第三章稀土发光相关材料
稀土发光

关于稀土发光材料的认识(孙三大)绪论稀土元素由于具有未充满的4f电子壳层和4f电子被外层的5s,5p电子屏蔽的特性,使稀土元素具有极复杂的类线性光谱。
吸收光谱使稀土离子大多有色,发射光谱使许多稀土化合物产生荧光和激光。
镧系原子的组态为1S22S22P63S23P63d104S24P64d105S25P6(4f n6S2或4f n-15d6S2),其中n=1-15,La,Ce,Gd,Lu为4f n-15d6S2(镧系稀土元素电子层结构的特点是电子在外数第三层的4f轨道上填充,4f轨道的角量子数l=3,磁量子数m可取0、±1、±2、±3等7个值,故4f亚层具有7个轨道。
根据Pauli不相容原理,在同一原子中不存在4个量子数完全相同的两个电子,即一个原子轨道上只能容纳自旋相反的两个电子,4f 亚层只能容纳14个电子,从La到Lu,4f电子依次从0增加到14),其余的元素4f n6S2[1-3]。
大部分无机固体致发光材料遵守斯托克斯定律,即发射光的光谱能量低于激发光的光谱能量,这样发光的现象叫做下转换发光。
对于下转换发光由外界光源直接作用于稀土离子。
1)使稀土离子中的电子由基态跃迁到激发态,完成高能级电子的排布,如图(1)所示,2)由某基团或离子等吸收高能光子后通过非福射他豫将能量传递给较低能级的稀土离子,使稀土离子中的电子由基态跃迁到激发态,如图(2)所示;另外,在1966年,在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。
这一小部分光致发光材料违背了斯托克斯定律,即上转换发光,它通过吸收低光子能量的长波福射转换为高光子能量的短波福射。
稀土离子可以通过激发态吸收或能量传递过程被激发至高能级而发射上转换发光,如图(3)所示。
Gound state(1)(2)(3)图中所示(1)和(2)为下转换发光过程,图(3)为上转换发光过程。
稀土配合物发光材料

稀土配合物发光材料摘要:本文首先介绍了稀土离子具有优良的光学、电学和磁学性质,尤其发光性能受到人们的广泛关注。
接着讲述了稀土光致发光配合物的研究进展,阐述了稀土配合物光致发光的基本原理。
在此基础上讨论了稀土配合物光致发光性能影响因素。
考虑到稀土荧光配合物的寿命短,寻找合适的配体通过天线效应制备稳定长寿命,这是未来发展的趋势。
然后介绍了稀土光致发光配合物在很多领域的应用。
为了让读者更好的理解稀土光致发光配合物,我们讲述了稀土铕和铽配合物电致发光的研究进展。
关键词:稀土离子,光致发光,配体,天线效应,稀土铕和铽配合物1.前言稀土离子作为一类特殊的无机离子具有优良的光学、电学和磁学性质,因此研究稀土配位化合物就显得尤为重要。
在这些性质中,稀土配合物的发光性能一直受到人们的广泛研究,并且目前在发光分子器件、荧光探针、电致发光器件等应用方面已成为人们关注的热点。
研究表明:配体向稀土离子的能量传递是实现稀土配合物发光的关键。
而多足配体具有合成简单、结构可调和共轭敏化基团可换等优点,便于调整配体的功能基团以实现配合物更好的荧光性质。
本综述报道了稀土光致发光配合物的发光原理、影响因素、研究进展及应用。
当分子或固体材料从外界接受一定的能量(外部刺激)之后,发射出一定波长和能量的现象称之为发光。
根据外部刺激(激发源)的方式可以把发光分为光致发光、电致发光、阴极发光、摩擦发光等。
下面我们将主要介绍研究较多的稀土有机配合物的光致发光。
从发光原理来讲,无论是何种外界刺激都是使分子从基态激发到激发态,而这种激发态不是一种稳定的状态,需要通过某种途径释放出多余的能量后回到稳定的基态,如果这个释放能量的途径是以辐射光子的形式来实现的就会产生发光现象。
2.稀土光致发光配合物的研究进展稀土配合物的光致发光现象早在上世纪40-50年代就已陆续地被观察到了,1942年,Weissmantl首先发现不同的β-二酮类铕(Ⅲ)配合物吸收紫外光后,出现了铕(Ⅲ)离子的特征线状发射。
稀土发光材料

稀土发光材料
