图的M着色算法演示

合集下载

chap12 图的着色

chap12 图的着色

点着色的应用
课程安排问题 某大学数学系要为这个夏季安排课程表。所要开设 的课程为:图论(GT), 统计学(S),线性代数(LA), 高等 微积分(AC), 几何学(G)和近世代数(MA)。现有10名 学生(如下所示)需要选修这些课程。根据这些信息, 确定开设这些课程所需要的最少时间段数,使得学 生选课不会发生冲突。(学生用Ai表示)
5
K可着色的图例
v1
1
v2
G
v3 v4
v5
2 3
S
:V(G) →S,满射 是正常3着色,G是3可着色的。
6
K色图
定义12.1.2 图G的正常k着色中最小的k称为G的色
数,记为(G),即(G)=min{k|G存在正常k着色}。
若(G) =k,则称G是k色图。 显然,含环的图不存在正常着色,而多重边与一条 边对正常着色是等价的。以后总设G为简单图。 问题:已知一个图G(p,q),如何求色数(G)?
又因k>0, 所以与(G)定义矛盾。结论成立。 注意此定理与定理12.1.2的区别。 定理12.1.2 若G是一个临界图,则(G) ≤(G)+1
21
Brooks 定理
定理12.1.5 若连通图G既不是奇回路,也不是完全 图,则(G) (G) . 例如,对Petersen图应用Brooks定理,可得: (G) (G) =3 . 此定理说明只有奇回路 或完全图这两类图的色 数才是(G) +1。
第一步:建图。 把每门课程做为图G的顶点,两顶点连线当且仅当 有某个学生同时选了这两门课程。
色给同一时 段的课程顶点染色,那么,问 题转化为在状态图中求点色数 问题。
MA
S
G
AC 选课状态图
LA

回溯法实验(图的m着色问题)

回溯法实验(图的m着色问题)

算法分析与设计实验报告第六次附加实验cout<<endl;}elsefor(int i=1;i<=m;i++){x[t]=i;if(ok(t)) Backtrack(t+1);//回溯,继续寻找下一层x[t]=0;//回到最初状态,使x[1]继续尝试其他填色的可能解}}测试结果当输入图如下时:结果如下:12435只要输入边即可当输入的图如下时:结果如下:附录:完整代码(回溯法)//图的m着色问题回溯法求解#include<iostream>using namespace std;class Color{friend void mColoring(int,int,int **);private:bool ok(int k);void Backtrack(int t);int n, //图的顶点个数m, //可用颜色数**a, //图的邻接矩阵*x; //当前解long sum; //当前已找到的可m着色的方案数};bool Color::ok(int k) //检查颜色可用性{for(int j=1;j<=n;j++)if((a[k][j]==1)&&(x[j]==x[k])) //两个点之间有约束且颜色相同return false;return true;}void Color::Backtrack(int t){if(t>n) //到达叶子节点{sum++; //可行解+1cout<<"着色: ";for(int i=1;i<=n;i++) //输出可行解方案cout<<x[i]<<" ";cout<<endl;}elsefor(int i=1;i<=m;i++){x[t]=i;if(ok(t)) Backtrack(t+1);//回溯,继续寻找下一层x[t]=0;//回到最初状态,使x[1]继续尝试其他填色的可能解 }}void mColoring(int n,int m,int **a){Color X;//初始化XX.n=n;X.m=m;X.a=a;X.sum=0;int *p=new int[n+1];for(int i=0;i<=n;i++)p[i]=0;X.x=p;cout<<"顶点: ";for(int i=1;i<=n;i++) //用于输出结果cout<<i<<" " ;cout<<endl;X.Backtrack(1); //从顶点1开始回溯delete []p;cout<<"解法个数:"<<X.sum<<endl;}int main(){int n;int m;cout<<"please input number of node:";cin>>n;cout<<"please input number of color:";cin>>m;int **a=new int*[n+1];for(int i=0;i<=n;i++)a[i]=new int[n+1];for(int i=0;i<=n;i++) //利用抽象图实现图的邻接矩阵for(int j=0;j<=n;j++)a[i][j]=0;int edge;cout<<"please input adjacent edge number:";cin>>edge;int v,w;cout<<"please inout adjacent edge:"<<endl; //只要输入边即可for(int i=0;i<edge;i++){cin>>v>>w; //由于是无向图,所以对应的邻接矩阵对应的边都有,即v->m,m->v都有边a[v][w]=1;a[w][v]=1;}mColoring(n,m,a);system("pause");return 0;}。

图的着色问题--C++实现(含详细注释)

图的着色问题--C++实现(含详细注释)

