控制方案与PID参数

合集下载

控制系统中的PID调节方法与参数优化技巧

控制系统中的PID调节方法与参数优化技巧

控制系统中的PID调节方法与参数优化技巧在自动控制系统中,PID(比例-积分-微分)控制器是一种常用的控制方式,它结合了比例、积分和微分三个部分,通过调节不同的参数可以实现对系统的稳定性和响应速度的控制。

PID控制器简单且易于实现,因此被广泛应用于各个领域的控制系统中。

本文将介绍PID调节方法以及参数优化的技巧。

1. PID调节方法1.1 比例控制(P控制)比例控制是PID调节中的基本部分,它通过比例放大被控量与参考量之间的差异,产生一个控制作用。

P控制可以提高系统的灵敏度和响应速度,缩小稳态误差,但对于系统抗干扰能力较差,容易导致系统不稳定。

1.2 积分控制(I控制)积分控制通过积分被控变量的偏差,使系统对稳态误差做出补偿。

I控制可以消除系统的稳态误差,提高系统的控制精度和稳定性,但过大的积分参数可能导致系统的超调和频率振荡。

1.3 微分控制(D控制)微分控制是通过微分变换被控变量的变化趋势,用来预测系统未来的动态响应。

D控制可以提高系统的响应速度和稳定性,减小超调,但如果微分参数设置不当,可能导致系统的噪声放大和过度补偿。

2. 参数优化技巧2.1 经验法则PID调节中的参数优化可以采用一些经验法则作为初步设置,例如:- 比例参数Kp:根据系统响应速度调整,若Kp过大将导致系统超调,若Kp过小则系统的响应速度较慢。

