初中数学考点尺规作图
过一点作已知直线的垂线
过直线外一点作已知直线的垂线
步骤:1.在直线另一侧取点M;2.以P为圆心,以PM为半径画弧,交直线于A、B两点;3.分别以A、B为圆心,以大于12AB长为半径画弧,交M同侧于点N;4.连接PN,则直线PN即为所求垂线
过直线上一点作已知直线的垂线
步骤:1.以点O为圆心,任意长为半径向点O两侧作弧,交直线于A、B两点;2.分别以点A、B为圆心,以大于 AB长为半径向直线两侧作弧,交点分别为M、N;3.连接MN,MN即为所求垂线
作线段的垂直平分线
步骤:1.分别以点A、B为圆心,以大于 AB的长为半径,在AB两侧作弧;2.连接两弧交点所成直线即为所求线段的垂直平分线
作一个角等于已知角
步骤:1.在∠α上以点O为圆心、以适当的长为半径作弧,交∠α的两边于点P、Q;2.作射线O′A;3.以O′为圆心、OP长为半径作弧,交O′A于点M;4.以点M为圆心,PQ长为半径作弧,交前弧于点N;5.过点N作射线O′B,∠BO′A即为所求角
第15章尺规作图
考点一、尺规作图的要求
只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图不一定要写作图步骤,但必须保留作图痕迹.
考点2、五种Βιβλιοθήκη 本尺规作图作一条线段等于已知线段
步骤:1.作射线OP;2.在OP上截取OA=a,OA即为所求线段
作角的平分线
步骤:1.以点O为圆心,任意长为半径画弧,分别交OA、OB于点N、M;2.分别以点M、N为圆心,大于 MN的长为半径作弧,相交于点P;3.画射线OP,OP即为所求角平分线

中考专题复习——初中最基本的尺规作图总结与典型例题

中考专题复习——初中最基本的尺规作图总结与典型例题

初中基本尺规作图总结与典型例题一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

(完整版)初中最基本的尺规作图总结

(完整版)初中最基本的尺规作图总结

尺规作图一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

初中数学知识点总结:掌握五种基本作图

初中数学知识点总结:掌握五种基本作图

初中数学知识点总结:掌握五种基本作图知识点总结
一、基本作图的有关概念:
1.尺规作图:用没有刻度的直尺和圆规来作图的方法,叫做尺规作图。

2.五种基本作图:五种基本作图是尺规作图的基础,数学中的五种基本作图是指作一条线段等于已知线段、作一个角等于已知角、作一个角的角平分线、过定点作已知直线的垂线、作线段的垂直平分线。

二、基本作图的原理和步骤:
1.原理:边边边公理
2.步骤:作图题的方法与证明题解法不相同,对于作图题首先将文字叙述转化为数学语言,即要写出题目的已知、求作、作法、证明。

三、尺规作图的优点:尺规作图只能使用圆规和无刻度的直尺这两种工具。

工具虽少但能正确地画出的图形,比度量法画出的图形更精确。

常见考法
(1)考查五种基本作图中的一种,要求写出已知、求证、作法、证明过程。

有时考题不要求写作法,但要求保留作图痕迹;(2)利用尺规作图和勾股定理画出数轴上的无理
数点;(3)利用尺规作图作一些正多边形(如正三角形、正六
边形等)。

误区提醒。

中考复习----五种基本尺规作图

中考复习----五种基本尺规作图
①.如图,点C在直线l上,试过点C画出直线l 的垂线.
D
A
C
B
l
②.如图,如果点C不在直线l上,应采取怎样的步骤,过 点C画出直线l的垂线?
图 24.4.10
A D
B
五种基本作图:
►做一条线段等于已知线段
►做一个角等于已知角
►做一条线段的垂直平分线
►做一个角的角平分线
►过一点做已知线段的垂线
构扒初中
魏利
做一条线段等于已知线段
做一个角等于已知角
五种 基本 作图
做一条线段的垂直平分线
做一个角的角平分线
过一点做已知线段的垂线
1.作一条线段等于已知线段
已知:线段AB. 求作:线段A′B′, 使A′B′=AB. 作法与示范:
A B
A′
B′
C′
2、作一个角等于已知角
已知: ∠AOB。
求作: ∠A`O`B`,使∠A`O`B`= ∠AOB。
B
D D`
B`
O
C
A
O`
C`
A`
3、画已知线段的垂直平分线
已知:线段AB。
求作:O.
C A B
D
4、平分已知角
►已知: ∠AOB。
►求作:射线OC,使