稀土发光材料是一类具有特殊发光性能的材料,由稀土元素与其他材料组成。
稀土元素是指化学元素周期表中镧系元素和锕系元素,它们在化学性质上具有相似的特点,但在发光性能上却各有特色。
稀土发光材料因其独特的光学性能,在荧光显示、激光器、LED照明、生物标记等领域得到了广泛的应用。
首先,稀土发光材料具有丰富的发光颜色。
由于不同的稀土元素在材料中的能级结构不同,因此可以发射出不同波长的光,从紫外光到红外光均可涵盖。
这使得稀土发光材料在显示和照明领域有着广泛的应用前景,可以满足不同场景下的发光需求。
其次,稀土发光材料具有较高的发光效率。
相比于传统的发光材料,稀土发光材料能够通过稀土元素的能级结构设计,使得光子的产生和发射更加高效。
这不仅提高了光源的亮度,还能够降低能源的消耗,有利于节能减排。
此外,稀土发光材料还具有较长的寿命和稳定的发光性能。
稀土元素的稳定性和化学惰性使得稀土发光材料在长时间使用过程中能够保持较好的发光性能,不易受到外界环境的影响。
这使得稀土发光材料在工业和生物医学领域有着广泛的应用前景,能够满足长期稳定发光的需求。
总的来说,稀土发光材料以其丰富的发光颜色、高效的发光效率和稳定的发光性能,成为了现代光电材料领域的热门研究方向。
在未来,随着技术的不断进步和应用领域的不断拓展,稀土发光材料必将发挥越来越重要的作用,为人类的生活和产业带来更多的便利和可能。
稀土发光材料

稀土发光材料稀土发光材料是一类具有特殊发光性能的材料,其发光机理主要是由于材料中的稀土离子在受激激发后发生跃迁而产生的。
稀土元素是指化学元素周期表中镧系元素和锕系元素,它们具有特殊的电子结构和能级分布,因此在材料中具有独特的光学性能,被广泛应用于发光材料领域。
稀土发光材料具有多种发光方式,包括荧光、磷光、发光等。
其中,荧光是指材料在受到紫外光等激发光源的照射后,产生可见光的现象。
而磷光是指材料在受到激发后,经过一段时间后才发出光线。
发光则是指材料在受到激发后能立即发出光线。
这些不同的发光方式使稀土发光材料在不同领域有着广泛的应用。
稀土发光材料在照明领域有着重要的应用。
由于其高效的发光性能和长寿命,稀土发光材料被广泛应用于LED照明、荧光灯、荧光屏等领域。
其中,LED照明是目前最为常见的应用之一,稀土发光材料在LED中起着至关重要的作用,能够提高LED的发光效率和色彩表现。
除了照明领域,稀土发光材料还在显示领域有着重要的应用。
例如,在液晶显示器中,稀土发光材料被用作背光源,能够提供均匀的背光效果,并且具有较高的亮度和色彩饱和度。
此外,稀土发光材料还被应用于激光显示、荧光屏等领域,为显示技术的发展提供了重要支持。
在生物医学领域,稀土发光材料也有着重要的应用。
由于其发光性能稳定、光谱范围宽,稀土发光材料被应用于生物标记、生物成像等领域。
利用稀土发光材料标记生物分子,能够实现对生物体内部结构和功能的高灵敏检测,为生物医学研究提供了重要的工具。
总的来说,稀土发光材料具有独特的发光性能和广泛的应用前景,其在照明、显示、生物医学等领域有着重要的作用。
随着科技的不断进步,稀土发光材料的研究和应用将会得到进一步的推动,为人类社会的发展和进步做出更大的贡献。
催化实验稀土发光材料报告

催化实验报告赵思琪应化1108班2011016235一.实验名称:稀土有机配合物的制备及性能测定二.实验目的:掌握稀土盐和稀土有机配合物的制备方法以及荧光光谱,红外光谱的分析用。
三.实验仪器和药品:药品:氯化铕(EuCl3·6H2O),氯化鋱(TbCl3·6H2O),乙酰水杨酸,1,10-邻菲啰啉,乙醇,三乙胺,二氯甲烷仪器:荧光灯,电磁搅拌,水泵,干燥器,沙板漏斗、抽滤瓶,烧杯、玻璃棒,容量瓶,自封袋,角匙,PH试纸,红外光谱仪、荧光光谱仪和紫外光谱仪。