- 积分参数Ki:根据系统稳态误差调整,若Ki过大将导致系统超调和频率振荡,若Ki过小则无法完全消除稳态误差。

- 微分参数Kd:根据系统的抗干扰能力调整,若Kd过大将导致系统对噪声敏感,若Kd过小则无法有效预测系统未来的动态响应。

2.2 Ziegler-Nichols方法Ziegler-Nichols方法是一种经典的参数整定方法,它通过系统的临界响应特性来确定PID控制器的参数。

具体步骤如下:- 将比例参数Kp设置为零,逐渐增大,直到系统边界振荡的临界增益为Ku。

- 根据临界增益Ku,计算出比例参数Kp为Ku/2,积分时间Ti为临界振荡周期Tu*0.5,微分时间Td为临界振荡周期Tu*0.125。

PID控制原理及参数设定

PID控制原理及参数设定

PID控制原理及参数设定PID控制是一种常用的自动控制算法,它通过反馈控制的方式,根据控制对象的输出与期望目标的差异来调整输入信号,实现对控制对象的稳定控制。

PID控制由比例(P)、积分(I)和微分(D)三部分组成,分别对应了不同的控制机制。

P(比例)控制是指控制信号与误差的线性比例关系,P控制主要用于快速响应系统,能够快速减小误差,但不能完全消除误差。

P控制的公式为:u(t)=Kp*e(t),其中u(t)表示控制信号,Kp为比例增益,e(t)为误差。

通过调节比例增益Kp的大小,可以控制系统的响应速度。

I(积分)控制是指控制信号与误差的累积关系,I控制主要用于消除系统的稳态误差。

I控制的公式为:u(t) = Ki * ∫e(t)dt,其中Ki为积分增益。

通过调节积分增益Ki的大小,可以控制系统的稳态误差。

D(微分)控制是指控制信号与误差的变化率关系,D控制主要用于抑制系统的超调和震荡。

D控制的公式为:u(t) = Kd * de(t)/dt,其中Kd为微分增益,de(t)/dt为误差的变化率。

通过调节微分增益Kd的大小,可以控制系统的稳定性和响应速度。

根据PID控制的原理,控制信号可以表示为:u(t) = Kp * e(t) +Ki * ∫e(t)dt + Kd * de(t)/dt。

其中,e(t)为误差,t为时间。

在实际应用中,PID控制器还需要设置参数,包括比例增益Kp、积分增益Ki和微分增益Kd。

如何设置这些参数是设计一个有效的PID控制器的关键。

参数设定方法有很多种,常用的方法包括经验法、试验法和自整定法等。

经验法是一种基于经验规则的参数设定方法,它根据控制对象的特性和应用经验来选取参数。

经验法比较简单易用,但通常需要根据实际情况进行适当的调整。

试验法是通过试验分析控制对象的动态响应来选取参数,常用的试验方法有阶跃响应法、脉冲响应法和频率响应法等。

试验法的参数设定相对准确,但需要进行一定的试验工作,并且需要对试验数据进行分析。

PID控制中PID参数的作用是什么

PID控制中PID参数的作用是什么

PID控制中PID参数的作用是什么PID参数即比例项(P项)、积分项(I项)和微分项(D项),它们分别代表了PID控制中的三种基本控制方式。

PID算法通过调整这三个参数的大小来影响控制系统的响应特性,从而使得被控对象的控制过程更加稳定、快速和准确。

1. 比例项(Proportional Gain,Kp):比例项是PID控制器中最基本的参数之一,它根据被控对象输出与期望值之间的差异来产生控制量。

通过调整比例项的大小,可以调节控制器的输出变化率,进而影响被控对象的响应速度。

较大的比例项可以使得控制系统更加敏感,但过大的值可能导致振荡和不稳定。

2. 积分项(Integral Gain,Ki):积分项对控制系统的稳态误差(即系统输出与期望值之间的差异的积累)进行补偿。

通过积分项,可以去除系统的静态误差,使得系统具有更好的稳定性和精确性。

较大的积分项会增加控制系统的稳态精度,但过大的值可能导致系统过度调节和积分饱和。

3. 微分项(Derivative Gain,Kd):微分项通过检测被控对象输出的变化率来预测其未来的变化趋势,并减轻输出与期望值之间的差异。

微分项可以抑制系统的过冲和振荡,提高系统的动态响应。

较大的微分项可以加快系统的响应速度,但过大的值可能引入噪声和不稳定。

以上三个参数在PID控制中的作用可以总结为以下几点:1.影响系统的稳定性:适当调整PID参数可以改善控制系统的稳定性,使其更好地抵抗外部扰动和不确定性。

2.调节控制系统的响应速度:通过调整PID参数的比例,可以控制系统的响应速度,使得被控对象能够快速响应期望值的变化。

3.消除静态误差:通过调整PID参数的积分项,可以消除由于系统不完美造成的稳态误差,提高系统的精确性。

4.抑制振荡和过冲:通过调整PID参数的微分项,可以有效地抑制系统的振荡和过冲现象,使得系统的响应更加平稳和准确。

5.适应不同的被控对象:不同的被控对象具有不同的响应特性,通过调整PID参数,可以适应不同的控制对象,优化系统的控制效果。

如何整定DCS控制系统中PID参数

如何整定DCS控制系统中PID参数

如何整定DCS控制系统中PID参数一、调节器正/反作用的确定方法调节系统投自动:往往在控制方案确定好且判断出调节器的正/反作用后,最关键的是P、I、D参数如何整定,根据多年的现场工作经验,谈谈如何整定调节系统的P、I、D参数,请大家在工程中参考。

在整定调节系统的P、I、D参数前,要保证一个闭环调节系统必须是负反馈,即Ko*Kv*Kc >0。

(看上面图片)Ø调节对象Ko:阀门、执行器开大,测量PV增加,则Ko>0;反之,则Ko<0;Ø调节阀门Kv:阀门正作用(气开、电开),则Kv>0;阀门反作用(气关、电关),则Kv<0;Ko、Kv的正负由工艺对象和生产安全决定,根据Ko、Kv的正负和Ko*Kv*Kc >0,我们可以确定Kc的正负,Ø调节器Kc:若Kc>0,则调节器为反作用;若Kc<0,则调节器为正作用;软件组态中要设置正确,在装置调试和开车及P、I、D参数整定前,调节器的正/反作用务必检查,且正确无误。

1、在整定调节系统的P、I、D参数前,要保证测量准确、阀门动作灵活;2、在整定调节系统的P、I、D参数时,打好招呼,要求用户工艺操作密切注意生产运行状况,确保安全生产;3、在整定调节系统的P、I、D参数时,先投自动后串级,先投副环后主环,副环粗,主环细。

在操作站CRT上,打开调节器的整定调整画面窗口,改变给定值SP或输出值OP,给出一个工艺允许的阶跃信号,观察测量值PV变化和趋势图,不断修定PID参数,往往反复几次,直至平稳控制。

