初中最基本的尺规作图总结
(完整版)初中最基本的尺规作图总结

尺规作图一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
初中最基本的尺规作图总结

尺规作图一、熟练掌握尺规作图题的规范语言用直尺作图的几何语言:1. ①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;用圆规作图的几何语言:2. ①在××上截取××=××;;②以点×为圆心,××的长为半径作圆(或弧)③以点×为圆心,××的长为半径作弧,交××于点×;.④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×三、了解尺规作图题的一般步骤尺规作图题的步骤:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;1.已知:2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;一般要保留作图当不要求写作法时,作法:能根据作图的过程写出每一步的操作过程.3.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找.痕迹.作法在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,可见在解作图题不需要写出作法,而且在许多中考作图题中,又往往只要求保留作图痕迹,. 时,保留作图痕迹很重要五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。
初中数学考点尺规作图

过直线外一点作已知直线的垂线
步骤:1.在直线另一侧取点M;2.以P为圆心,以PM为半径画弧,交直线于A、B两点;3.分别以A、B为圆心,以大于12AB长为半径画弧,交M同侧于点N;4.连接PN,则直线PN即为所求垂线
过直线上一点作已知直线的垂线
步骤:1.以点O为圆心,任意长为半径向点O两侧作弧,交直线于A、B两点;2.分别以点A、B为圆心,以大于 AB长为半径向直线两侧作弧,交点分别为M、N;3.连接MN,MN即为所求垂线
作线段的垂直平分线
步骤:1.分别以点A、B为圆心,以大于 AB的长为半径,在AB两侧作弧;2.连接两弧交点所成直线即为所求线段的垂直平分线
作一个角等于已知角
步骤:1.在∠α上以点O为圆心、以适当的长为半径作弧,交∠α的两边于点P、Q;2.作射线O′A;3.以O′为圆心、OP长为半径作弧,交O′A于点M;4.以点M为圆心,PQ长为半径作弧,交前弧于点N;5.过点N作射线O′B,∠BO′A即为所求角
第15章尺规作图
考点一、尺规作图的要求
只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图不一定要写作图步骤,但必须保留作图痕迹.
考点2、五种Βιβλιοθήκη 本尺规作图作一条线段等于已知线段
步骤:1.作射线OP;2.在OP上截取OA=a,OA即为所求线段
作角的平分线
步骤:1.以点O为圆心,任意长为半径画弧,分别交OA、OB于点N、M;2.分别以点M、N为圆心,大于 MN的长为半径作弧,相交于点P;3.画射线OP,OP即为所求角平分线
中考专题复习——初中最基本的尺规作图总结与典型例题

初中基本尺规作图总结与典型例题一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
(完整版)初中最基本的尺规作图总结

