初升高衔接教材
初升高数学衔接教材 第01章 第05节 全称量词与存在量词(解析版)

第一章第五节全称量词与存在量词一、电子版教材二、教材解读知识点一 全称量词命题和存在量词命题的判断1.全称量词与全称量词命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题叫做全称量词命题,通常将含有变量x 的语句用p (x ),q (x ),r (x ),…表示,变量x 的取值范围用M 表示,那么全称量词命题“对M 中任意一个x ,p (x )成立”可用符号简记为∀x ∈M ,p (x ).2.存在量词与存在量词命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做存在量词命题,存在量词命题“存在M 中的元素x ,使p (x )成立”,可用符号简记为“∃x ∈M ,p (x )”.【例题1】(2020·全国高一)判断下列存在量词命题的真假:(1)存在一个四边形,它的两条对角线互相垂直;(2)至少有一个整数n ,使得2n n +为奇数;(3){|x y y ∃∈是无理数},2x 是无理数.【解析】(1)真命题,因为正方形的两条对角线互相垂直;(2)假命题,因为若n 为整数,则(1)n n +必为偶数;(3)真命题,因为π是无理数,2π是无理数.【例题2】(2020·全国高一)把下列定理表示的命题写成含有量词的命题:(1)勾股定理;(2)三角形内角和定理.【解析】(1)任意一个直角三角形,它的斜边的平方都等于两直角边的平方和;(2)所有三角形的内角和都是180°.【例题3】(2020·全国高一)指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假.(1)∀x ∈N ,2x +1是奇数;(2)存在一个x ∈R ,使11x -=0; (3)对任意实数a ,|a |>0;【解析】(1)是全称量词命题.因为,21x N x ∀∈+都是奇数,所以该命题是真命题.(2)是存在量词命题.因为不存在x ∈R ,使101x =-成立,所以该命题是假命题. (3)是全称量词命题.因为00=,所以||0a >不都成立,因此,该命题是假命题.知识点二 含有一个量词的命题的否定一般地,对于含有一个量词的命题的否定,有下面的结论:全称量词命题p :∀x ∈M ,p (x ),它的否定﹁p :∃x ∈M ,﹁p (x );存在量词命题p :∃x ∈M ,p (x ),它的否定﹁p :∀x ∈M ,﹁p (x ).全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题.【例题4】(2020·全国高一)写出下列命题的否定:(1)所有人都晨练;(2)2,10x x x ∀∈++>R ;(3)平行四边形的对边相等;(4)2,10x x x ∃∈-+=R .【解析】(1)因为命题“所有人都晨练”是全称命题,所以其否定是“有的人不晨练”.(2)因为命题“2,10x x x ∀∈++>R ”是全称命题,所以其否定是“2,10x x x ∃∈++≤R ”.(3)因为命题“平行四边形的对边相等”是指任意一个平行四边形的对边相等,是一个全称命题, 所以它的否定是“存在平行四边形,它的对边不相等”.(4)因为命题“2,10x x x ∃∈-+=R ”是特称命题,所以其否定是“2,10x x x ∀∈-+≠R ”.【例题5】(2020·全国高一)写出下列全称量词命题的否定:(1)所有能被3整除的整数都是奇数;(2)每一个四边形的四个顶点在同一个圆上;(3)对任意x ∈Z ,2x 的个位数字不等于3.【解析】(1)该命题的否定:存在一个能被3整除的整数不是奇数.(2)该命题的否定:存在一个四边形,它的四个顶点不在同一个圆上.(3)该命题的否定:x Z ∃∈,2x 的个位数字等于3.【例题6】(2020·四川省泸县五中高二月考(理))命题“∀x ≤0,x 2+x +1>0”的否定是( )A .∀x >0,x 2+x +1≤0B .∀x >0,x 2+x +1>0C .∃x 0≤0,x 02+x 0+1≤0D .∃x 0≤0,x 02+x 0+1>0【答案】C【解析】命题“∀x ≤0,x 2+x +1>0”为全称命题,故其否定为:∃x 0≤0,x 02+x 0+1≤0【例题7】(2020·天津一中高二期末)“x R ∀∈,2210x x ++>”的否定是( )A .x R ∀∈,2210x x ++≤B .x R ∀∈,2210x x ++<C .0x R ∃∈,使得200210x x ++<D .0x R ∃∈,使得200210x x ++≤【答案】D【解析】全称量词的否定是特称量词,大于的否定是小于等于,故“x R ∀∈,2210x x ++>”的否定是“0x R ∃∈,使得200210x x ++≤”三、素养聚焦1.命题“[1,2]x ∀∈,2320x x -+≤”的否定是( )A .[1,2]x ∀∈,2320x x -+>B .[1,2]x ∀∉,2320x x -+>C .0[1,2]x ∃∈,200320x x -+>D .0[1,2]x ∃∉,200320x x -+>【答案】C【解析】命题是全称命题,则命题的否定是特称命题,即0[1,2]x ∃∈,200320x x -+>,2.设命题p :0x ∀>,sin x x >,则⌝p 为( )A .0x ∃>,sin x x ≤B .0x ∀>,sin x x ≤C .0x ∃≤,sin x x ≤D .0x ∀≤,sin x x ≤ 【答案】A【解析】命题p :0x ∀>,sin x x >,则⌝p :0x ∃>,sin x x ≤.3.已知命题2 :1,2log 1x p x x ∀≥-≥,则p ⌝为( ) A .21,2log 1xx x ∀<-< B .21,2log 1xx x ∀≥-< C .21,2log 1xx x ∃<-<D .21,2log 1xx x ∃≥-<【答案】D【解析】因为全称命题的否定是特称命题,所以命题:p 1x ∀≥,22log 1xx -≥,:p ⌝1x ∃≥,22log 1x x -<.4.命题:0p x ∀≥,都有1x e x ≥-+,则命题p 的否定为( ) A .0x ∀≥,都有1x e x <-+B .0x ∀<,都有1x e x ≥-+C .00x ∃≥,01xe x <-+D .00x ∃<,01xe x <-+【答案】C 【解析】命题:0p x ∀≥,都有1x e x ≥-+,∴命题p 的否定为00x ∃≥,01x e x <-+,5.命题p :对任意一个x ∈Z ,21x +是整数,则p ⌝为( ) A .对任意一个x Z ∉,21x +不是整数 B .对任意一个x Z ∉,21x +是整数 C .0x Z ∃∈,021x +不是整数 D .0x Z ∃∉,021x +不是整数【答案】C 【解析】命题p 为全称命题,∴p ⌝为“0x Z ∃∈,021x +不是整数”.6.已知命题P :x R ∀∈,sin 1x ≤,则p ⌝为( ) A .0x R ∃∈,0sin 1x ≥ B .x R ∀∈,sin 1x ≥ C .0x R ∃∈,0sin 1x > D .x R ∀∈,sin 1x >【答案】C 【解析】全称量词命题的否定是存在量词命题,且命题P :x R ∀∈,sin 1x ≤,00:,sin 1p x R x ∴⌝∃∈>.7.命题“,sin 10x R x ∀∈+≥”的否定是( ) A .00,sin 10x R x ∃∈+< B .,sin 10x R x ∀∈+< C .00,sin 10x R x ∃∈+≥ D .,sin 10x R x ∀∈+≤【答案】A【解析】因为,sin 10x R x ∀∈+≥的否定为00,sin 10x R x ∃∈+<, 所以选A.8.命题“,x R ∃∈使得21x =-”的否定是( ) A .x R ∀∉都有21x =- B .x R ∃∉使得21x =- C .,x R ∃∈使得21x ≠- D .,x R ∀∈都有21x ≠-【答案】D【解析】命题“,x R ∃∈使得21x =-”的否定是“,x R ∀∈都有21x ≠-”. 9.已知命题p :0x ∀>,总有(1)1x x e +>,则p ﹁为( )A .00x ∃≤,使得00(1)1xx e +≤B .00x ∃>,使得00(1)1xx e +≤C .0x ∀>,总有(1)1x x e +≤D .0x ∀≤,使得(1)1x x e +≤【答案】B【解析】因为命题p :0x ∀>,总有(1)1xx e +>,所以p ﹁:00x ∃>,使得00(1)1x x e +≤.10.命题p :∀x ∈N ,|x +2|≥3的否定为( ) A .∀x ∈N ,|x +2|<3 B .∀x ∉N ,|x +2|<3 C .∃x ∈N ,|x +2|≥3D .∃x ∈N ,|x +2|<3【答案】D【解析】因为命题p :∀x ∈N ,|x +2|≥3是全称命题, 所以其否定是特称命题,所以命题p :“∀x ∈N ,|x +2|≥3”的否定为:∃x ∈N ,|x +2|<3.11.若“122x ⎡⎤∃∈⎢⎥⎣⎦,使得2210x x λ-+<成立”是假命题,则实数λ的取值范围为( )A .(-∞B .⎡⎤⎣⎦C .⎡⎤-⎣⎦D .3λ=【答案】A【解析】因为命题“1[,2]2x ∃∈,使得2210x x λ-+<成立”为假命题,所以该命题的否定“1[,2]2x ∀∈,使得2210x x λ-+≥恒成立成立”,即221x xλ+≤对于1[,2]2x ∀∈恒成立,而22112x x x x +=+≥=12x x =,即2x =时取等号),即λ≤ A. 12.命题“*,x R n N ∀∈∃∈,使得2n x ≥”的否定形式是( ) A .*,x R n N ∀∈∃∈,使得2n x < B .*,x R n N ∀∈∀∈,使得2n x < C .*,x R n N ∃∈∃∈,使得2n x < D .*,x R n N ∃∈∀∈,使得2n x <【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 13.已知命题p :“0a ∀>,都有1a e ≥成立”,则命题p ⌝为( ) A .0a ∃≤,有1a e <成立 B .0a ∃≤,有1a e ≥成立 C .0a ∃>,有1a e ≥成立 D .0a ∃>,有1a e <成立 【答案】D【解析】全称量词的否定为存在量词,命题的否定只否定结论,1a e ≥的否定为1a e <.