四.配合物结构:五.实验结果分析:1.荧光分析称取一定量配合物样品溶解于二氯甲烷中,配制成浓度为10-4的样品溶液,于荧光分光光度计光谱测得配合物的荧光发射光谱图,如图所示:Eu配合物的em光谱图Eu配合物的ex光谱图由发射谱图中可以看出,在紫外到可见区有3个吸收峰,分别为位于580.6,593.6,616.8的发光峰,分别对应于5D0-7F0, 5D0-7F1, 5D0-7F2 ,其中以5D0-7F2(616.8nm)的跃迁最强。
在616.8nm左右产生的窄而强的特征吸收,说明配体在吸收光能后将能量传递给了稀土离子,使得发光中心Eu有荧光增强作用,又进一步说明了配体和稀土金属发生了配位,而不是简单的掺杂;且其周围没有其他吸收,表明配合物的荧光主要以616.8 nm 成分为主,单色性非常好。
2.紫外分析以二氯甲烷为溶剂,测定了游离配体和稀土配合物的紫外光谱邻菲罗啉的紫外光谱图乙酰水杨酸的紫外光谱图Eu配合物的紫外光谱图Eu配合物在紫外区产生跃迁的吸收光谱λ=230nm、270nm和290nm,而乙酰水杨酸游离配体的不饱和的C=O的π—π*跃迁为λ=232和276nm,其中λ=232nm为酯羰基的π—π*跃迁,它没有与稀土离子配合,λ=276nm为酸羰基的π—π*跃迁,O上的孤对电子与稀土离子配位,形成配合物发生了蓝移;邻菲罗啉游离配体C=O的π—π*的跃迁为λ=230和264nm,形成配合物发生了红移。
稀土发光材料的应用

稀土发光材料的应用
稀土发光材料是指通过稀土元素掺杂后引入的缺陷能级,使材料在光激发下发生能级跃迁而发光的材料。
下面是稀土发光材料的应用:
一、发光材料
稀土发光材料可以应用于照明、显示、信息传输等领域。
比如,氧化铈中的氧空位能被Eu3+、Tb3+、Sm3+等元素作为宿主掺入,形成的材料可发出蓝、绿、红光,可以用于制备白光发光材料。
二、激光材料
稀土发光材料可以用于制备激光器。
比如,利用掺铒光纤和掺铒光纺织品,可以制备出具有985nm高能量激光输出的掺铒光纤激光器和几乎纯绿光输出的掺铒光纺织品激光器。
三、太阳能电池材料
稀土发光材料还可以用于制备太阳能电池。
比如,利用掺钕低聚物复合电解质,在太阳光的作用下,钕离子能够吸收能量,从而提高太阳能电池的转化效率。
四、光催化材料
稀土发光材料可以用于制备光催化材料。
比如,添加掺铈或掺钕的TiO2材料,在紫外光作用下能够吸收氧气,形成氧化亚氮和羟基自由基,从而具有良好的光催化性能。
五、生物传感材料
稀土发光材料还可以用于生物传感。
比如,利用荧光探针的特性,可以在细胞分子层面上进行生物分析和检测,稀土发光体系中的长发射寿命和独特的能量级分布也使其在分子分析中具有广泛的应用前景。
综上所述,稀土发光材料的应用领域十分广泛,具有重要的科学研究价值和应用前景。
稀土发光和激光材料

到巨大的磁致伸缩现象 • 80年代,Re-Fe系超级磁体问世,NdFeB永磁材料
商品化,并呈高速发展势头 • 1986年,发现高温超导体La-Ba-Cu-O,Tc = 光和激光材料
• 撤去激发源后,荧光立即停止。 • 磷光:如果被激发的物质在切断激发源后
仍然继续发光,成为磷光。有时磷光体能 持续长达几分钟甚至几小时的发光,这种 发光体则称为长余辉发光材料。
稀土发光和激光材料
•2.发光材料的主要类型
组成
无机化合物
固体材料
(多晶、单晶和薄膜)
发
有机化合物
光
光致发光材料
材
料
电致发光材料
激活发光材料的紫外线能量可以直接被发光中心吸收(激 活剂或杂质吸收),也可以被发光材料的基质所吸收(本征 吸收)。
在第一种情况下,吸收或伴有激活剂的电子壳层内的电子 向较高能级跃迁,或电子与激活剂完全脱离及激活剂跃迁到 离子态;
在第二种情况下,基质吸收能量时,在基质中形成空穴和 电子,空穴可能沿晶体移动,并被束缚在各个发光中心上。 辐射是由于电子返回到较低能级或电子和离子中心(空穴) 再结合(复合)所致。某些材料的发光(能量的吸收和能量 的辐射)只和发光中心内的电子跃迁有关,这种材料称为 “特征性”发光材料。
稀土材料及其应用
稀土发光和激光材料
重要的稀土材料(一)
• 1951年发现LaB6的强大热离子发射 • 1961年发现重稀土具有奇妙复杂的磁性结构 • 1962年稀土催化剂在石油裂解中得以应用 • 1962年钇、铕荧光粉用于制造彩色电视机的红色荧