尺规作图一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
初中数学知识点总结:掌握五种基本作图

初中数学知识点总结:掌握五种基本作图知识点总结
一、基本作图的有关概念:
1.尺规作图:用没有刻度的直尺和圆规来作图的方法,叫做尺规作图。
2.五种基本作图:五种基本作图是尺规作图的基础,数学中的五种基本作图是指作一条线段等于已知线段、作一个角等于已知角、作一个角的角平分线、过定点作已知直线的垂线、作线段的垂直平分线。
二、基本作图的原理和步骤:
1.原理:边边边公理
2.步骤:作图题的方法与证明题解法不相同,对于作图题首先将文字叙述转化为数学语言,即要写出题目的已知、求作、作法、证明。
三、尺规作图的优点:尺规作图只能使用圆规和无刻度的直尺这两种工具。
工具虽少但能正确地画出的图形,比度量法画出的图形更精确。
常见考法
(1)考查五种基本作图中的一种,要求写出已知、求证、作法、证明过程。
有时考题不要求写作法,但要求保留作图痕迹;(2)利用尺规作图和勾股定理画出数轴上的无理
数点;(3)利用尺规作图作一些正多边形(如正三角形、正六
边形等)。
误区提醒。
中考复习----五种基本尺规作图
D
A
C
B
l
②.如图,如果点C不在直线l上,应采取怎样的步骤,过 点C画出直线l的垂线?
图 24.4.10
A D
B
五种基本作图:
►做一条线段等于已知线段
►做一个角等于已知角
►做一条线段的垂直平分线
►做一个角的角平分线
►过一点做已知线段的垂线
构扒初中
魏利
做一条线段等于已知线段
做一个角等于已知角
五种 基本 作图
做一条线段的垂直平分线
做一个角的角平分线
过一点做已知线段的垂线
1.作一条线段等于已知线段
已知:线段AB. 求作:线段A′B′, 使A′B′=AB. 作法与示范:
A B
A′
B′
C′
2、作一个角等于已知角
已知: ∠AOB。
求作: ∠A`O`B`,使∠A`O`B`= ∠AOB。
B
D D`
B`
O
C
A
O`
C`
A`
3、画已知线段的垂直平分线
已知:线段AB。
求作:O.
C A B
D
4、平分已知角
►已知: ∠AOB。
►求作:射线OC,使
∠
AOC= ∠ BOC。
B
E
C
O
D
A
5.过定点作已知直线的垂线
初中数学五种作图基本概念及技巧
初中数学五种作图基本概念及技巧一、基本概念1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图.2.基本作图:最基本、最常用的尺规作图,通常称基本作图.3.五种常用的基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)平分已知角;(4)作线段的垂直平分线.(5)经过一点作已知直线的垂线4.掌握以下几何作图语句:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连结××;(3)在××上截取××=××;(4)以点×为圆心,××为半径作圆(或弧);(5)以点×为圆心,××为半径作弧,交××于点×;(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;(7)延长××到点×,或延长××到点×,使××=××.5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了.如:(1)作线段××=××;(2)作∠×××=∠×××;(3)作××(射线)平分∠×××;(4)过点×作××⊥××,垂足为×;(5)作线段××的垂直平分线××.二、尺规作图基本步骤和作图语言1、作线段等于已知线段已知:线段a 求作:线段AB,使AB=a 作法:(1)作射线AC (2)在射线AC上截取AB=a ,则线段AB就是所要求作的线段2、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB。
尺规作图资料(完整)
1:尺规作出正三角形2尺规作出正方形3:尺规作出正六边形4:尺规作出正十边形5:尺规作出正十六边形6:尺规作出正十七边形7:尺规作出正十五边形8:尺规作出正五边形9:单尺作出正八边形10:单尺作出正方形11:单尺作出正六边形12:单尺作出正五边形13:单规找出两点间的三等分点14:单规找出两点间的中点15:单规作出等边三角形16:单规作出正八边形17:单规作出正方形18:单规作出正六边形19:单规作出正十边形20:单规作出正十二边形21:单规作出正十六边形22:单规作出正十五边形23单规作出正五边形24:只有两个刻度的直尺作出正三角形25:只有两个刻度的直尺作出正方形初中数学尺规作图专题讲解张远波尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。
平面几何作图,限制只能用直尺、圆规.在历史上最先明确提出尺规限制的是伊诺皮迪斯.他发现以下作图法:在已知直线的已知点上作一角与已知角相等。
这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题.在这以前,许多作图题是不限工具的.伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中。
初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种。
限用直尺和圆规来完成的作图方法,叫做尺规作图法。
最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积。
初中最基本的尺规作图总结讲解学习