命题p ⌝为0a ∃>,有1a e <成立14.已知命题:p x R ∀∈,210x x -+>,则p ⌝( ) A .x R ∃∈,210x x -+≤ B .x R ∀∈,210x x -+≤ C .x R ∃∈,210x x -+> D .x R ∀∈,210x x -+≥ 【答案】A【解析】由题意,根据全称命题与特称命题的关系,可得命题:p x R ∀∈,210x x -+>, 则:p ⌝x R ∃∈,210x x -+≤,故选A .15.命题“0x R ∃∈,20010x x ++≤”的否定为( )A .x R ∀∈,210x x ++>B .x R ∀∉ ,210x x ++≤C .0x R ∃∈,20010x x ++>D .0x R ∃∉, 20010x x ++≤【答案】A【解析】因为命题“0x R ∃∈,20010x x ++≤”为特称命题,所以其否定为“x R ∀∈,210x x ++>”.16.命题“00x ∃>,20010x x ++<”的否定是( )A .0x ∀>,210x x ++≥B .0x ∀≤,210x x ++<C .0x ∀>,210x x ++<D .0x ∀≤,210x x ++≥【答案】A【解析】由题意,根据全称命题与存在性命题的关系,可得命题“00x ∃>,20010x x ++<”的否定为:“0x ∀>,210x x ++≥”.17.命题“1x ∀>,20x x ->”的否定是( )A .01x ∃≤,2000x x -≤ B .1x ∀>,20x x -≤ C .01x ∃>,2000x x -≤D .1x ∀≤,20x x ->【答案】C【解析】因为全称命题的否定是特称命题,所以命题“1x ∀>,20x x ->”的否定是:“01x ∃>,2000x x -≤”,故选C.18.下列说法:①命题“0x ∀>,20x x -≤”的否定是“0x ∃≤,20x x ->”;②若一个命题的逆命题为真,则它的否命题也一定为真;③“矩形的两条对角线相等”的逆命题是真命题;④“3x <”是“3x <”成立的充分条件,其中错误的个数是( ) A .1 B .2 C .3 D .4【答案】C【解析】命题“0x ∀>,20x x -≤”的否定是“0x ∃>,20x x ->”,故①错误一个命题的逆命题和否命题互为逆否命题,同真假性,故②正确 对角线相等的等腰梯形不是矩形,故③错误由3x <推不出3x <,如4x =-时,满足3x <,但推不出3x <,故④错误 所以错误的个数是319.下列有关命题的说法正确的是( ).A .命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”B .“1x =-”是“2560x x --=”的必要不充分条件C .命题“R x ∃∈,使得210x x ++<”的否定是:“R x ∀∈,均有210x x ++<”D .命题“若x y =,则sin sin x y =”的逆否命题为真命题 【答案】D【解析】对于A :命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.因为否命题应为“若21x ≠,则1x ≠”,故A 错误.对于B :“1x =-”是“2560x x --=”的必要不充分条件.因为21560x x x =-⇒--=,应为充分条件,故B 错误.对于C :命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”. 因为命题的否定应为x R ∀∈,均有210x x ++≥.故C 错误. 由排除法得到D 正确.20.已知命题2000:,220p x R x x ∃∈++≤,则p ⌝为( )A .2,220x x x ∀∈++>RB .2,220x R x x ∀∈++≤C .2,220 x R x x ∃∈++≤D .2,220x x x ∃∈++>R【答案】A【解析】特称命题的否定是全称命题,命题2000:,220p x R x x ∃∈++≤,则p ⌝为:2,220x x x ∀∈++>R .21.已知命题1,20x p x R -∀∈>:,则命题p ⌝为( ) A .1,20x x R -∀∈≤B .1,20x x R -∃∈≤C .1,20x x R -∃∈≠D .1,20x x R -∀∈<【答案】B【解析】因为命题1,20x p x R -∀∈>:所以命题:p ⌝1,20x x R -∃∈≤22.若命题“存在0x R ∈,使220x x m --≤0”是假命题,则实数m 的取值范围是( ) A .B .C .[]11-, D .【答案】D 【解析】命题“存在0x R ∈,使220x x m --≤0”是假命题, ∴不等式220x x m --≤0无解, ()2240m ∴∆=-+<,解得1m <-,∴实数m 的取值范围是,23.命题“x R ∃∈,2210x x -+<”的否定是( ) A .x R ∃∈,2210x x -+≥ B .x R ∃∈,2210x x -+> C .x R ∀∈,2210x x -+≥ D .x R ∀∈,2210x x -+<【答案】C【解析】特称命题的否定是全称命题,改量词,且否定结论,故命题20",210"x R x x ∃∈-+<的否定是“2,210x R x x ∀∈-+≥”.24.(多选题)下面命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题“任意x ∈R ,则210x x ++<”的否定是“存在x ∈R ,则210x x ++≥”. C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件 D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件 【答案】ABD【解析】对于A ,1110a a a -<⇔>()10a a ⇔->0a ⇔<或1a >,则“1a >”是“11a<”的充分不必要条件,故A 对;对于B ,全称命题的否定是特称命题,“任意x ∈R ,则210x x ++<”的否定是“存在x ∈R ,则210x x ++≥”,故B 对;对于C ,“2x ≥且2y ≥” ⇒ “224x y +≥”, “2x ≥且2y ≥” 是 “224x y +≥”的充分条件,故C 错; 对于D ,00ab a ≠⇔≠,且0b ≠,则“0a ≠”是“0ab ≠”的必要不充分条件,故D 对; 25.(多选题)在下列命题中,真命题有( ) A .x R ∃∈,230x x ++= B .x Q ∀∈,211132x x ++是有理数 C .,x y Z ∃∈,使3210x y -= D .x R ∀∈,2||x x >E.命题“x R ∀∈,3210x x -+≤”的否定是“x R ∃∈,3210x x -+>” 【答案】BCE【解析】A 中,221113024x x x ⎛⎫++=++> ⎪⎝⎭,故A 是假命题; B 中,x Q ∈,211132x x ++一定是有理数,故B 是真命题; C 中,4x =,1y =时,3210x y -=成立,故C 是真命题;对于D ,当0x =时,左边=右边=0,故D 为假命题;E 命题否定的形式正确,故为真命题. 故真命题有BCE .26.(多选题)下列命题中是真命题的是( ) A .“1x >”是“21x >”的充分不必要条件B .命题“0x ∀>,都有sin 1x ≤”的否定是“00x ∃>,使得0sin 1x >”C .数据128,,,x x x 的平均数为6,则数据12825,25,,25x x x ---的平均数是6D .当3a =-时,方程组232106x y a x y a -+=⎧⎨-=⎩有无穷多解【答案】ABD【解析】选项A ,1x >,则有21x >,但21x >,则1x >或1x <-, 所以“1x >”是“21x >”的充分不必要条件,选项A 正确; 选项B ,命题“0x ∀>,都有sin 1x ≤”的否定是 “00x ∃>,使得0sin 1x >”,所以选项B 正确; 选项C ,数据128,,,x x x 的平均数为6, 则数据12825,25,,25x x x ---的平均数是7,所以选项C 错误;选项D ,当3a =-时,方程组为32103210x y x y -+=⎧⎨-+=⎩,所以有无数个解,所以选项D 正确.27.(多选题)给出下列命题,其中真命题有( ) A .存在0x <,使|x|>x B .对于一切0x <,都有|x|>x C .存在0x <,使||x x ≤D .已知2a n =,3b n =,则存在*n ∈N ,使得a b = E.已知*{|2,}A a a n n ==∈N ,*{|3,}B b b n n ==∈N ,则A B =∅【答案】AB【解析】对A ,当1x =-时,11>-成立,故A 正确; 对B ,对0x <都0|x|>,显然有|x|>x ,故B 正确;对C ,命题“存在0x <,使||x x ≤”,是B 中命题的否定,所以C 为假命题,故C 错误; 对D ,“存在*n ∈N ,使得a b =”的否定是“对于任意的*n ∈N ,都有a b ”,由于23a b n n n -=-=-,所以对于任意的*n ∈N ,都有a b <,即a b ≠,故D 为假命题;对E ,已知*{|2,}A a a n n ==∈N ,*{|3,}B b b n n ==∈N ,易知6A ∈,6B ∈,因此E 为假命题;28.(多选题)下面命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要 不 充 分 条件 【答案】ABD【解析】选项A:根据反比例函数的性质可知:由1a >,能推出11a <,但是由11a<,不能推出1a >,例如当0a <时,符合11a<,但是不符合1a >,所以本选项是正确的; 选项B: 根据命题的否定的定义可知:命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.所以本选项是正确的;选项C:根据不等式的性质可知:由2x ≥且2y ≥能推出224x y +≥,本选项是不正确的;选项D: 因为b 可以等于零,所以由0a ≠不能推出0ab ≠,再判断由0ab ≠能不能推出0a ≠,最后判断本选项是否正确.29.(多选题)关于下列命题正确的是( )A .