光粉 • 1963年制得最后一个金属态的放射性元素钷(1794
稀土发光材料课件

稀土发光材料的发光原理
01
02
03
04
激发过程
稀土发光材料吸收外界能量( 如光、电等)后,电子从基态
跃迁至激发态。
辐射过程
电子从激发态回到基态时,释 放能量并产生光子,光子的能
量与发射光的波长有关。
稀土元素特性
稀土元素具有独特的电子结构 和能级结构,使得稀土发光材
料具有优异的光学性能。
荧光粉的应用
照明领域
利用稀土发光材料的优良发光性能和稳定性,制备出高效、 环保、长寿命的照明光源,如荧光灯、LED等。
光电器件领域
利用稀土发光材料的特殊光电性质,制备出光电传感器、 光电二极管等光电器件,用于信息获取、光通信等领域。
稀土发光材料的应用实例
显示器
利用稀土发光材料制备的高色域OLED显示器,具有高对比度、宽 色域、自发光的优点,广泛应用于电视、手机、平板等领域。
深入研究稀土发光材料的物理和化学性质,为深入理解其发光机理提 供更多证据。
加强国际合作与交流,共同推动稀土发光材料的研究和应用发展。
THANK YOU
稀土发光材料课件
contents
目录
• 引言 • 稀土发光材料的原理 • 稀土发光材料的种类和应用 • 稀土发光材料的制备方法 • 稀土发光材料的发展趋势和挑战 • 结论
01
引言
发光材料的定义与分类
发光材料定义
能够吸收外界能量并释放出可见 光的物质。
发光材料分类
根据激发方式可分为光致发光、 电致发光、化学发光等;根据发 光颜色可分为荧光和磷光。
01
将金属盐与有机物混合后进行燃烧,再经过热处理制备发光材 料的方法。
02
燃烧法制备的发光材料具有成本低、产量高、工艺简单等优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章稀土发光相关材料
27
以稀土离子作为激活剂的发光体是稀土 发光材料中的最主要的一类,根据基质材料 的不同又可分为两种情况:
①+2价态稀土离子的光谱特性
② +4价态稀土离子的光谱特性
第三章稀土发光相关材料
22
①+2价态稀土离子的光谱特性
+2价态稀土离子(RE2+)有两种电子层构 型:4 f n-15 d1和4f n。
4fn-15dl构型的特点是5d轨道裸露于外 层,受外部场的影响显著。
第三章稀土发光相关材料
பைடு நூலகம்
23
4fn-15dl →4fn (即d--f跃迁) 的跃迁发射呈 宽带,强度较高,荧光寿命短,发射光谱随 基质组成、结构的改变而发生明显变化。
第三章稀土发光相关材料
20
从Ce3+到Yb3+,电子依次填充在4f轨 道,从f 1 到 f 13,其电子层中都具有未成 对电子,其跃迁可产生发光,这些离子适 于作为发光材料的激活离子。
第三章稀土发光相关材料
21
非正常价态稀土离子的光谱特性
价态的变化是引发、调节和转换材料功 能特性的重要因素,发光材料的某些功能往 往可通过稀土价态的改变来实现。
第三章稀土发光相关材料
+3价稀土离子的发光特点
①具有f--f 跃迁的发光材料的发射光谱 呈线状,色纯度高;
②荧光寿命长;
③由于4f轨道处于内层,材料的发光颜色基 本不随基质的不同而改变;
④光谱形状很少随温度而变,温度猝
灭小,浓度猝灭小。
第三章稀土发光相关材料
19
在+3价稀土离子中,Y3+和La3+无4f电 子,Lu3+的4f亚层为全充满的,都具有密 闭的壳层,因此它们属于光学惰性的,适 用于作基质材料。
电子辐射的第光三章能稀土≤发激光相发关材时料 吸收的能量
发光是去激发的一种方式。晶体中电 子的被激发和去激发互为逆过程。
被激发和去激发可能在价带、导带和 缺陷能级中任意两个之间进行。
第三章稀土发光相关材料
7
被激发和去激发发生的过程如下:
①价带与导带之间;②价带与缺陷能级之间③缺陷能级与 导带之间;④两个不同能量的缺陷能级之间。
第三章 稀土发光和激光材料
3.1 发光材料及其发光性能 1. 固体的发光
