电器学原理06电接触理论04
第六章 电接触理论

§6-2 接触电阻的理论和计算 实际的金属表面加压接触的过程如下:两金属表面开始接
触时,有三个起始的实际接触点,由于刚接触时还未发生形变,
实际接触面积非常小,接近于零。由于此时接触面压强很大 (近似无限大)而发生形变。起始接触点在强大压强下将由弹 性形变过渡到塑性形变。在起始接触面受压变形的同时,总实 际接触面积扩大,两金属表面未接触部分逐渐互相接近。这样 金属表面凸出高度较小的点也会陆续不断接触而出现许多新的 实际接触点。由于总的实际接触面不断增大,实际接触面上所
触头烧损,有时是将主、副和弧触头并联在一起使用。
② 触头根据控制电流的大小分为:弱电流触头(几个培以下, 如继电器的触头)、中电流触头(几个安培~几百个安培,如 低压断路器的触头)和强电流触头(几百个安培以上,如高 压断路器和部分低压断路器)。
§6-1 电接触的分类和要求
§6-1 电接触的分类和要求
§6-1 电接触的分类和要求
四、为保证电接触长期稳定而可靠工作,必须做到:
1、电接触在长期通过额定电流时,温升不超过国家标准规定的数值,
而且温升长期保持稳定;
2、电接触在短时通过短路电流或脉冲电流时,接触处不发生熔焊或松 弛;
3、可分合接触在开断过程中,接触材料损失尽量小;
4、可分、合接触在闭合过程中。接触处不应发生不能断开的熔焊,且 触头表面不应有严重损伤或变形。
§6-2 接触电阻的理论和计算
导体电阻比接触电阻小得多,工程中可近似认为:Rj=Rab’
接触电阻的物理实质是什么呢?
电接触 学科的奠 基人霍尔 姆 (R. Holm)做了正确的解释。
电接触学科的奠基人霍尔姆(R. Holm)指出:任何用肉眼看 来磨得非常光滑的金属表面,实际上都是粗糙不平的,当两 金属表面互相接触时,只有少数凸出的点(小面)发生了真正 的接触,其中仅仅是一小部分金属接触或准金属接触的斑点 才能导电.当电流通过这些很小的导电斑点时,电流线必然 会发生收缩现象,见下图6-4的示意图。
电接触理论

第六章电接触理论§6-1 概述任何一个电系统,都必须将电流(作为电的信号或电的能量)从一个导体通过导体与导体的接触处传向另一个导体。
此导体与导体的接触处称为电接触,它常常是电信号或电能传送的主要障碍。
由电机、电器、自动元件、仪表、计算机等组成的现代化大型复杂电系统,例如通信系统、控制系统、拖动系统、电力系统等,它们所包含的电接触数目往往成千上万。
如果其中一个或几个工作不正常或失效,则将导致整个系统工作紊乱甚至停顿,其后果极其严重。
电系统和电器元件中电接触的具体结构类型是多种多样的,一般分为三类:1.固定接触两接触元件在工作时间内固定接触在一起,不做相对运动,也不相互分离。
例如母线的螺栓连接或铆接(称永久接触),仪表中的塞子、插头(又称半永久接触器)等。
2.滚动和滑动接触器两接触元件能作相对滚动和滑动,但不相互分离。
例如断路器的滚轮触头,电机的滑环与电刷及电气机车的馈电弓与电源线等。
3.可分、合接触两接触元件可随时分离或闭合。
这种可分、合接触元件常称为触头或触电。
一切利用触头实现电路的接通和断开的电器中都可见到这种接触类型。
上述三种接触型式中,它们共有的工作状态是接触元件闭合接通电流。
运行经验表明,当两导体相互接触流过电流时,接触处会出现局部高温,严重时可达接触导体材料的熔点。
在可分、合接触中它的通电状态除闭合通电以外,还有由闭合过渡到分离,最后切断电路,或由分离过渡到闭合,最后接通电路,以及处于开断状态等。
触头在切断或闭合电路的过程中,触头间往往会出现电弧。
电弧的温度很高,大大超过一般金属材料的熔点或沸点。
即使电弧存在的时间很短,也会使触头表面融化或气化,造成触头材料的损失,或者产生触头的熔焊。
因此,在以上三种电接触类型中,工作任务最重的是分、合接触器。
为了保证电接触长时间稳定而可靠的工作,必须做到:(1)电接触在长期通过额定电流时,温升不超过国家规定的数值,而且温升长期保持稳定。
(2)电接触在短时通过短路电流或脉冲电流时,接触处不发生熔焊成松弛。
(完整版)第四章电器的电接触理论习题答案