一次函数320kx y k ++-=图象的恒过点是213⎛⎫- ⎪⎝⎭, B .3322,,()()a b R a b a b a ab b ∀∈+=+++ C .(2,4),(2)(4)x y x x ∀∈-=+-的最大值为9 D .若p 为假命题,则()p ⌝⌝为真命题 【答案】AC【解析】对A ,由320kx y k ++-=,即(1)320k x y ++-=,可令10x +=,即1x =-,320y -=,可得23y =,故直线320kx y k ++-=恒过定点2(1,)3-,故A 正确; 对B ,由两数的立方和公式可得a ∀,b R ∈,3322()()a b a b a ab b +=+-+,故B 错误;对C ,(2,4)x ∀∈-,可得20x +>,40x ->,则224(2)(4)()92x x y x x ++-=+-=,当且仅当1x =时y 取得最大值为9,故C 正确;对D ,若p 为假命题,则p ⌝为真命题,()p ⌝⌝为假命题,故D 错误. 30.(多选题)已知下列命题其中正确的有( ) A .“实数都大于0”的否定是“实数都小于或等于0” B .“三角形外角和为360度”是含有全称量词的真命题C .“至少存在一个实数x ,使得||0x ≥0”是含有存在量词的真命题 D .“能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题 【答案】BCD【解析】对于A, “实数都大于0”的否定是“实数不都大于0”,故A 错误. 对于B, “三角形外角和为360度”含有全称量词,且为真命题,所以B 正确;对于C, “至少存在一个实数x ,使得||0x ≥0”含有存在量词,且为真命题,所以C 正确; 对于D, “能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题,所以D 正确. 综上可知,正确命题为BCD。
初升高数学衔接教材(完整)(2020年8月整理).pdf

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪−<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a −表示在数轴上,数a 和数b 之间的距离. 2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a −<<。
②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><−或。
③22()()()()f x g x f x g x >⇔>。
(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1段进行讨论. ③将分段求得解集,再求它们的并集. 例1.求不等式354x −<的解集例2.求不等式215x +>的解集例3.求不等式32x x −>+的解集例4.求不等式|x +2|+|x -1|>3的解集.例5.解不等式|x -1|+|2-x |>3-x .例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式: (1)13x x −+−>4+x (2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x −< (5)578x +>3、因式分解 乘法公式(1)平方差公式22()()a b a b a b +−=− (2)完全平方公式222()2a b a ab b ±=±+ (3)立方和公式2233()()a b a ab b a b +−+=+ (4)立方差公式2233()()a b a ab b a b −++=−(5)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式33223()33a b a a b ab b +=+++(7)两数差立方公式33223()33a b a a b ab b −=−+−因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1分解因式:(1)x 2-3x +2;(2)2672x x ++(3)22()x a b xy aby −++;(4)1xy x y −+−.2.提取公因式法例2.分解因式: (1)()()b a b a −+−552(2)32933x x x +++3.公式法例3.分解因式: (1)164+−a (2)()()2223y x y x −−+4.分组分解法例4.(1)x y xy x 332−+−(2)222456x xy y x y +−−+− 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x −−.例5.把下列关于x 的二次多项式分解因式: (1)221x x +−;(2)2244x xy y +−.练习(1)256x x −−(2)()21x a x a −++(3)21118x x −+(4)24129m m −+(5)2576x x +−(6)22126x xy y +−(7)()()3211262+−−−p q q p (8)22365ab b a a +−(9)()22244+−−x x (10)1224+−x x (11)by ax b a y x 222222++−+−(12)91264422++−+−b a b ab a (13)x 2-2x -1(14)31a +;(15)424139x x −+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +−++−第二讲一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. (2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a −,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =−,顶点坐标为2424b ac b a a ⎛⎫−− ⎪⎝⎭,。
初升高数学衔接教材(完整)

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a,a0,| a | 0,a0,a, a0.(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.(3)两个数的差的绝对值的几何意义: a b 表示在数轴上,数 a 和数b之间的距离.2、绝对值不等式的解法(1)含有绝对值的不等式① f (x) a(a 0) ,去掉绝对值后,保留其等价性的不等式是 a f ( x) a 。
② f (x) a(a 0) ,去掉绝对值后,保留其等价性的不等式是 f (x) a或 f ( x) a 。
③ f (x) g ( x) f 2 ( x)g 2 (x) 。
(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n+1段进行讨论.③将分段求得解集,再求它们的并集.例 1.求不等式3x 5 4 的解集例 2. 求不等式2x 1 5的解集例 3. 求不等式x 3 x 2 的解集例 4. 求不等式 | x+ 2| + | x- 1| > 3 的解集.例 5. 解不等式 | x- 1| + |2 -x| > 3-x.例 6. 已知关于x 的不等式| x-5|+| x-3|< a 有解,求 a 的取值范围.练习解下列含有绝对值的不等式:(1)x 1 x 3 >4+x(2) | x+1|<| x-2|(3) | x- 1|+|2 x+1|<4(4)3x 2 7(5)5x 7 83、因式分解乘法公式( 1)平方差公式( a b)( a b)a2b2( 2)完全平方公式( a b) 2a22ab b2( 3)立方和公式( a b)(a2ab b2 )a3b3( 4)立方差公式( a b)(a2ab b2 )a3b3( 5)三数和平方公式( a b c)2a2b2c22(ab bc ac)33223( 7)两数差立方公式(a b)3a33a2b 3ab2b3因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例 1分解因式:( 1)x2-3x+ 2;(2)6x27 x2( 3)x2(a b) xy aby2;(4)xy1 x y .2.提取公因式法例 2. 分解因式:( 1)a2b 5 a 5 b( 2)x39 3x23x3.公式法例 3. 分解因式:(1)a416( 2)3x 2 y2x y 24.分组分解法例 4. ( 1)x2xy 3y 3x(2)2x2xy y24x 5y65.关于x的二次三项式ax2+bx+c( a≠0)的因式分解.若关于 x 的方程ax2bx c0(a 0) 的两个实数根是x1、 x2,则二次三项式 ax2bx c(a0) 就可分解为a( x x1 )( x x2 ) .例 5. 把下列关于x 的二次多项式分解因式:(1)x22x 1;(2)x24xy 4 y2.练习(1)x25x 6( 2)x2a 1 x a( 3)x211x18(4)4m212m9(5)57x6x2(6)12x2xy 6 y2( 7 )6 2 p q 211 q 2 p 38) a35a2 b 6ab 29 )4 x22((4x 2(10)x4 2 x21( 11)x2y 2 a 2b22ax2by(12)a 24ab4 2 6 12b9(13)x2-2x- 1b a(14)a31;( 15)4x413x29 ;(16)b2c22ab 2ac 2bc ;(17)3x25xy 2 y2x 9 y4第二讲一元二次方程与二次函数的关系1、一元二次方程(1)根的判别式对于一元二次方程ax2+ bx+ c=0( a≠0),有:( 1)当>0 时,方程有两个不相等的实数根x= b b24ac;1, 22a( 2)当= 0 时,方程有两个相等的实数根12b;x = x=-2a (3)当< 0 时,方程没有实数根.(2)根与系数的关系(韦达定理)如果 ax2+ bx+ c=0( a≠0)的两根分别是 x1, x2,那么 x1+ x2=b,x1·x2=c.这一关系也被称为韦达a a定理.2、二次函数y ax2bx c 的性质1.当 a0 时,抛物线开口向上,对称轴为x b ,顶点坐标为 b ,4ac b 2。