AOC= ∠ BOC。
B
E
C
O
D
A
5.过定点作已知直线的垂线

尺规作图资料(完整)

尺规作图资料(完整)

1:尺规作出正三角形2尺规作出正方形3:尺规作出正六边形4:尺规作出正十边形5:尺规作出正十六边形6:尺规作出正十七边形7:尺规作出正十五边形8:尺规作出正五边形9:单尺作出正八边形10:单尺作出正方形11:单尺作出正六边形12:单尺作出正五边形13:单规找出两点间的三等分点14:单规找出两点间的中点15:单规作出等边三角形16:单规作出正八边形17:单规作出正方形18:单规作出正六边形19:单规作出正十边形20:单规作出正十二边形21:单规作出正十六边形22:单规作出正十五边形23单规作出正五边形24:只有两个刻度的直尺作出正三角形25:只有两个刻度的直尺作出正方形初中数学尺规作图专题讲解张远波尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。

平面几何作图,限制只能用直尺、圆规.在历史上最先明确提出尺规限制的是伊诺皮迪斯.他发现以下作图法:在已知直线的已知点上作一角与已知角相等。

这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题.在这以前,许多作图题是不限工具的.伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中。

初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种。

限用直尺和圆规来完成的作图方法,叫做尺规作图法。

最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积。

尺规作图题型总结-2024年中考数学答题技巧与模板构建(学生版)

尺规作图题型总结-2024年中考数学答题技巧与模板构建(学生版)

尺规作图题型总结题型解读|模型构建|通关试练本专题主要对初中阶段的一般考查学生对基本作图的掌握情况和实践操作能力,并且在作图的基础上进一步推理计算(或证明)。

尺规作图是指用没有刻度的直尺和圆规作图。

尺规作图是中考必考知识点之一,复习该版块时要动手多画图,熟能生巧!本专题主要总结了五个常考的基本作图题型,(1)作相等角;(2)作角平分线;(3)作线段垂直平分线;(4)作垂直(过一点作垂线或圆切线);(5)用无刻度的直尺作图。