实际中,一般能达到工艺满意的一阶特性即可。

二、经验PID整定参数预置对介质为流体(气体、液体)情况,经验PID整定参数参考如下,(在出所前最好在软件组态中要设置好,到现场再细调或不动):1、对流量调节(F):Ø一般P=120~200%,I=50~100S,D=0S;Ø对防喘振系统:一般P=120~200%,I=20~40S,D=15~40S;2、对压力调节(P):Ø一般P=120~180%,I=50~100S,D=0S;Ø对放空系统:一般P=80~160%,I=20~60S,D=15~40S;3、对液位调节(L):Ø1]、大容器(直径4米、高2米以上塔罐):一般P=80~120%,I=200~900S,D=0S;Ø2]、中容器(直径2--4米、高1.5--2米塔罐):一般P=100~160%,I=80~400S,D=0S;Ø3]、小容器(直径2米、高1.5米以下塔罐):一般P=120~300%,I=60~200S,D=0S;4、对温度调节(T):一般P=120~260%,I=50~200S,D=20~60S;上述参数是经验性的东西,不是绝对的。

PID控制原理与参数整定方法

PID控制原理与参数整定方法

PID控制原理与参数整定方法一、概述PID是比例-积分-微分控制的简称,也是一种控制算法,其特点是结构改变灵活、技术成熟、适应性强。

对一个控制系统而言,由于控制对象的精确数学模型难以建立,系统的参数经常发生变化,运用控制理论综合分析要耗费很大的代价,却不能得到预期的效果,所以人们往往采用PID调节器,根据经验在线整定参数,以便得到满意的控制效果。