乘法公式教学设计-2024年初升高数学衔接教材

1. 针对乘法公式的适用范围和条件,需要进行更深入的讲解和练习,让学生们能够熟练掌握和运用。
2. 加强对学生的个别辅导,关注那些在乘法公式理解和运用方面存在困难的学生,帮助他们提高。
4. 乘法公式的推导过程:通过观察和推理,我们可以发现平方差公式和完全平方公式的规律,并给出公式的表达式。
5. 乘法公式的运用步骤和注意事项:在运用乘法公式进行计算时,我们需要注意公式的适用范围和条件,以及公式的正确运用步骤。
6. 乘法公式解决实际问题:乘法公式不仅可以用于计算题目,还可以用于解决实际问题。我们可以运用乘法公式计算几何图形的面积、物理量的计算等问题,培养运用数学知识解决实际问题的能力。
(2)引导学生总结解决实际问题的方法和步骤。
5. 课堂小结(5分钟):引导学生回顾本节课的学习内容,巩固对乘法公式的理解和运用。
6. 作业布置(5分钟):布置一些相关的练习题目,让学生课后巩固所学知识。
7. 课后反思(5分钟):教师进行课后反思,总结课堂教学的优点和不足,为下一步的教学做好准备。
六、知识点梳理
三、学情分析
在教学乘法公式之前,我们对学生的层次、知识、能力、素质等方面进行了全面的了解和分析,以便更好地制定教学策略和目标。
1. 学生层次:本节课面向的是初升高阶段的学生,他们在初中阶段已经接触过一些基本的数学知识,包括代数、几何等。学生的数学基础层次参差不齐,部分学生对代数知识有一定的掌握,而部分学生可能在这方面存在不足。
(2)完全平方公式:同样引导学生通过观察和推理,发现完全平方公式的规律,并给出公式的表达式。
2024-2025学年外研版初升高衔接课1:教材解析及学习方法指导教学设计

2.拓展要求
(1)学生应利用课后时间进行自主学习和拓展,通过阅读材料和观看视频资源,进一步加深对教材内容的理解。
(2)学生在阅读和观看过程中,遇到问题时可以随时向老师请教,老师会提供必要的指导和帮助。
(2)学习方法指导
3.巩固练习
现在,请同学们打开教材,完成课后练习。这道题目主要考察我们对教材的理解和掌握程度。完成后,我们可以相互交流一下答案,看看彼此的解题思路是否正确。
4.课堂小结
5.课后作业
请大家课后阅读教材中的阅读材料,并完成相应的练习题。同时,也可以结合自己的学习情况,思考如何更好地运用所学方法,提高学习效率。
六、板书设计
教材解析及学习方法指导
1.教材解析
-特点:注重培养学科素养和综合能力
-结构:单元主题+课文+阅读材料+语法讲解+练习题
2.学习方法指导
-制定学习计划
-利用多种学习资源
-团队合作
-总结反思,查漏补缺
学生学习效果
六、学生学习效果
1.教材解析能力:学生们对新的教材有了深入的理解,能够把握单元主题,理解课文内容,并能够将语法讲解与实际阅读材料相结合,提高了解决实际问题的能力。
2.学习方法掌握:学生们学会了如何制定个人学习计划,根据自身特点选择合适的学习资源,通过团队合作提高学习效率,以及如何进行总结反思,查漏补缺。
3.学习兴趣和自信心:本节课激发了学生们对新教材的学习兴趣,他们通过自主学习和探究学习,提高了学习自信心,更加相信自己能够适应新的学习环境,取得好成绩。
4.思维品质和学习效率:学生们在分析问题和解决问题的过程中,提高了思维品质,学会了如何高效地学习和复习,为初升高学习打下了坚实的基础。
初升高数学衔接教材 第01章 第04节 充分条件与必要条件(解析版)

第一章第四节充分条件与必要条件一、电子版教材二、教材解读知识点一 充分条件、必要条件的判断1.若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件。
2.若p ⇒q ,但qp ,则称p 是q 的充分不必要条件. 3.若q ⇒p ,但pq ,则称p 是q 的必要不充分条件. 4.若p q ,且q p ,则称p 是q 的既不充分也不必要条件.【例题1】(2020·广东省增城中学高二期中)已知:2p x >,:1q x >,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】设命题p :2x >对应的集合为{|2}A x x =>,命题q :1x >对应的集合为{|1}B x x =>,因为A B,所以命题p 是命题q 的充分不必要条件.【例题2】(2020·全国高一)“3m ≤”是“2m ≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】“2m ≤”⇒“3m ≤”,反之不成立,因此“3m ≤”是“2m ≤”的必要不充分条件.【例题3】(2020·天津一中高二期末)设x ∈R ,则“12x <<”是“|2|1x -<”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】21121,13x x x -<∴-<-<<<,又1,2⇒()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A.【例题4】(2020·全国高一)“1x >且2y >”是“3x y +>”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】当1x >且2y >时,3x y +>成立,反过来,当3x y +>时,例:4,0x y ==,不能推出1x >且2y >.所以“1x >且2y >”是“3x y +>”的充分不必要条件.知识点二 充分条件、必要条件、充要条件的应用1.记集合A ={x |p (x )},B ={x |q (x )},若p 是q 的充分不必要条件,则A B ,若p 是q 的必要不充分条件,则B A .2.记集合M ={x |p (x )},N ={x |q (x )},若M ⊆N ,则p 是q 的充分条件,若N ⊆M ,则p 是q 的必要条件,若M =N ,则p 是q 的充要条件.【例题5】(2019·辛集市第二中学高二期中)若“满足:20x p +<”是“满足:220x x -->”的充分条件,求实数p 的取值范围.【解析】由20x p +<,得2p x <-,令2p A x x ⎧⎫=<-⎨⎬⎩⎭, 由220x x -->,解得2x >或1x <-,令{}21B x x x =><-或,由题意知A B ⊆时,即12p -≤-,即2p ≥, ∴实数p 的取值范围是[)2,+∞.【例题6】(2020·四川省雅安中学高二月考(文))若关于x 的不等式()22210x a x a a -+++≤的解集为A ,不等式322x-≥的解集为B . (1)求集合A ;(2)已知B 是A 的必要不充分条件,求实数a 的取值范围.【解析】(1)原不等式可化为:()()10x a x a --+≤⎡⎤⎣⎦,解得1a x a ≤≤+,所以集合{}|1A x a x a =≤≤+;(2)不等式322x-≥可化为:321222x x x --=≥--0,等价于()()212020x x x --≥⎧⎪⎨-≠⎪⎩,解得122x ≤<, 所以集合1|22B x x ⎧⎫=≤<⎨⎬⎩⎭, 因为B 是A 的必要不充分条件,所以A B , 故1212a a ⎧≥⎪⎨⎪+<⎩,解得112a ≤<.知识点三 充要条件的证明1.一般地,如果既有p ⇒q ,又有q ⇒p ,就记作p ⇔q .此时,我们说,p 是q 的充分必要条件,简称充要条件.概括地 说,如果p ⇔q ,那么p 与q 互为充要条件.【例题7】(2020·全国高一)已知0ab ≠,求证:1a b +=的充要条件是33220a b ab a b ++-=-.【解析】(1)证明必要性:因为1a b +=,所以10a b +-=.所以()()()33222222a b ab a b a b a ab b a ab b ++--=+-+--+ ()()221a b a ab b =+--+ 0=.(2)证明充分性:因为33220a b ab a b ++--=,即()()2210a b a ab b +--+=,又0ab ≠,所以0a ≠且0b ≠. 因为22223024b a ab b a b ⎛⎫-+=-+> ⎪⎝⎭, 所以10a b +-=,即1a b +=.综上可得当0ab ≠时,1a b +=的充要条件是33220a b ab a b ++--=.【例题8】(2020·上海高一课时练习)求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.【解析】 (1)必要性:因为方程20ax bx c ++=有一正根和一负根,所以240b ac ∆=->为12120(,c x x x x a=<方程的两根),所以ac <0. (2)充分性:由ac <0可推得Δ=b 2-4ac >0及x 1x 2=<0(x 1,x 2为方程的两根).所以方程ax 2+bx +c =0有两个相异实根,且两根异号,即方程ax 2+bx +c =0有一正根和一负根. 综上所述,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.【例题9】(2020·全国高一课时练习)证明:如图,梯形ABCD 为等腰梯形的充要条件是AC BD =.【解析】证明:(1)充分性.在等腰梯形ABCD 中,AB DC =,ABC DCB ∠=∠,又∵BC CB =,∴BAC CDB ≅,∴AC BD =.(2)必要性.如图,过点D 作//DE AC ,交BC 的延长线于点E .∵//AD BE ,//DE AC ,∴四边形ACED 是平行四边形.∴DE AC =.∵AC BD =,∴BD DE =,∴1E ∠=∠.又∵//AC DE ,∴2E ∠=∠,∴12∠=∠.在ABC 和DCB 中,,21,,AC DB BC CB =⎧⎪∠=∠⎨⎪=⎩∴ABC DCB ≅.∴AB DC =.∴梯形ABCD 为等腰梯形.由(1)(2)可得,梯形ABCD 为等腰梯形的充要条件是AC BD =.三、素养聚焦1.“220a b +>”是“0ab ≠”的( ).A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 【答案】B【解析】当0a =,0b ≠时,满足220a b +>,但0ab =,所以“220a b +>”是“0ab ≠”的非充分条件;反之,当0ab ≠时,0a ≠且0b ≠,所以20a >且20b >,所以220a b +>,所以“220a b +>”是“0ab ≠”的必要条件.2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由2()0a b a -<一定可得出a b <;但反过来,由a b <不一定得出2()0a b a -<,如0a =,故选A.3.