某一固体化合物受到光子、带电粒子、 电场或电离辐射的激发,会发生能量的吸收 、存储、传递和转换过程。
第三章稀土发光相关材料
1
如果激发能量转换为可见光区的电磁辐射, 这个物理过程称为固体的发光。 发光材料由基质和激活剂组成,在一些材料中 ,还惨入其它杂质离子来改善发光性能。
25
+4价态稀土离子的电荷迁移带能量较低 ,吸收峰往往移到可见光区。
如Ce4+与Ce3+的混价电荷迁移跃迁形成 的吸收峰已延伸到450nm附近,Tb4+的吸收 峰在430nm附近。
第三章稀土发光相关材料
26
⑷ 稀土发光材料的分类
①稀土离子作为激活剂 在基质中,作为发光中心而掺入的 离子称为激活剂。
9
⑵ 发光过程
固体发光的物理过程示意图如下:
其中,M表示基质晶格; A和S为搀杂离子;
并假设基质晶格第三M章稀的土发吸光相收关材不料 产生辐射。
10
这时,基质晶格M吸收激发能,传递 给搀杂离子,使其上升到激发态,它返回 基态时可能有以下三种途径:
第三章稀土发光相关材料
11
①以热的形式把激发能量释放给邻近的晶 格,称为“无辐射弛豫”,也叫荧光猝灭;
子或晶格缺陷,局部地破坏了晶体内部的规
则排列,从而产生一些特殊的能级,称为缺
陷能级。
第三章稀土发光相关材料
4
作为发光材料的晶体,往往有目的 地惨杂其它杂质离子以构成缺陷能级, 它们对晶体的发光起着关键作用。
第三章稀土发光相关材料
5
导带(被激发电子的能量水平)
禁带
缺陷能级
价带(基态电子的能量水 平) 辐射的光能取决于电子跃迁前后电子所在能级的能量差
电子在去激发跃迁过程中,将所吸收的能量释放出来, 转换成光辐射。
辐射的光能取决于电子跃迁前后所在能带(或能级)之间 的能量差值
第三章稀土发光相关材料
8
在去激发跃迁过程中,电子也可能将一 部分能量转移给其它原子,这时电子辐射的 光能小于跃迁前后电子所在能带(或能级)的 能量差。
第三章稀土发光相关材料
基质:作为材料主体的化合物; 激活剂:作为第发三章光稀土中发光相心关材的料 少量惨杂离子。 2
发光是一种宏观现象,但它和晶 体内部的缺陷结构、能带结构、能量 传递、载流子迁移等微观性质和过程 密切相关。
第三章稀土发光相关材料
3
⑴ 固体发光与晶体内部结构
晶体中的能带有价带、导带、禁带。
但是,在实际晶体中,可能存在杂质原
与RE3+相比,RE2+的激发态能级间隔被
压缩,最终导致最低激发态能量降低,谱线
红移。
第三章稀土发光相关材料
24
② +4价态稀土离子的光谱特性
+4价态稀土离子和与其相邻的前一个+3 价稀土离子具有相同的4f电子数目。例如, Ce4+和La3+,Pr4+和Ce3+,Tb4+和Gd3+等。
第三章稀土发光相关材料
第三章稀土发光相关材料
16
3.2 稀土的发光特点
发光的本质是能量的转换,稀土之所以 具有优异的发光性能,就在于它具有优异的 能量转换功能,而这又是由其特殊的电子层 结构决定的。
第三章稀土发光相关材料
17
❖ 稀土的发光和激光性能都是由于稀土的4f 电子在不同能级之间的跃迁而产生的。
❖ 在f组态内不同能级之间的跃迁称为f-f跃 迁;在f和d组态之间的跃迁称为f-d跃迁 。其光谱大概有30000条。
②以辐射形式释放激发能量,称 “发光” ;
第三章稀土发光相关材料
12
③S将激发能传递给A,即S吸收的全部 或部分激发能由A产生发射而释放出来,这 种现象称为“敏化发光”,A称为激活剂,S通 常被称为A的敏化剂。
第三章稀土发光相关材料
13
⑶ 荧光和磷光
激活剂吸收能量后,激发态的寿命极短 ,一般大约仅10-8s就会自动地回到基态而放 出光子,这种发光现象称为荧光。
撤去激发源后,荧光立即停止。
第三章稀土发光相关材料
14
被激发的物质在切断激发源后仍能继续 发光,这种发光现象称为磷光。
有时磷光能持续几十分钟甚至数小时, 这种发光物质就是通常所说的长余辉材料。
第三章稀土发光相关材料
15
即:“荧光” 指的是激发时的发光, 而“磷光”指的是发光在激发停止后,可 以持续一段时间。