随着计算机特别是微机技术的发展,PID控制算法已能用微机简单实现,由于软件系统的灵活性,PID算法可以得到修正而更加完善。

我们阳江基地有数以千计的采用PID控制的调节器,用于温度控制、压力控制、流量控制,在塑杯及灌装生产过程中,发挥着重要的作用。

因此,学习PID控制的基本原理,合理的设计PID控制系统,用好、维护好这些调节器,对提高产品质量,降低废品率,节约能源具有十分重要的意义。

本课程从系统的角度,采用多种分析方法,详细讲解经典PID控制的基本原理和PID参数的整定方法,简介现代数字PID控制思想,希望对大家使用PID调节器有所帮助。

二、调节系统的品质和特性一个调节系统的品质可以用静态品质和动态品质来衡量。

所谓静态品质就是系统稳定后,被控参数与给定值间的差值的大小。

偏差愈大则静差愈大,静差愈小静态品质愈好。

当系统受到扰动后或整定在一个新值时需要在较短时间内过渡到稳定,不发生振荡和发散,这便是衡量系统动态特性的指标。

一个好的调节系统应该二个品质都好。

但动静态品质往往是相互矛盾的,要静差小,系统的放大倍数就要大,系统放大倍数愈大则系统愈不稳定,即动态品质不好。

图1-1收敛型1图1-2收敛型2图1-3发散型落图1-4振荡型图1-1至1-4是几种典型的控制曲线,只有图1-1表示动静态品质都好。

一般的调节系统都具有惯性和滞后两种特性/只是大小不同而已。

这两个特性应从控制对象,控制作用这两个方面去理解。

弄懂以上关于调节系统的几个基本概念,对于理解PID控制的原理有很大的帮助。

pid控制及pid参数设定

pid控制及pid参数设定
PID控制器及PID参数整定
授课内容:
• • • •
自动控制原理的一般概念 控制系统的性能指标 P、I、D在控制系统中的作用 PID参数整定方法
1 自动控制规律的一般概念
• 所谓自动控制,就是指在没有人直接参与的情况
下,利用控制器使被控对象(如机器、设备和生产 过程)的某些物理量(或工作状态)能自动地按照预 定的规律变化(或运行)。完成这一过程的所有元 件与装置组成的整体就称为自动控制系统。
2、PID=Proportion Integration Differentiation
按偏差的比例、积分和微分进行控制的调节器简称为 pid调节器,是连续系统中技术成熟、应用最为广泛的一 种调节器。Pid调节器结构简单,参数易于调整,在长期 应用中已积累了丰富的经验。特别在工业过程中,由于控 制对象的精确数学模型难以建立,系统的参数又经常发生 变化,运用现代控制理论分析综合要耗费很大代价进行模 型辨识,但往往不能得到预期的效果,所以人们常采用 PID调节器,并根据经验进行在线整定。由于软件系统的 灵活性,PID算法可以得到修正而更加完善。 2.1 模拟PID调节器 PID调节器是一种线性调节器,这种调节器是将设定 值w与实际输出值y进行比较构成控制偏差 • e=w–y • 并将其比例、积分、微分通过线性组合构成控制量(如图 4-11-1所示),所以简称为PID调节器。
1.3.2. 稳态响应 如果一个线性系统是稳定的,那么从任何初始条件 开始,经过一段时间就可以认为它的过渡过程已经结束, 进入了与初始条件无关而仅由外作用决定的状态,即稳态 响应。所以稳态响应是指当t 趋于无穷大时系统的输出状 态。稳态响应表征系统输出量最终复现输入量的程度,提 供系统有关稳态误差的信息,用稳态性能来描述。 由此可见,线性控制系统在输入信号作用下的性能 指标,通常由动态性能和稳态性能两部分组成。 1.3.3 稳态性能指标 稳态性能指标是表征控制系统准确性的性能指标,是一 项重要的技术指标,通常用稳态下输出量的期望值与实际 值之间的差来衡量,称为稳态误差。如果这个差是常数, 则称为静态误差,简称静误差或静差。稳态误差是系统控 制精度或抗扰动能力的一种度量。

PID控制算法精华和参数整定三大招

PID控制算法精华和参数整定三大招

PID控制算法精华和参数整定三大招PID是闭环控制算法在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器是应用最为广泛的一种自动控制器。

它具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点;而且在理论上可以证明,对于过程控制的典型对象──“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PID控制器是一种最优控制。

PID调节规律是连续系统动态品质校正的一种有效方法,它的参数整定方式简便,结构改变灵活(PI、PD、…)。

因此要实现PID算法,必须在硬件上具有闭环控制,就是得有反馈。

比如控制一个电机的转速,就得有一个测量转速的传感器,并将结果反馈到控制路线上,下面也将以转速控制为例。

PID是比例(P)、积分(I)、微分(D)控制算法但并不是必须同时具备这三种算法,也可以是PD,PI,甚至只有P算法控制。

我以前对于闭环控制的一个最朴素的想法就只有P控制,将当前结果反馈回来,再与目标相减,为正的话,就减速,为负的话就加速。

现在知道这只是最简单的闭环控制算法。

PID控制器结构PID控制系统原理结构框图对偏差信号进行比例、积分和微分运算变换后形成一种控制规律。

“利用偏差,纠正偏差”。

模拟PID控制器模拟PID控制器结构图PID控制器的输入输出关系为:比例(P)、积分(I)、微分(D)控制算法各有作用比例,反应系统的基本(当前)偏差e(t),系数大,可以加快调节,减小误差,但过大的比例使系统稳定性下降,甚至造成系统不稳定;积分,反应系统的累计偏差,使系统消除稳态误差,提高无差度,因为有误差,积分调节就进行,直至无误差;微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的趋势,产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除,因此可以改善系统的动态性能。