第四章电器的电接触理论习题4-1 答:接触电阻的形成有两个要素:收缩电阻和膜电阻。
接触表面实际上只有一小部分凸出点发生了导电接触,称之为导电斑点。
当电流通过这些斑点时会发生电流线收缩现象,由此带来电流路径增加,有效导电截面积减少,使电阻值增加。
另一方面,接触表面有膜存在,如果这些膜能够导电,则电流通过薄膜时会受到膜的阻碍而产生膜附加电阻。
影响接触电阻的因素主要有以下四点:材料性质:是影响接触电阻最直接的因素。
从增加有效接触面积,抑制膜生成的角度来看,好的材料应保证良好的导电性和导热性,力学、化学性能以及电弧抗性。
接触形式:分为点接触、线接触和面接触三类。
其对接触电阻的影响主要体现在接触点数目上。
一般认为点接触的接触点数最少,面接触的接触点数最多。
但还应该依据触头所受接触压力综合考虑。
接触压力:增大接触压力可以增加有效接触面积并在最大程度上限制表面膜的影响。
接触表面加工情况:对于大负载触头,宜采用平整度高的表面,避免因装配时出现倾斜而导致有效接触面积大幅度减小;对于小功率电器的触头要求表面粗糙度较低,可以保证接触电阻低值且稳定。
无论何种负载,都不宜追求过于精细的表面,它对降低接触电阻未必有利。
4-2 答:温度对不同材料的接触电阻有不同的影响。
从收缩电阻上考虑,其受到导体电阻率的影响,而电阻温度系数和冷态电阻率为材料本身的属性,因此在同一温度下不同材料具有不同的电阻率和收缩电阻。
从膜电阻的角度考虑,不同材料形成的膜不同。
如AgC系触头材料表面形成的富银层可以使触头在工作中保持低值接触电阻,而AgW系材料在触头表面形成的是不导电氧化物,会增加接触电阻。
膜的生长速度受到温度的影响,导电性好的膜它的工作温度相对较低,使其能够维持在低值而稳定状况下;导电性差的膜使接触电阻升高,进而使触头产生高温发热,而高温度又加快了膜的生成,形成一种恶性循环。
4-3 答:动触头在支架带动下获得一个初速度向静触头运动,在接触时发生碰撞,当碰撞未能完全消耗动触头初动能时,触头会在反力作用下反向运动,这一过程称为反跳。
电器理论基础(共5篇)

电器理论基础(共5篇)以下是网友分享的关于电器理论基础的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
《电器理论基础》复习提纲篇一第一章绪论1、什么是电器?答:指定信号和要求自动或手动接通和断开电路/断续或连续地改变电路参数的电气设备对电路或非电对象切换、控制、保护、检测、变换和调节2、电器的分类依据有哪些?答:1)耐压等级2)工作职能3)IEC 标准4)动作方式5)灭弧介质3、典型电器的宏观结构原理?答:1)系统角度2)控制角度4、典型电器的微观结构原理?答:1)断路器(开关柜、自由脱口机构结构)2)接触器(结构、吸反力配合)3) 继电器(返回系数与控制系数)5、电器中主要涉及的理论及其实际意义?答:1)电磁机构理论2)电弧理论3)电接触理论4)发热理论5)电动力理论6、电器技术的发展方向第二章电器的发热理论1、电器在工作时为什么会发热?答:内部能量损耗主要热源2、什么是趋肤效应和临近效应及其衡量标准?与什么有关?答:趋肤效应:感应电动势,涡流场邻近效应:相邻载流导体,电磁场从产生原因推理3、减小铁损的措施有哪些?答:磁通通过铁磁元件涡流80%①②③④⑤4、电器的散热方式?5、热阻如何计算?6、对流的方式? 及其形成原因?答:强制:外部施加作用自由:密度差7、什么是层流和紊流?什么是层流层、紊流层?传导方式如何?答:层流:持续稳定性紊流:紊动变化8、什么是波尔斯满定律?答:黑体发射与接收9、制定电器各部分极限允许温升的依据是什么?答:绝缘性能力学性能工作寿命10、热平衡关系的构成?牛顿公式的结构?答:热力学第一定律11、综合散热系数的主要影响因素?答:电器零部件:热对流、热传导电弧:热对流、热传导、热辐射12、典型电器(变截面导体)的温升分布情况是?答:求解过程分布规律13、温升方式有那些?答:1)升温初始温度变化过程2)冷却14、什么是热时间常数?与什么有关?答:热惯量比热容15、电器的工作制有哪些?温升情况如何?与热时间常数如何?答:1)1小时内的温度变化不超过1度2)未达稳定值周围介质温度3)未达稳定值不下降到周围环境温升16、由什么引出功率过载系数与电流过载系数?不同工作制下的P P 和P i ?什么是通电持续力TD%?答:热惯量热时间常数通电时间18、短路电流通过导体的发热的特点?答:1)通电时间短2)电阻率变化19、什么是电器的热稳定性?影响因数是?答:一定时间短路电流热损伤(与短路情况有关)20、P52-2.3答:短时间,大电流;根据公式,相同。
电器学原理06电接触理论02

