异方差与自相关问题

合集下载

异方差习题及自相关1

异方差习题及自相关1

DW检验:过去曾一度流行。但只能检验一阶自相 关且要求扰动项服从严格外生性假设。不实用。
使用OLS+异方差自相关稳健的标准差:仍然使用 OLS来估计回归系数,但使用“异方差自相关稳健的 标准差”(Heteroskedasticity and Autocorrelation Consistent Standard Error,简记HAC).这种方法被称为 Newey-West估计法,它只改变标准差的估计值,并 不改变回归系数的估计值。
内插值或季节调整时,则从理论上可判断存在自相关。
统计局提供的某些数据可能已经事先经过了这些人为 处理。
设定误差:如果模型设定中遗漏了某个自相关的解 释变量,并被纳入到了扰动项中,则会引起扰动项 的自相关。
画图:可以将残差et与之后残差et-1画成散点图, 也可以画自相关与偏相关图,显示各阶样本自相关 系数。
1下列关于扰动项协方差矩阵的假设,不存在异方 差的是( )
A B C D
1, 2,3
VAR(i
)
4,
5,
6
7,8,9
1, 0, 0
VAR(i
)
0,
5,
0
0, 0,9
1, 0,1
VAR(i
)
0,1,
0
0, 0,1
0.3, 0, 0
VAR(i
)
0,
0.3,
0
0, 0, 0.3
项用0来代替,以保持样本容量仍为n,使用统计量
这是stata默认的方法
Box-Pierce Q检验:定义残差的各阶样本自相关系 数为
用这个自相关系数平方和的n倍作为统计变量。 经过改进的Ljuang-Box Q统计量为

自相关和异方差处理顺序

自相关和异方差处理顺序

自相关和异方差处理顺序引言自相关和异方差是时间序列分析中常见的两种问题,它们影响了模型的准确性和可靠性。

在进行时间序列建模时,需要处理这些问题,以确保模型的有效性。

本文将深入探讨自相关和异方差处理的顺序,并讨论不同处理顺序的影响。

什么是自相关和异方差自相关自相关是指时间序列中当前观测值与之前观测值之间的相关性。

它衡量的是时间序列中各个观测值之间的依赖关系。

自相关可以用自相关函数(ACF)图来表示,通过观察ACF图,可以判断时间序列是否存在自相关。

异方差异方差是指时间序列中方差不稳定的特征。

在时间序列中,方差可能随着时间的推移发生变化,这会导致模型的拟合不准确。

异方差可以用方差函数(VCF)图来表示,通过观察VCF图,可以判断时间序列是否存在异方差。

自相关和异方差处理的重要性自相关和异方差对时间序列建模的准确性和可靠性有重要影响,它们需要被处理以获得可靠的模型结果。

•自相关的存在会导致参数估计不准确,预测结果失真。

如果存在自相关,模型会无法捕捉到序列的真实动态,导致预测结果不准确。

•异方差使得模型的残差不符合正态分布,违背了建模的基本假设。

这会使得模型的显著性检验和置信区间估计不可靠,影响模型的有效性。

因此,为了获得可靠的模型结果,需要对自相关和异方差进行处理。

自相关和异方差处理顺序的影响自相关和异方差的处理顺序会对最终的模型结果产生影响。

不同的处理顺序可能导致不同的模型结构和参数估计。

先处理自相关后处理异方差如果先处理自相关再处理异方差,可能会导致如下影响:1.自相关处理可能会改变时间序列的动态特征。

当我们去除自相关时,可能会削弱序列中的一些重要信息,导致模型无法准确捕捉到序列的动态变化。

2.异方差处理可能会影响自相关的结构。

当我们对残差进行异方差处理时,可能会改变残差序列的结构,从而使得自相关的估计失真。

先处理异方差后处理自相关如果先处理异方差再处理自相关,可能会产生如下影响:1.异方差处理可能改变原始序列的动态特征。

异方差与自相关

异方差与自相关

七、 异方差与自相关一、背景我们讨论如果古典假定中的同方差和无自相关假定不能得到满足,会引起什么样的估计问题呢?另一方面,如何发现问题,也就是发现和检验异方差以及自相关的存在性也是一个重要的方面,这个部分就是就这个问题进行讨论。

二、知识要点1、引起异方差的原因及其对参数估计的影响2、异方差的检验(发现异方差)3、异方差问题的解决办法4、引起自相关的原因及其对参数估计的影响5、自相关的检验(发现自相关)6、自相关问题的解决办法 (时间序列部分讲解) 三、要点细纲1、引起异方差的原因及其对参数估计的影响原因:引起异方差的众多原因中,我们讨论两个主要的原因,一是模型的设定偏误,主要指的是遗漏变量的影响。