PID控制原理与参数的整定方法

PID控制原理与参数的整定方法

PID控制原理与参数的整定方法PID控制器是一种常用的自动控制器,在工业控制中广泛应用。

它的原理很简单,即通过不断调节控制信号来使被控制物体的输出接近给定值。

PID控制器由比例(P)、积分(I)和微分(D)三个控制参数组成。

下面将详细介绍PID控制的原理和参数整定方法。

一、PID控制原理1.比例(P)控制比例控制根据被控制量的偏差的大小,按照一定比例调节控制量的大小。

当偏差较大时,调节量增大;当偏差较小时,调节量减小。

此项控制可以使系统快速响应,并减小系统稳态误差。

2.积分(I)控制积分控制根据被控制物体的偏差的积分值来调节控制量。

积分控制的作用主要是消除系统的稳态误差。

当偏差较小但持续较长时间时,积分量会逐渐增大,以减小偏差。

3.微分(D)控制微分控制根据被控制物体的偏差的变化率来调节控制量。

当偏差的变化率较大时,微分量会增大,以提前调整控制量。

微分控制可以减小系统的超调和振荡。

综合比例、积分和微分控制,PID控制器可以通过不同的控制参数整定来适应不同的被控制物体的特性。

二、PID控制参数整定方法1.经验整定法经验整定法是根据对被控制系统的调试经验和运行情况来选择控制参数的方法。

它是通过实际试验来调整控制参数,通过观察系统的响应和稳定性来判断参数的合理性。

2. Ziegler-Nichols整定法Ziegler-Nichols整定法是根据系统的临界响应来选择PID控制参数的方法。

在该方法中,首先将I和D参数设置为零,然后不断提高P控制参数直到系统发生临界振荡。

根据振荡周期和振荡增益的比值来确定P、I和D的参数值。

3.设计模型整定法设计模型整定法是根据对被控系统的数学建模来确定PID控制参数的方法。

通过建立被控系统的数学模型,分析其频率响应和稳态特性,从而设计出合理的控制参数。

4.自整定法自整定法是通过主动调节PID控制器的参数,使被控系统的输出能够接近给定值。

该方法可以通过在线自整定或离线自整定来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临界比例度法参数对照表
衰减曲线法参数对照表
1 经验法 针对被控变量类型的不同,选择不同的PID参 数初始值,投运后再作调整。尽管简单,但即 使对于同一类型的被控变量,如温度系统,其 控制通道的动态特性差别可能很大。
2 临界比例度法
步骤: (1)先将切除PID控制器中的积分与微分作用,取比 例增益KC较小值,并投入闭环运行; (2)将KC由小到大变化,对应于某一KC值作小幅度的 设定值阶跃响应,直至产生等幅振荡; (3)设等幅振荡时所对应的振荡周期为Tcr、控制器增 益Kcr ,再根据控制器类型选择PID参数 局限性:生产过程有时不允许出现等幅振荡,或者无 法产生等幅振荡。
qo(t)
化情况),而要求液位与出料 同时“均匀”地变化。
均匀控制系统的特点
• 与常规的定值控制系统不同,而对被控变量 (CV)与控制变量(MV)都有平稳的要求; • 为解决CV与MV都希望平稳这一对矛盾,只能 要求CV与MV都渐变。均匀控制通常要求在最 大干扰下,液位在贮罐的上下限内波动,而流 量应在一定范围内平缓渐变。 • 均匀控制指的是控制功能,而不是控制方案。
经验法 :先 纯比例作用调节比例系数,使系统稳定 ;然后加入积分,减 小比例,调积分使系统稳定;最后加微分,使系统稳定。
临界比例度法:在纯比例条件下,求取等幅振荡下的 Kmax 和 T ,按下表 计算参数。
衰减曲线法:在纯比例条件下,求取4:1衰减振荡下的 K 和 T,按下表计算 参数.
y
y
y
t
t
t
y(t)
x
y(t)
t
阶跃扰动下定值系统过渡过程
t
阶跃设定变化下随动系统过渡过程
增益 Kc 的增大,使系统的调节作用增强,但稳 定性下降(当系统稳定时,调节频率提高、最 大偏差下降);
Ti 对系统性能的影响
积分作用的增强(即Ti 下降),使系统消除余 差的速度增强,但稳定性下降;
(3)常规PID参数整定方法
PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照: 温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 常用口诀: 参数整定找最佳,从小到大顺序查 先是比例后积分,最后再把微分加 曲线振荡很频繁,比例度盘要放大 曲线漂浮绕大湾,比例度盘往小扳 曲线偏离回复慢,积分时间往下降 曲线波动周期长,积分时间再加长 曲线振荡频率快,先把微分降下来 动差大来波动慢。微分时间应加长 理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低
控制方案与PID参数整定
主讲人:刘宝珠
1. 1.1 控制系统组成
• 单回路控制系统由控 制器、控制阀、测量 变送器和受控对象四 部分组成。
设定值R 偏差e
• 名词术语及各环节功能 • 受控对象:控制系统中反 映操纵变量、扰动与受控 变量之间关系的环节。 • 控制阀:系统末级控制元 件,执行器。
扰动f
控制器 GC(s)
控制变量u
控制阀 GV(s)
操纵变量z
受控对象 GP(s)
受控变量y
测量值e
检测变送器 GM(s)
二. 均匀控制系统
当塔甲的进料量变化时, 希望塔甲的液位h(t)与出料 qo(t)
qi(t) 塔 甲 h(t) NhomakorabeaLC塔 乙
同时平稳,以确保后续设备进
料波动的减少。
这完全不同于单纯的液位 控制系统(那里只关心液位的 平稳,而不关注控制变量的变
相关文档
最新文档