“1x >-”是“20x +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】202(1,)x x +>∴>--+∞ (2,)-+∞所以“1x >-”是“20x +>”的充分不必要条件4.3x >是3x >的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】33x x >⇒>或3x <-. 即3x >,x <-3或3x >;反之33x x >⇒>. 所以3x >是3x >的必要非充分条件.5.下列各组命题中,满足α是β的充要条件的是( ) A . :||ab ab α=,:0ab β≥0B .:α数a 能被6整除,:β数a 能被3整除C .:a b α<,:1a bβ< D .若a ,b R ∈,22:0a b α+≠,:,a b β都不为0 【答案】A 【解析】对于选项A,因为:||ab ab α=等价于,a b 同号或至少一个为0,等价于:0ab β≥0,所以αβ⇔,则A 正确;对于选项B,:β数a 能被3整除,当9a =,αβ⊂,即α是β的不必要条件,故B 错误;对于选项C,当4,2a b =-=-时,21a b=>,故βα⊂,α是β的不充分条件,故C 错误; 对于选项D,若a ,b R ∈,22:0a b α+≠,当0,1a b ==时,βα⊂,α是β的不充分条件,故D 错误.6.“3x y +≠”是“1x ≠或2y ≠”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】A【解析】命题若“3x y +≠”,则“1x ≠或2y ≠”的等价命题是:若“1x =且2y =”,则“3x y +=”,当“1x =且2y =”成立时,显然3x y +=成立,当3x y +=时,不一定能推出1x =且2y =,例如2,1x y ==,满足3x y +=,但1x =且2y =不成立,因此“1x =且2y =”是“3x y +=”的充分不必要条件,所以“3x y +≠”是“1x ≠或2y ≠”的充分不必要条件.7.设x ∈R ,则“220x x -<”是“12x -<”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分又不必要条件【答案】A【解析】解不等式220x x -<得;{|02}A x x =<<, 解不等式12x -<得:{|13}B x x =-<<,因为A 是B 的真子集,所以“220x x -<”是“12x -<”的充分不必要条件.8.设R x ∈,则“20x -≥”是“11x -≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】20x -≥,即2x ≤, 11x -≤,即111x -≤-≤,02x ≤≤,因为集合[]0,2是集合(],2-∞的真子集,所以“20x -≥”是“11x -≤”的必要不充分条件.9.0x y ⋅≠是指( )A .0x ≠且0y ≠B .0x ≠或0y ≠C .x ,y 中至少有一个不为零D .0x y ≠≠【答案】A【解析】0x y ⋅≠时0x ≠且0y ≠,0x ≠且0y ≠时0x y ⋅≠0x ≠或0y ≠时x y ⋅可以为零;x ,y 中至少有一个不为零时x y ⋅可以为零;0x y ⋅≠时x y ,可以相等;10.对于集合A ,B ,“A B ≠”是“A B A B ≠⋂⊂⋃”的( ) A .充要条件B .必要非充分条件C .充分非必要条件D .既非充分又非必要条件【答案】A【解析】因为A B A A B ⋂⊆⊆⋃, 所以“A B ≠”能推出“A B A B ≠⋂⊂⋃”,故充分; “A B A B ≠⋂⊂⋃” 能推出“A B ≠”,故必要; 所以“A B ≠”是“A B A B ≠⋂⊂⋃”的充要条件11.若:p “01b <<”,:q “21b <”,则p 是q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】因为2111b b <⇔-<<,所以p 是q 的充分不必要条件.12.“1x >”是“21x >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】因为由1x >⇒21x >,由21x >推不出1x >,有可能1x <-,所以“1x >”是“21x >”的充分不必要条件,故本题选A.13.设x ∈R ,则“3x >”是“21x ≥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】当3x >时,291x >>,取2x =,则241x =>,当23<,故“3x > ”是“21x > ”的充分不必要条件,故选A.14.“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要 【答案】B 【解析】, 因此是的必要不充分条件.15.若“01x <<”是“()()20x a x a ⎡⎤--+≤⎣⎦”的充分不必要条件,则实数a 的取值范围是( ) A .[]1,0-B .()1,0-C .(][),01,-∞⋃+∞D .(][),10,-∞-⋃+∞【答案】A【解析】记{}{}|01,|2A x x B x a x a =<<=≤≤+,因为p 是q 的充分而不必要条件,所以A ⊂B ,所以0,{21a a ≤+≥,解得10a -≤≤.故选A.16.()():220p x x -+>;:01q x ≤≤.则p 成立是q 成立的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】∵()()220x x -+>,∴22x -<<,又[0,1]⊂(-2,2),∴p 成立是q 成立的必要不充分条件,17.设a R ∈,则“2a =-”关于x 的方程“20x x a ++=有实数根”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】当2a =-时,1490a ∆=-=> ,此时20x x a ++=有实数根;当20x x a ++=有实数根时,140a ∆=-≥,即14a ≤.18.设a R ∈,则“2a >”是“24a >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】若2a >,则必有24a >,故是充分的,若24a >,则2a >或2a <-,故不必要.因此应是充分不必要条件.19.二次函数2(0)y ax bx c a =++≠的值恒为正值的充要条件是( )A .240b ac ->B .240b ac -C .20,40a b ac >-<D .20,40a b ac -<【答案】C【解析】二次函数2(0)y ax bx c a =++≠的值恒为正值,则函数2(0)y ax bx c a =++≠的图象开口向上,且与x 轴没有交点,即20,40a b ac >-<.20.若集合{}23,A a =,{}2,4B =,则“2a =”是“{}4A B ⋂=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】∵“2a =”{}3,4A ⇒=,又{}2,4B =,⇒ “{}4A B ⋂=”;但当2a =-时仍然有{}4A B ⋂=,故“{}4A B ⋂=”不能推出 “2a =”.∴“2a =”是“⇒”的充分不必要条件.21.若p 是r 的充分非必要条件,q 是s 的必要非充分条件,且r 是s 的充分非必要条件,则p 是q 的( )条件A .充分非必要B .必要非充分C .充要D .既非充分又非必要【答案】A【解析】因为p 是r 的充分非必要条件,q 是s 的必要非充分条件,且r 是s 的充分非必要条件, 即p r ⇒,r 不能推导p ;r s ⇒,s 不能推导r ;s q ⇒,q 不能推导s ;所以p q ⇒, q 不能推出p ,即p 是q 的充分非必要;22.设集合{}{}|03,|02,""""M x x N x x a M a N =<≤=<≤∈∈那么是的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】因为N ⊆M.所以“a ∈M”是“a ∈N”的必要而不充分条件.故选B .23.“,x y 中至少有一个小于零”是“0x y +<”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】当,x y 中至少有一个小于零时,比如2,5x y =-=,此时30x y +=>,0x y +<不成立;反过来一定成立,假设结论不成立,则,x y 都不小于0,那么0x y +≥,与已知0x y +<矛盾,那么假设不成立,即,x y 中至少有一个小于零成立,所以“,x y 中至少有一个小于零”是“0x y +<”的必要不充分条件.24.“2320x x -+>”是“1x <或4x >”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】因为2320x x -+>,所以1x <或2x >,所以“2320x x -+>”是“1x <或4x >”的必要不充分条件.25.设:p “函数()225f x x mx m =-+在(],2-∞-上单调递减”, :q “0x ∀>,33823x m x +≥-”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】因为函数()225f x x mx m =-+在(],2-∞-上单调递减,所以24m -≥--,即8m ≥-.因为0x ∀>时,33828x x +≥=, 所以“0x ∀>,33823x m x +≥-”等价于38m -≤,即5m ≥-, 因为集合[)[)5,8,-+∞-+∞,所以p 是q 的必要不充分条件.26.设x ∈R ,则“x >1”是“2x >1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由1x >可得21x >成立,反之不成立,所以“1x >”是“21x >”的充分不必要条件27.