图的着色问题一、题目简述(1) 图的m-着色判定问题给定一个无向连通图 G 和 m 种不同的颜色。

用这些颜色为图 G 的各顶点着色,每个顶点着一种颜色,是否有一种着色法使 G 中任意相邻的两个顶点着不同颜色?(2) 图的m-着色优化问题若一个图最少需要 m 种颜色才能使图中任意相邻的两个顶点着不同颜色,则称这个数 m 为该图的色数。

求一个图的最小色数 m 的问题称为m-着色优化问题。

二、算法思想1. m-着色判定问题总体思想:通过回溯的方法,不断为每一个节点着色,每个点的颜色由一个数字代表,初始值为1。

在对前面 step - 1 个节点都合法的着色之后,开始对第 step 个节点进行着色。

如果 n 个点均合法,且颜色数没有达到 m 种,则代表存在一种着色法使 G中任意相邻的两个顶点着不同颜色。

具体步骤:1. 对每个点 step ,有 m 种着色可能性,初始颜色值为1。

2. 检查第 step 个节点颜色的可行性,若与某个已着色的点相连且颜色相同,则不选择这种着色方案,并让颜色值加1,继续检查该点下一种颜色的可行性。

3. 如果第 step 点颜色值小于等于 m ,且未到达最后一个点,则进行对第 step + 1 点的判断。

4. 如果第 step 点颜色值大于 m ,代表该点找不到合适的分配方法。

此时算法进行回溯,首先令第 step 节点的颜色值为0,并对第 step - 1 个点的颜色值+1后重新判断。

5. 如果找到一种颜色使得第 step 个节点能够着色,说明 m 种颜色的方案是可行的。

6. 重复步骤2至5,如果最终 step 为0则代表无解。

2. m-着色优化问题基于问题1,对于一个无向图 G ,从1开始枚举染色数,上限为顶点数,第一个满足条件的颜色数即为所求解。

三、实现过程(附代码)1. m-着色判定问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n和着色数m"<<endl;cin>>n>>m;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向邻接矩阵存储边cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}if (Solve(m)) {cout<<"有解";} else {cout<<"无解";}return0;}2. m-着色优化问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n"<<endl;cin>>n;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向图邻接矩阵存储边 cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}for (m=1; m<=n; m++) { // 从小到大枚举着色数mif (Solve(m)) { // 如果有解,输出答案并跳出循环cout<<"最小色数m为 "<<m;break;}}return0;}四、结果及分析问题1测试用例:问题2测试用例:经检验,最少着色数的范围为2-4,意味着使 G 中任意相邻的两个顶点着不同颜色最多需要4种颜色。

图的着色问题

图的着色问题

问题来源
图的着色
通常所说的着色问题是指下述两类问题: 通常所说的着色问题是指下述两类问题: 1.给定无环图G=(V,E),用m种颜色为图中 的每条边着色,要求每条边着一种颜色, 的每条边着色,要求每条边着一种颜色,并 使相邻两条边有着不同的颜色, 使相邻两条边有着不同的颜色,这个问题称 为图的边着色问题。 为图的边着色问题。 2.给定无向图G=(V,E),用m种颜色为图中 的每个顶点着色,要求每个顶点着一种颜色, 的每个顶点着色,要求每个顶点着一种颜色, 并使相邻两顶点之间有着不同的颜色, 并使相邻两顶点之间有着不同的颜色,这个 问题称为图的顶着色问题。 问题称为图的顶着色问题。
化简得
( a + bd )(b + aceg )(c + bdef )( d + aceg )(e + bcdf )( f + ceg )( g + bdf )
求极小覆盖法- 求极小覆盖法-布尔代数法
Step3:从中挑选所用极大独立集个数最小者, Step3:从中挑选所用极大独立集个数最小者, 即为X 即为X(G) 但上述子集的颜色数都不是X ),正确的应 但上述子集的颜色数都不是X(G),正确的应 该是X =3,该子集为: {b,d,f}中的 该是X(G)=3,该子集为:给{b,d,f}中的 b,d,f涂颜色 涂颜色1 {a,e,g}中a,e,g涂颜色 涂颜色2 b,d,f涂颜色1,为{a,e,g}中a,e,g涂颜色2为 {a,c,g}中的 涂颜色3 中的c {a,c,g}中的c涂颜色3。 由此可见, 由此可见,求色数其需要求极大独立集以 及一切若干极大独立集的和含所有顶点的子 对于大图, 集,对于大图,因为图计算量过大而成为实 际上难以凑效的算法,所以不是一个好算法, 际上难以凑效的算法,所以不是一个好算法, 一般我们采用贪心法等近似算法来求解 。