0
1 2
Uj 2
2
1 8
U
2 j
或
m m 0
U
2 j
____
8
m
U
2 j
____
0
8
HOME
6
§6.4 φ-θ理论
根据理论物理学中Wiede—Mann—Franz定律: 理论上,任何纯金属材料的热导率λ和电阻率ρ的乘积与温度T( T为
d
展开各项,忽略高阶无限小项并积分,积分区间(0, φ) 、 ( θm ,θ),得:
m
d
12
2
HOME
5
§6.4 φ-θ理论
____
令
则
1 2
m
d
2
m
____
d
将发热考虑至收缩区外时:
____
m
____
m
Q2
A d
d
dn
d
Aθ — 半椭球壳外表面的面积; d —半椭球壳外表面沿法线方向的温度梯度。 dn
在稳定状态下,达得热平衡 Q Q1 Q2
d 2
dR
A
d
dn
A
d
d
dn
1
U
R 2 j
S
I
1 2
U
j
IRS
斑点a到电位为φ处之间的收缩电阻:
Rs
U I
0
I
IRS
HOME
9
电接触理论基础全套教学课件

第六章 电接触理论
6.4 jq理论和接触电压
一、研究的目的 •确定导电斑点的最高温升及收缩区的温升分布
•斑点尺寸小,分布内表面,使得测量困难
6.4 jq理论和接触电压
二、 对称收缩区的jq 理论
几点假定: ✓接触内表面斑点间相距很远,之间的电位场和温度场不影响; ✓接触元件材料相同,且为均质; ✓忽略热电效应(帕尔帖效应); ✓两收缩区对称,元件间没有传热。
建立热平衡方程 Q Q1 Q2
(dj)2 dn
Aq
Aq
dq
dn
q
Aq dq
d(q dq )
dn
(dj)2 d2q
恒等式 dj dj jd2j d(jdj)
jdj jd2j dq
高阶无穷小
1 j 2
qm
dq
U
2 j
2
q
8
qm
q0
qm
U
2 j
8
6.4 jq理论和接触电压
三、jq 关系的应用
6.4 jq理论和接触电压
六、清洁对称接触的R-U 特性
清洁交叉铜棒的R-U特性
试验条件:改变电流I,测量接触 电压Uj和电流I,可以得到接触电 阻Rj与接触电压Uj之间的关系。 解释说明:
ab段:电流增加,温度升高,收 缩电阻增大;
bc段:达到材料的软化点,接触面 积增大,接触电阻显著减小;
cd段:曲线上升规律同ab段; de段:达到材料的熔化点,斑点处
6.4 jq理论和接触电压
二、 对称收缩区的jq 理论
发热量 传入量
(dj )2
Q dR
Q1
Aq
dq
dn
q
•导电斑点电位j=0,qqm等位
电器理论基础课件