设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】由“|x ﹣2|<1”得1<x <3,由x 2+x ﹣2>0得x >1或x <﹣2,即“|x ﹣2|<1”是“x 2+x ﹣2>0”的充分不必要条件,28.命题“[]1,2x ∀∈,220x a -≥”为真命题的一个充分不必要条件是() A .1a ≤B .2a ≤C .3a ≤D .4a ≤【答案】A【解析】若“[]1,2x ∀∈,220x a -≥”为真命题,可得[]22,1,2x a x ≥∈恒成立 只需2min (2)2a x ≤=, 所以1a ≤时,[]1,2x ∀∈,220x a -≥”为真命题,“[]1,2x ∀∈,220x a -≥”为真命题时推出2a ≤,故1a ≤是命题“[]1,2x ∀∈,220x a -≥”为真命题的一个充分不必要条件, 选A.29.(多选题)对任意实数a ,b ,c ,下列命题中正确的是( )A .“a b =”是“ac bc =”的充要条件B .“5a +是无理数”是“a 是无理数”的充要条件C .“a b >”是“22a b >”的充分条件D .“5a <”是“3a <”的必要条件E.“a b >”是“22ac bc >”的必要条件【答案】BDE【解析】A 中“a b =”⇒“ac bc =”为真命题,但当c =0时,“ac bc =”⇒“a b =”为假命题, 故“a b =”是“ac bc =”的充分不必要条件,故A 为假命题;B 中“a +5是无理数”⇒“a 是无理数”为真命题,“a 是无理数”⇒“a +5是无理数”也为真命题, 故“a +5是无理数”是“a 是无理数”的充要条件,故B 为真命题;C 中“a b >” ⇒ “22a b >” 为假命题,“22a b >” ⇒“a b >”也为假命题,故“a b >”是“22a b >”的即不充分也不必要条件,故C 为假命题;D 中{|3}a a <是{|5}a a <的真子集,故“5a <”是“3a <”的必要条件,故D 为真命题.E 中当c =0时,“a b >” ⇒ “22ac bc >”为假命题,“22ac bc >” ⇒ “a b >”为真命题,故“a b >”是“22ac bc >”的必要条件,故E 为真命题;30.(多选题)下列说法中正确的是( )A .“AB B =”是“B =∅”的必要不充分条件B .“3x =”的必要不充分条件是“2230x x --=”C .“m 是实数”的充分不必要条件是“m 是有理数”D .“1x =”是“1x =”的充分条件【答案】ABC【解析】由A B B =得B A ⊆,所以“B =∅”可推出“A B B =”,反之不成立,A 选项正确; 解方程2230x x --=,得1x =-或3x =,所以,“3x =”的必要不充分条件是“2230x x --=”,B 选项正确;“m 是有理数”可以推出“m 是实数”,反之不一定成立,C 选项正确; 解方程1x =,得1x =±,则“1x =”是“1x =”必要条件,D 选项错误.31.(多选题)下面命题正确的是( )A .“1a >”是“11a<”的充分不必要条件 B .命题“任意x ∈R ,则210x x ++<”的否定是“存在x ∈R ,则210x x ++≥”.C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件【答案】ABD【解析】对于A ,1110a a a -<⇔>()10a a ⇔->0a ⇔<或1a >,则“1a >”是“11a <”的充分不必要条件,故A 对;对于B ,全称命题的否定是特称命题,“任意x ∈R ,则210x x ++<”的否定是“存在x ∈R ,则210x x ++≥”,故B 对;对于C ,“2x ≥且2y ≥” ⇒ “224x y +≥”, “2x ≥且2y ≥” 是 “224x y +≥”的充分条件,故C 错;对于D ,00ab a ≠⇔≠,且0b ≠,则“0a ≠”是“0ab ≠”的必要不充分条件,故D 对; 32.(多选题)对任意实数a ,b ,c ,给出下列命题:①“a b =”是“ac bc =”的充要条件;②“5a +是无理数”是“a 是无理数”的充要条件;③“4a <”是“3a <”的必要条件;④“a b >”是“22a b >”的充分条件.其中真命题是( ).A .①B .②C .③D .④【答案】BC【解析】①由“a b =”可得ac bc =,但当ac bc =时,不能得到a b =,故“a b =”是“ac bc =”的充分不必要条件,故①错误;②因为5是有理数,所以当5a +是无理数时,a 必为无理数,反之也成立,故②正确;③当4a <时,不能推出3a <;当3a <时,有4a <成立,故“4a <”是“3a <”的必要不充分条件,故③正确.④取1a =,2b =-,此时22a b <,故④错误;。
初高中衔接教材含答案

初高中衔接教材含答案近年来,中小学教育的关注度越来越高,其中,初中到高中的衔接问题备受社会各界的关注。
为此,各地教育部门和出版社共同研发了一批针对初中到高中的衔接教材,对学生进行有针对性的培养和较为顺畅的学习体验。
一、初中到高中的衔接问题初中生和高中生之间的学习内容和学习方法存在着较大的差异。
初中的学习重点在于知识的掌握和基本能力的培养,而高中则更加注重学生的自主学习和思维能力的培养。
因此,初中学生在升入高中之后,常常会感到学习起来比较吃力,甚至有些不适应。
因此,为了帮助初中生更好地适应高中学习,许多地区的教育部门和出版社合作开发了一批针对初中到高中衔接问题的教材。
这些教材不仅针对高中学习的特点和难点,还特别注重初中阶段的教学内容和学生基本能力的培养。
二、初中到高中的衔接教材1. 人教版高中语文《人教版高中语文》作为国内顶尖的高中语文教材之一,在课堂教学中得到了广泛的应用。
该教材以重视传统文化和当代情感为特色,旨在培养学生的阅读能力和综合素养。
在衔接初中语文方面,《人教版高中语文》注重前置知识的巩固,通过回顾初中语文课程中的知识点和基本能力的培养,使学生更快地适应高中语文学习的要求。
2. 人教版高中数学《人教版高中数学》是一套系统完备、内容丰富的高中数学教材,通俗易懂、贴近实际、理论与实践结合,一直以来备受年轻一代家长和学生的信赖。
该教材在初中到高中衔接方面,注重高中数学的基本思维方式和方法,同时也重视初中数学的基础知识和能力的巩固。
通过循序渐进的教学,逐步将学生引导进入高中数学的世界。
3. 人教版高中英语《人教版高中英语》是针对普通高中课程标准而编写的一套高中英语教材,内容涵盖了普通高中英语的语音、语法、词汇、听说读写等多个方面。
在初中到高中的衔接方面,该教材注重英语能力的全面提高,同时也重视基础语言知识和能力的培养。
教材设计严谨、易懂、富有趣味,符合学生的学习习惯和兴趣爱好。
三、初中到高中的衔接教学策略1.确定适合自己的学习方法。
初升高物理衔接教材含答案

初升高物理衔接教材含答案第一章:力学基础第一节:力的概念学习目标:1. 理解力的概念。
2. 掌握力的三要素:大小、方向、作用点。
3. 学会力的表示方法。
知识点梳理:- 力是物体间的相互作用。
- 力的大小、方向、作用点共同决定了力的性质。
- 力可以用带箭头的线段表示,箭头表示方向,线段长度表示大小。
例题:1. 描述一个物体受到的重力的大小、方向和作用点。
2. 画出一个物体在斜面上受到的力的示意图。
答案:1. 重力的大小等于物体的质量乘以重力加速度(g),方向垂直向下,作用点在物体的质心。
2. 示意图中应包括物体、斜面、重力、支持力和摩擦力,其中重力垂直向下,支持力垂直于斜面向上,摩擦力沿斜面向下。
第二节:牛顿运动定律学习目标:1. 理解牛顿第一、二、三定律。
2. 能够应用牛顿定律解决简单的物理问题。
知识点梳理:- 牛顿第一定律(惯性定律):物体在没有外力作用时,将保持静止或匀速直线运动。
- 牛顿第二定律(动力定律):物体的加速度与作用力成正比,与物体质量成反比。
- 牛顿第三定律(作用与反作用定律):作用力与反作用力大小相等、方向相反。
例题:1. 解释为什么物体在没有外力作用下会保持静止或匀速直线运动。
2. 计算一个质量为10kg的物体,在受到50N的力作用下产生的加速度。
答案:1. 根据牛顿第一定律,物体具有惯性,即保持其运动状态不变的性质,除非有外力作用。
2. 根据牛顿第二定律,加速度 \( a = \frac{F}{m} \),所以 \( a= \frac{50N}{10kg} = 5m/s^2 \)。
第二章:能量与功第一节:能量守恒定律学习目标:1. 理解能量守恒定律。
2. 能够区分不同形式的能量。
知识点梳理:- 能量守恒定律:在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。
- 能量的形式:机械能、热能、电能、化学能等。
例题:1. 解释为什么在没有外力作用下,一个自由落体的物体会保持加速下落。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学初高中数学衔接教材目 录引 入 乘法公式 第一讲 因式分解 1. 1 提取公因式1. 2. 公式法(平方差,完全平方,立方和,立方差) 1. 3分组分解法1. 4十字相乘法(重、难点)1. 5关于x 的二次三项式ax2+bx+c(a≠0)的因式分解.第二讲 函数与方程 一元二次方程 根的判别式根与系数的关系(韦达定理) 2.2 二次函数二次函数y =ax 2+bx +c 的图象和性质 二次函数的三种表示方式 二次函数的简单应用第三讲三角形的“四心”乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=. 练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数第一讲 因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。
(2)=+-652x x __________________________________________________。
(3)=++652x x __________________________________________________。