0030算法笔记——最大团问题和图的m着色问题

0030算法笔记——最大团问题和图的m着色问题
// 计算最大团 void Clique::Backtrack(int i) { 3if (i > n) // 到达叶结点 3{ 33for (int j = 1; j <= n; j++) 33{ 333bestx[j] = x[j]; 333cout<<x[j]<<" "; 33} 33cout<<endl; 33bestn = cn; 33return; 3} 3// 检查顶点 i 与当前团的连接 int OK = 1; 3for (int j = 1; j < i; j++) 3if (x[j] && a[i][j] == 0) 3{ 33// i与j不相连 33OK = 0; 33break; 3}
3if (OK)// 进入左子树 3{ 33x[i] = 1; 33cn++; 33Backtrack(i+1); 33x[i] = 0; 33cn--; 3}
if (cn + n - i >= bestn)// 进入右子树 3{ 33x[i] = 0; 33Backtrack(i+1); 3} }
3333 如果U∈V且对任意u,v∈U有(u, v)不属于E,则称U是G的空子图。G的空子图U是G的独立集当且仅当U不包 含在G的更大的空子图中。G的最大独立集是G中所含顶点数最多的独立集。
3333 对于任一无向图G=(V, E),其补图G'=(V', E')定义为:V'=V,且(u, v)∈E'当且仅当(u, v)∈E。 3333 如果U是G的完全子图,则它也是G'的空子图,反之亦然。因此,G的团与G'的独立集之间存在一一对应的 关系。特殊地,U是G的最大团当且仅当U是G'的最大独立集。

图的着色问题 ppt课件

图的着色问题  ppt课件

PPT课件
3
顶点着色-基本概念
• 独立集:对图G=(V,E),设S是V的一个子集,若 中任意两个顶点在G中均不相邻,则称S为G的一 个独立集。
• 最大独立集:如果G不包含适合|S'|>|S|的独立 集S',则称S为G的最大独立集。
• 极大覆盖:设K是G的一个独立集,并且对于V-K 的任一顶点v,K+v都不是G的独立集,则称K是 G的一个极大覆盖。
先求图G的极小覆盖,
பைடு நூலகம்
化简得
(a bd)(b aceg)(c bdef )(d aceg)(e bcdf )( f ceg)(g bdf )
aceg bc deg bdef bdef bcdf
故G的极小覆盖为 {a,c,e, g},{b,c, d,e, g},{b, d,e, f },{b,c, d, f } 取其补集,得到G的所有 极大独立集: • Step2:求出一切若干极大独立集和所有{b,顶d,点f }的,{a子, f集},{a,c, g},{a,e, g}
但上述子集的颜色数都不是X(G),正确的应 该是X(G)=3,该子集为:给{b,d,f}中的 b,d,f涂颜色1,为{a,e,g}中a,e,g涂颜色2为 {a,c,g}中的c涂颜色3。
由此可见,求色数其需要求极大独立集以
及一切若干极大独立集的和含所有顶点的子
集,对于大图,因为图计算量过大而成为实
际上难以凑效的算法,所以不是一个好算法,
(ii)若G为偶图,则X(G)=2 (iii)对任意图G,有X(G)≤Δ+1(这里Δ表示为顶点 数最大值)
PPT课件
5
顶点着色-求顶色数的算法设计
我们由“每个同色顶点集合中的两两顶点不相邻”可以看出,同色顶 点集实际上是一个独立集,当我们用第1种颜色上色时,为了尽可 能扩大颜色1的顶点个数,逼近所用颜色数最少的目的,事实上就 是找出图G的一个极大独立集并给它涂上颜色1。用第2种颜色上色 时,同样选择另一个极大独立集涂色,...,当所有顶点涂色完毕, 所用的颜色数即为所选的极大独立集的个数。

《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告实验序号:10实验项目名称:实验十一回溯法(二)一、实验题目1.图的着色问题问题描述:给定无向连通图G和m种不同的颜色。

用这些颜色为图G的各顶点着色,每个顶点着一种颜色。

如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。

图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。

2.旅行商问题问题描述:给出一个n个顶点的带权无向图,请寻找一条从顶点1出发,遍历其余顶点一次且仅一次、最后回到顶点1的最小成本的回路——即最短Hamilton回路。

3.拔河比赛问题描述:某公司的野餐会上将举行一次拔河比赛。

他们想把参与者们尽可能分为实力相当的两支队伍。

每个人都必须在其中一只队伍里,两队的人数差距不能超过一人,且两队的队员总体重应该尽量接近。

4.批处理作业调度问题描述:给定n个作业的集合J=(J1,J2, .. Jn)。

每个作业J都有两项任务分别在两台机器上完成。

每个作业必须先由机器1处理,再由机器2处理。

作业i需要机器j的处理时间为tji(i=1,2, ..n; j=1,2)。

对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间,则所有作业在机器2上完成处理的时间和,称为该作业调度的完成时间和。