绝缘原理涉及到电器中的绝缘材料和绝缘技术,是保证电器安全运行的重要因素之一。常用的绝缘材料包括塑料 、橡胶、陶瓷等,这些材料具有良好的电气性能和耐热性能。同时,为了提高电器的绝缘性能,还需要采取一系 列的绝缘技术措施,如绝缘结构设计、表面处理等。
03 电器的基本元件
电阻器
总结词
电阻器是用来限制电流的元件,其阻值大小与导体长度、截 面积、材料和温度等因素有关。
电器的热学原理
总结词
热传导、热对流和热辐射是热量传递的三种基本方式。
详细描述
热传导是指物体内部微观粒子之间的热量传递;热对流是指流体与固体表面之间 的热量传递;热辐射是指物体通过电磁波的方式向外界发射热量。这三种方式在 电器中的热量传递过程中都有应用。
电器的绝缘原理
总结词
绝缘原理涉及到电器中的绝缘材料和绝缘技术。
电器的组成与功能
组成
电器通常由输入电路、控制电路、执 行机构和外壳等部分组成。
功能
不同的电器具有不同的功能,如控制 电路通断、调节电流和电压的大小、 保护电路免受过流、过压等损害等。
电器的应用与发展
应用
电器广泛应用于各个领域,如工业、农业、交通运输、通讯、商业等,是现代 社会生产和生活中不可或缺的重要工具。
发展
随着科技的不断进步和人们需求的不断提高,电器也在不断发展,新的材料、 新的技术不断涌现,推动着电器向更高性能、更智能化、更环保的方向发展。
02 电器的工作原理
电路的基本原理
总结词
电路是电流的通道,由电源、负载和中间环节组成。
详细描述
电路是电流的通道,由电源、负载和中间环节组成。电源 提供电能,负载消耗电能并实现预定功能,中间环节包括 导线和各种元件,起到传输和控制作用。
电器学原理06电接触理论03

__
v2
v20 0 2
v20 2
__
xm v2 tm
tm
xm
__
v2
xm v20 2
2xm
v1
2xm 1 K v1
HOME
9
§6.6 触头闭合过程的振动分析
反跳达到最大距离 xm:
xm
l02
1 K m1v12
C
l0
触头第一次碰撞后反跳 t 时间后,动触头弹簧将被压缩的总距离为:
x l0 x x' l0 x v1t
弹簧所具有的弹性势能为:
1
Wx 2 C
x2
1 2
Cl0
x
v1t 2
C — 弹簧刚度。
HOME
7
§6.6 触头闭合过程的振动分析
动触头在反跳过程中,实际的能量交换(弹簧储能变化)为:
v1
v1
2xm 1 K
xm 1
2 1 K
l02
1 K m1v12
C
l0
xm
l02
1 K m1v12
C
l0
1 2
1 K
HOME
10
§6.6 触头闭合过程的振动分析
考虑到动触头的预压力: F0 Cl0
xm
F02 C1 K m1v12 F0
HOME
11
设其塑性变形所消耗的能量为 WA,则触头碰撞前后的能量平衡方程式:
W1 W2 WA
1 2
m1v120
1 2
m1v220
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HOME
2
§6.4 φ-θ理论
dF dFd dFv
b B
导电斑点点接触物理模型
HOME
3
§6.7 触头间的电动斥力
dr处的磁场强度
Hr
I
2r
1 cos
sin
令通过导体 dα中的电流为 dI ,则 dr 环所受的电动力为:
dF Br dI dr 0Hr dI dr
垂直于视在接触面方向上的分力:
4
§6.7 触头间的电动斥力
触头接触力F与导电斑点半径b之间的关系: F Hb2
Fd
0 4
I2
ln
B
F
H
0 4
I2
ln
A
H
F
0 I 2 ln HA
4
F
HOME
5
§6.7 触头间的电动斥力
减少触头间电动斥力的有效措施:
dFd dF sin 0Hr sin dI dr 通过导体元 dr的电流为: dI I sind
dFd 0H r I sin 2 drd
Fd
0I 2 2
B dr br
2 (1 cos ) sind
0
0 I 2 ln B 4 b
HOME
增大触头压力;
采用多触头并联结构。
Why? 设并联触头数为 n则通过每个触头的电流为 I/n。单个支路触头所受的 电动力:
Fd1
0 4
I n
2
ห้องสมุดไป่ตู้
ln
HA/ n
F/n
并联触头所受的总电动力
F nF
dn
d1
并联触头结构所受的总电动力与单触头结构所受电动力相比:
F dn
nF d1
思考题
电接触理论
思考题
1. 当短路电流流过闭合的触头时,触头是否会受到电动斥力的作 用? 为什么?
2. 为什么采用多触并头并联结构可以减小短路电流通过时触头间 的电动斥力?
§6.7 触头间的电动斥力
物理模型: (1)导体为非磁性材料,周围为空气或其它非导磁和非导电介质; (2)接触内表面中心只有一个导电斑点; (3)导电斑点为球形,球面电位相等; (4)导电斑点小球半径为b,圆柱形接触导体半径为B。
n
0
4
I n
2
ln
HA
F
1
FF
d
d
0
I 2 ln
HA
n
4
F
结论:
并联触头结构所受的 总电动力比单触头结构所 受电动力减小n倍。
HOME
6