(4)=--652x x __________________________________________________。
(5)()=++-a x a x 12__________________________________________________。
(6)=+-18112x x __________________________________________________。
(7)=++2762x x __________________________________________________。
(8)=+-91242m m __________________________________________________。
(9)=-+2675x x __________________________________________________。
(10)=-+22612y xy x __________________________________________________。
2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b 。
二、选择题:(每小题四个答案中只有一个是正确的)1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x (5)44152++x x 中,有相同因式的是( ) A 、只有(1)(2) B 、只有(3)(4) C 、只有(3)(5) D 、(1)和(2);(3)和(4);(3)和(5)2、分解因式22338b ab a -+得( )A 、()()3 11-+a a B 、()()b a b a 3 11-+ C 、()()b a b a 3 11-- D 、()()b a b a 3 11+- 3、()()2082-+++b a b a 分解因式得( )A 、()()2 10-+++b a b a B 、()()4 5-+++b a b a C 、()()10 2-+++b a b a D 、()()5 4-+++b a b a 4、若多项式a x x +-32可分解为()()b x x --5,则a 、b 的值是( )-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay -by x x 图1.1-4 -1 1x y图1.1-5A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( ) A 、3或9 B 、3± C 、9± D 、3±或9±三、把下列各式分解因式1、()()3211262+---p q q p 2、22365ab b a a +-3、6422--y y4、8224--b b2.提取公因式法例2 分解因式:(1) ()()b a b a -+-552 (2)32933x x x +++ 解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++ =2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++ 课堂练习:一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________。
2、()()()•-=-+-y x x y n y x m __________________。
3、()()()•-=-+-222y x x y n y x m ____________________。
4、()()()•--=-++--z y x x z y n z y x m _____________________。
5、()()•--=++---z y x z y x z y x m ______________________。
6、523623913x b a x ab --分解因式得_____________________。
7.计算99992+=二、判断题:(正确的打上“√”,错误的打上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( ) 4、()111+=+--x x xx n n n……………………………………………………………… ( )3:公式法例3 分解因式: (1)164+-a (2)()()2223y x y x --+解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2) ()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++课堂练习一、222b ab a +-,22b a -,33b a -的公因式是______________________________。
二、判断题:(正确的打上“√”,错误的打上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x ………………………… ( )2、()()()()b a b a b a b a 43 4343892222-+=-=- ………………………………… ( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把下列各式分解1、()()229n m n m ++-- 2、3132-x3、()22244+--x x 4、1224+-x x4.分组分解法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.课堂练习:用分组分解法分解多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤----⎣⎦⎣⎦=(11x x +-++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y +++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y - 2.分解因式:(1)x 2+6x +8; (2)8a 3-b 3;(3)x 2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状. 4.分解因式:x 2+x -(a 2-a ).第二讲 函数与方程一元二次方程根的判别式{情境设置:可先让学生通过具体实例探索二次方程的根的求法,如求方程的根(1)0322=-+x x (2) 0122=++x x (3) 0322=++x x }我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b acx a a -+=. ①因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-±;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1) 当Δ>0时,方程有两个不相等的实数根x 1,2(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2ba;(3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x 2-3x +3=0; (2)x 2-ax -1=0; (3) x 2-ax +(a -1)=0; (4)x 2-2x +a =0. 解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根. (2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根1x =, 2x =(3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以,①当a =2时,Δ=0,所以方程有两个相等的实数根 x 1=x 2=1;②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根 x 1=1,x 2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ), 所以①当Δ>0,即4(1-a ) >0,即a <1时,方程有两个不相等的实数根11x = 21x =②当Δ=0,即a =1时,方程有两个相等的实数根 x 1=x 2=1;③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根1x =,2x =,则有1222b bx x a a-+=+==-;221222(4)42244b b b b ac ac cx x a a a a a-+---=⋅===. 所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=ba-,x 1·x 2=ca.这一关系也被称为韦达定理. 特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即 p =-(x 1+x 2),q =x 1·x 2,所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.因此有以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0.例2 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k ×2-6=0, ∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35.所以,方程的另一个根为-35,k 的值为-7.解法二:设方程的另一个根为x 1,则 2x 1=-65,∴x 1=-35.由 (-35)+2=-5k,得 k =-7.所以,方程的另一个根为-35,k 的值为-7.例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x 1,x 2是方程的两根,由韦达定理,得 x 1+x 2=-2(m -2),x 1·x 2=m 2+4. ∵x 12+x 22-x 1·x 2=21, ∴(x 1+x 2)2-3 x 1·x 2=21,即 [-2(m -2)]2-3(m 2+4)=21, 化简,得 m 2-16m -17=0, 解得 m =-1,或m =17.