批处理作业调度问题要求,对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。

二、实验目的(1)通过练习,理解回溯法求解问题的解状态空间树与程序表达的对应关系,熟练掌握排列树、子集树的代码实现。

(2)通过练习,体会减少搜索解空间中节点的方法,体会解的状态空间树的组织及上界函数的选取对搜索的影响。

(3)通过练习,深入理解具体问题中提高回溯算法效率的方法。

(4)(选做题):在掌握回溯法的基本框架后,重点体会具体问题中解的状态空间搜索时的剪枝问题。

三、实验要求(1)每题都必须实现算法、设计测试数据、记录实验结果,并给出时间复杂度分析。

四、实验过程(算法设计思想、源码)1.图的着色问题(1)算法设计思想用邻接矩阵a[i][j]存储无向图,对于每一个顶点有m种颜色可以涂。

图论课件第七章图的着色

图论课件第七章图的着色
总结词
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
int OK(int t,int i) { int j;
for( j=1;j<t;j++) {
if(a[t][j]&&x[j]==i)
return 0; }
return 1; }
t=2
t=3 t=4
模拟演示
t=1
当前节 点
颜色的 种类
void Backtrace(int t,int m)
当搜索的当前节点t<=N时,m种颜色 依次试用,调用函数OK进行判断。 如果当前颜色可以,则进入下一层搜索。
当搜索到最叶子节 点时(t>N),即 可输出一种方案
for( i=1;i<=m;i++) {
if(OK(t,i)) { x[t]=i;
Backtrace(t+1,m); }
}
if(t>N) {
sum++; printf("第%d种方案:\n",sum);
for( i=1;i<=N;i++) printf("%d ",x[i]); }
我们可以把问题简化为3个点来分析,现给定如下图 ,怎样求解呢?
1
该图的色数是多少?怎样 用解空间树来表示呢?
3 2
由图可知,对于每一个顶点可选的颜色可以有3种不同的选择,所以每一个 节点有3个儿子节点,有4层。
判断条件是什么?
新加入来得节点t取某一种颜色i时,依次和上层的每一个节点j(j<t)比较。 如果a[t][j]=1并且x[t]=x[j],那么它是不可着色的。
四、程序代码
#include<stdio.h> #include<string.h> #define N 3//图中节点的个数 int a[N+1][N+1]={
0,0,0,0, 0,1,1,1, 0,1,1,1, 0,1,1,1, };//邻接矩阵 int x[N+1];//记录颜色 int sum=0;//保存可以着色的方案数 int OK(int t,int i)//判断函数 { int j; for( j=1;j<t;j++) { if(a[t][j]&&x[j]==i) return 0; } return 1; }
运行结果
当N=5时,色数又是多少呢?
N =5时的子集树
X[1]=1 X[1]=2 X[1]=3 X[1]=4 X[2]=1 2 3 4
X[3]=1 2 3 4
X[4]=1 X[5]=1
谢谢大家的观看!
谢谢观赏!
图的m着色问题
讲课 : 吴双燕 PPT制作 : 谭晓雅
目录

问题产生的背景

问题描述

算法设计与分析

程序运行及结果
一、产生背景
图的着色问题是由地图的着色问题引申而来的,用 m种颜色为地图着色,使得地图上的每一个区域着 一种颜色,且相邻区域颜色不同。
二、问题描述
给定无向连通图G和m种不同的颜色。用这些颜色为图G 的各顶点着色,每个顶点着一种颜色。是否有一种着色法 使G中每条边的2个顶点着不同颜色。如果有则称这个图 是m可着色,否则称这个图不是m可着色。若一个图最少 需要k种颜色才能使图中每条边连接的2个顶点着不同颜 色,则称这个数k为该图的色数。
Hale Waihona Puke void Backtrace(int t,int m) {
int i; if(t>N)//算法搜索至叶子节点 {
sum++; printf("第%d种方案:\n",sum); for( i=1;i<=N;i++)
printf("%d ",x[i]); printf("\n"); } else { for( i=1;i<=m;i++) {
三、算法设计
输入:颜色种类m 输出:如果这个图不是m可着 色,给出否定回答;如果这个图是m可着色的,找出所有 不同的着色法。
思考?
如何将给定的 无向图存储在 计算机中?
1
2 3
5 4
可以用一下邻接矩阵来表示
11110 11111 11110 11111 01011
邻接矩阵中通常用二维数组来存放边之间的关系,用一 维数组来存放顶点的信息。所以在接下来的求解问题中 我们将用到二维数组a来存放两边是否相邻,用一维数组 x来存放每个顶点的颜色;x[i]=j表示第i个节点图第j中颜色。
if(OK(t,i)) { x[t]=i;
Backtrace(t+1,m); } } } }
int main() {
int m; int i; printf("请输入颜色种类:\n"); scanf("%d",&m); for(i=1;i<=m;i++)//初始化 x[i]=0; Backtrace(1,m); if(sum==0) { printf("不是%d可着色的!\n",m); } return 0; }
相关文档
最新文档