模型01作相等角①以∠α的顶点O为圆心,以任意长为半径作弧,交∠α的两边于点P,Q;②作射线O'A';③以O'为圆心,OP长为半径作弧,交O'A'于点M;④以点M为圆心,PQ长为半径作弧,交③中所作的弧于点N;⑤过点N作射线O'B',∠A'O'B'即为所求作的角.原理:三边分别相等的两个三角形全等;全等三角形对应角相等延伸:作平行线模型02作角平分线①以O为圆心,任意长为半径作弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③过点O作射线OP,OP即为∠AOB的平分线.原理:三边分别相等的两个三角形全等;全等三角形对应角相等延伸:②到两边的距离相等的点②作三角形的内切圆模型03作线段垂直平分线①分别以点A,B为圆心,大于AB长为半径,在AB两侧作弧,分别交于点M和点N;②过点M,N作直线MN,直线MN即为线段AB的垂直平分线.原理:到线段两端距离相等的点在这条线段的垂直平分线上延伸:①到两点的距离相等的点②作三角形的外接圆③找对称轴(旋转中心)④找圆的圆心模型04作垂直(过一点作垂线或圆切线)(点P在直线上)①以点P为圆心,任意长为半径向点P两侧作弧,分别交直线l于A,B两点;②分别以点A,B为圆心,以大于AB的长为半径作弧,两弧交于点M;③过点M,P作直线MP,则直线MP即为所求垂线.原理:等腰三角形的“三线合一”,两点确定一条直线延伸:确定点到直线的距离(内切圆半径)(点P 在直线外)①以点P 为圆心,大于P 到直线l 的距离为半径作弧,分别交直线l 于A ,B 两点;②分别以A ,B 为圆心,以大于AB 的长为半径作弧交于点N ;③过点P ,N 作直线PN ,则直线PN 即为所求垂线.原理:到线段两端距离相等的点在这条线段的垂直平分线上模型05仅用无刻度直尺作图无刻度直尺作图通常会与等腰三角形的判定,三角形中位线定理,矩形的性质和勾股定理等几何知识点结合,熟练掌握相关性质是解题关键.模型01作相等角考|向|预|测做相等角该题型近年主要以解答题形式出现,一般为解答题型的其中一问,难度系数较小,在各类考试中基本为送分题型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尺规作图一、熟练掌握尺规作图题的规范语言
用直尺作图的几何语言:1. ①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;
用圆规作图的几何语言:2. ①在××上截取××=××;;②以点×为圆心,××的长为半径作圆(或弧)③以点×为圆心,××的长为半径作弧,交××于点×;.
④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×
三、了解尺规作图题的一般步骤
尺规作图题的步骤:
当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;1.已知:
2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;
一般要保留作图当不要求写作法时,作法:能根据作图的过程写出每一步的操作过程.3.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找.痕迹.
作法
在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,可见在解作图题不需要写出作法,而且在许多中考作图题中,又往往只要求保留作图痕迹,. 时,保留作图痕迹很重要五种基本作图:1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知线段的垂直平分线;
4、作已知角的角平分线;
5、过一点作已知直线的垂线;
题目一:作一条线段等于已知线段。

已知:如图,线段a .
AB = a . AB,使求作:线段作法: AP;)作射线(1AB=a . AP上截取)在射线(2 AB就是所求作的图形。

则线段
题目二:作已知线段的中点。

MN.
已知:如图,线段
. MNO是的中点)求作:点O,使MO=NO(即作法:(1)分别以M、N为圆心,大于
的相同线段为半径画弧, Q;两弧相交于P, O.(2)连接PQ交MN于就是所求作的MN的中点。

O则点与MN有何关系?)(试问:PQ
题目三:作已知角的角平分线。

,已知:如图,∠AOB )。

(即OP平分∠AOB
使∠求作:射线OP, AOP=∠BOP
作法: 1)以O为圆心,任意长度为半径画弧,(;,N分别交OA,OB于M、N为圆心,大于(2)分别以M
内于P;的相同线段为半径画弧,两弧交∠AOB 。

(3)作射线OP 则射线OP 就是∠AOB的角平分线。

题目四:作一个角等于已知角。

MON(如图1).求作一
个角等于已知角∠
MO,1)上,以O为圆心,任意长为半径作弧,交OM于点A(1)作射线(;2)在图(11OMO (于点B;3)以为圆心,OA的长为半径作弧,交于点C;ON交111DO的长为半径作弧,交前弧于点为圆心,以)以(4CABDD5(;)过点作射线.1.
COD就是所要求作的角.则∠1
题目五:已知三边作三角形。

c.
,a,b已知:如图,线段BC = a. ,AB = c,AC = b求作:△ABC,使作法:;作线段AB = c(1)为半径作弧,为圆心b2)以A(为半径作弧与为圆心a 以B ;前弧相交于C 。

,BC)连接AC(3 就是所求作的三角形。

则△ABC
题目六:已知两边及夹角作三角形。

?.
m,n, ∠已知:如图,线段?AC=n. ,,AB=m,使∠求作:△ABCA=∠作法:?A=∠;(1)作∠上截取AB=m ,AC=n;(2)在AB BC。

)(3 连接 ABC就是所求作的三角形。

则△
题目七:已知两角及夹边作三角形。

,??m . ,∠线段已知:如图,∠??,AB=m. B=,使∠求作:△ABCA=∠∠,∠作法:;AB=m(1)作线段 AB)在的同旁2(??,A=作∠∠B=,作∠∠ B与∠的另一边相交于C。

A∠。

ABC则△就是所求作的图形(三角形)。

相关文档
最新文档