当m =-1时,方程为x 2+6x +5=0,Δ>0,满足题意;当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去.综上,m =17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4 已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x ,y ,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x ,y ,则 x +y =4, ①xy =-12. ②由①,得 y =4-x ,代入②,得x (4-x )=-12,即 x 2-4x -12=0,∴x 1=-2,x 2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩ 因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程x 2-4x -12=0的两个根.解这个方程,得x 1=-2,x 2=6.所以,这两个数是-2和6.说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷.例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根.(1)求| x 1-x 2|的值;(2)求221211x x +的值; (3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-. (1)∵| x 1-x 2|2=x 12+ x 22-2 x 1x 2=(x 1+x 2)2-4 x 1x 2=253()4()22--⨯- =254+6=494,∴| x 1-x 2|=72. (2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-. (3)x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158. 说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则12b x a -+=,22b x a-=, ∴| x 1-x 2|=||||a a ==. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|=||a 中Δ=b 2-4ac ).今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0, ①且Δ=(-1)2-4(a -4)>0. ②由①得 a <4,由②得 a <174 .∴a 的取值范围是a <4.练 习1.选择题:(1)方程2230x k -+=的根的情况是 ( )(A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( )(A )m <14 (B )m >-14(C )m <14,且m ≠0 (D )m >-14,且m ≠0 2.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x += . (2)方程mx 2+x -2m =0(m ≠0)的根的情况是 .(3)以-3和1为根的一元二次方程是 .3|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根?4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.习题A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( )(A )-3 (B )3 (C )-2 (D )2(2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7;②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 ( )(A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )(A )0 (B )1 (C )-1 (D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k = .(2)方程2x 2-x -4=0的两根为α,β,则α2+β2= .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是.(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1 (D )02.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 .(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 .3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围.4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求:(1)| x 1-x 2|和122x x +; (2)x 13+x 23.5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( )(A(B )3 (C )6 (D )9(2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为( )(A )α+β≥12 (B )α+β≤12(C )α+β≥1 (D )α+β≤1 (4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c =0的根的情况是 ( )(A )没有实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )有两个异号实数根2.填空:若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = .3. 已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由; (2)求使1221x x x x +-2的值为整数的实数k 的整数值; (3)若k =-2,12x x λ=,试求λ的值. 4.已知关于x 的方程22(2)04m x m x ---=. (1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足|x 2|=|x 1|+2,求m 的值及相应的x 1,x 2.5.若关于x 的方程x 2+x +a =0的一个大于1、零一根小于1,求实数a 的取值范围.2.2 二次函数二次函数y =ax 2+bx +c 的图象和性质{情境设置:可先让学生通过具体实例探索二次函数的图象,如作图(1)2x y = (2) 2x y -= (3) 322-+=x x y 教师可采用计算机绘图软件辅助教学}问题1 函数y =ax 2与y =x 2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象.的x 2的值扩大两倍就可以了. 再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y=12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系.通过上面的研究,我们可以得到以下结论: 二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.问题2 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x+1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x-1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a 224()24b b ac a x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平图 图移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a-时,y 随着x 的增大而增大;当x =2b a-时,函数取最小值y =244ac b a -. (2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b a-时,y 随着x 的增大而减小;当x =2b a-时,函数取最大值y =244ac b a -. 上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.例1 求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.解:∵y =-3x 2-6x +1=-3(x +1)2+4, ∴函数图象的开口向下;对称轴是直线x =-1;顶点坐标为(-1,4);当x =-1时,函数y 取最大值y =4;当x <-1时,y 随着x 的增大而增大;当x >-1时,y 随着x 的增大而减小;采用描点法画图,选顶点A (-1,4)),与x 轴交于点B 和C (,与y 轴的交 图 图 图-5点为D (0,1),过这五点画出图象(如图2-5所示).说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.函数y =ax 2+bx +c 图象作图要领:(1) 确定开口方向:由二次项系数a 决定(2) 确定对称轴:对称轴方程为ab x 2-= (3) 确定图象与x 轴的交点情况,①若△>0则与x 轴有两个交点,可由方程x 2+bx +c=0求出②①若△=0则与x 轴有一个交点,可由方程x 2+bx +c=0求出③①若△<0则与x 轴有无交点。