初中最基本的尺规作图总结尺规作图一、熟练掌握尺规作图题的规范语言1. 用直尺作图的几何语言:①过点X、点X作直线XX;或作直线XX;或作射线XX;②连结两点XX;或连结XX;③延长XX到点X;或延长(反向延长)XX到点X,使XX = XX ;或延长XX 交XX于点X;2. 用圆规作图的几何语言:①在XX上截取XX=XX;②以点X为圆心,XX的长为半径作圆(或弧);③以点X为圆心,XX的长为半径作弧,交XX于点X;④分别以点X、点X为圆心,以XX、XX的长为半径作弧,两弧相交于点x、x.三、了解尺规作图题的一般步骤尺规作图题的步骤:1. 已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2. 求作:能根据题目写出要求作出的图形及此图形应满足的条件;3. 作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。
已知:如图,线段a .求作:线段AB使AB = a .作法:(1)作射线AP;(2)在射线AP上截取AB=a .则线段AB就是所求作的图形。
(作线段写于已知线段)题目二:作已知线段的中点已知:如图,线段MN. 求作:作法:点0,使M0=NQ即0是MN的中点)(1)分别以M N为圆心,大于的相同线段为半径画弧,两弧相交于P, Q;(2)连接PQ交MNT O则点0就是所求作的MN的中点。
(作线段的中点)(试问:PQ 与MN 有何关系?)题目三:作已知角的角平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尺规作图
一、熟练掌握尺规作图题的规范语言
1.用直尺作图的几何语言:
①过点×、点×作直线××;或作直线××;或作射线××;
②连结两点××;或连结××;
③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;
2.用圆规作图的几何语言:
①在××上截取××=××;
②以点×为圆心,××的长为半径作圆(或弧);
③以点×为圆心,××的长为半径作弧,交××于点×;
④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤
尺规作图题的步骤:
1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;
2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;
3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.
在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.
五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知线段的垂直平分线;
4、作已知角的角平分线;
5、过一点作已知直线的垂线;
题目一:作一条线段等于已知线段。
已知:如图,线段a .
求作:线段AB ,使AB = a .
作法:
(1) 作射线AP ;
(2) 在射线AP 上截取AB=a .
则线段AB 就是所求作的图形。
题目二:作已知线段的中点。
已知:如图,线段MN.
求作:点O ,使MO=NO (即O 是MN 的中点).
作法:
(1)分别以M 、N 为圆心,大于
的相同线段为半径画弧,
两弧相交于P ,Q ;
(2)连接PQ 交MN 于O .
则点O 就是所求作的MN的中点。
(试问:PQ 与MN有何关系?)
题目三:作已知角的角平分线。
已知:如图,∠AOB ,
求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。
作法:
(1)以O 为圆心,任意长度为半径画弧,
分别交OA ,OB 于M ,N ;
(2)分别以M 、N为圆心,大于
的相同线段为半径画弧,两弧交∠AOB 内于P;
(3) 作射线OP 。
则射线OP 就是∠AOB 的角平分线。
题目四:作一个角等于已知角。
求作一个角等于已知角∠MON (如图1).
(1)作射线11M O ;(2)在图(1)上,以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ;(3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ;
(4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ;(5)过点D 作射线D O 1.
则∠D CO 1就是所要求作的角.
题目五:已知三边作三角形。
已知:如图,线段a ,b ,c.
求作:△ABC ,使AB = c ,AC = b ,BC = a. 作法:
(1) 作线段AB = c ;
(2) 以A 为圆心b 为半径作弧,
以B 为圆心a 为半径作弧与
前弧相交于C ;
(3) 连接AC ,BC 。
则△ABC 就是所求作的三角形。
题目六:已知两边及夹角作三角形。
已知:如图,线段m ,n, ∠α.
求作:△ABC ,使∠A=∠α,AB=m ,AC=n. 作法:
(1) 作∠A=∠α;
(2) 在AB 上截取AB=m ,AC=n ;
(3) 连接BC 。
则△ABC 就是所求作的三角形。
题目七:已知两角及夹边作三角形。
已知:如图,∠α,∠β,线段m .
求作:△ABC ,使∠A=∠α,∠B=∠β,AB=m. 作法:
(1) 作线段AB=m ;
(2) 在AB 的同旁
作∠A=∠α,作∠B=∠β,
∠A 与∠B 的另一边相交于C 。
则△ABC 就是所求作的图形(三角形)。