这样,遗漏的变量就进入了模型的残差项中。

当省略的变量与回归方程中的变量有相关关系的时候,不仅会引起内生性问题,还会引起异方差。

二是截面数据中总体各单位的差异。

后果:异方差对参数估计的影响主要是对参数估计有效性的影响。

在存在异方差的情况下,OLS 方法得到的参数估计仍然是无偏的,但是已经不具备最小方差性质。

一般而言,异方差会引起真实方差的低估,从而夸大参数估计的显著性,即是参数估计的t 统计量偏大,使得本应该被接受的原假设被错误的拒绝。

2、异方差的检验 (1)图示检验法由于异方差通常被认为是由于残差的大小随自变量的大小而变化,因此,可以通过散点图的方式来简单的判断是否存在异方差。

具体的做法是,以回归的残差的平方2i e 为纵坐标,回归式中的某个解释变量i x 为横坐标,画散点图。

如果散点图表现出一定的趋势,则可以判断存在异方差。

(2)Goldfeld-Quandt 检验Goldfeld-Quandt 检验又称为样本分段法、集团法,由Goldfeld 和Quandt 1965年提出。

这种检验的思想是以引起异方差的解释变量的大小为顺序,去掉中间若干个值,从而把整个样本分为两个子样本。

用两个子样本分别进行回归,并计算残差平方和。

异方差、自相关、多重共线性比较(计量经济学)

异方差、自相关、多重共线性比较(计量经济学)
Glejser检验
基本思想:
由OLS法得到残差e,取e的绝对值,然后将此绝对值对某个解释变量X回归,根部回归模型的显著性和拟合优度来判断是否存在异方差。
操作步骤:
1.根据样本数据建立回归模型,并求残差序列e.
2.用残差绝对值对X进行回归,由于|e|与X的真实函数形式并不知道,可用各种函数形式去试验,从中选择最佳形式。
2.quick/equation estimation输入“e2 c e2(-1) e2(-2) e2(-3) e2(-4) e2(-5) e2(-6)”
3.view/residual diagnostics/heteroskedasticity tests,选择arch。
2.Quick/graph,在series list对话框中输入“e(-1) e”,选择scatter’,得到e(-1)与e的散点图。
方法二:1.用OLS估计Resid→e。
2.Quick/graph,在series list对话框中输入“e”,得到e随时间t的变化图示。
操作思想
操作步骤
适用性
软件操作
实际检验中可逐次向更高阶检验,并结合辅助回归中滞后项参数的显著性去帮助判断自相关的阶数。
ห้องสมุดไป่ตู้DW检验
操作思想:
DW与ρ的关系:DW≈2(1-ρ)
ρ的取值范围0≤DW≤4.
根据样
本容量n和解释变量的数目k'(不包括常数项),查DW分布表,可得临界值dl和du,
DW取值范围
自相关状态
[0,dl]
正自相关
(dl,du]
5.判断。给定显著性水平α,查F分布表,得临界值。 > ,拒绝 ,反之不拒绝 。
适用性:
该方法得到的F分布是近似的,而且只是对异方差是否存在进行判断,在多个解释变量的情况下,对判断是哪一个变量引起异方差还存在局限。此检验方法也可将样本分为多个组,从中任选两个组进行检验。

统计分析与方法-第七章 回归分析2-异方差与自相关

统计分析与方法-第七章 回归分析2-异方差与自相关

1.000 . 15 .443 .098 15 .721** .002 15
**. Correlation is significant at the 0.01 level (2-tailed).
因此选取注册资本构造权函数
最优权数的幂指数确定
Source variable.. 注册资本 Dependent variable.. 销销收收 Log-likelihood Function = -125.581891 POWER value = -2.000 Log-likelihood Function = -122.148284 POWER value = -1.500 Log-likelihood Function = -118.756247 POWER value = -1.000 Log-likelihood Function = -115.440464 POWER value = -.500 Log-likelihood Function = -112.257523 POWER value = .000 Log-likelihood Function = -109.297553 POWER value = .500 Log-likelihood Function = -106.695645 POWER value = 1.000 Log-likelihood Function = -104.627066 POWER value = 1.500 Log-likelihood Function = -103.261903 POWER value = 2.000 Log-likelihood Function = -102.682848 POWER value = 2.500 Log-likelihood Function = -102.833168 POWER value = 3.000 The Value of POWER Maximizing Log-likelihood Function = 2.500

eviews异方差、自相关检验与解决办法

eviews异方差、自相关检验与解决办法

eviews异方差、自相关检验与解决办法一、异方差检验:1.相关图检验法LS Y C X 对模型进行参数估计GENR E=RESID 求出残差序列GENR E2=E^2 求出残差的平方序列SORT X 对解释变量X排序SCAT X E2 画出残差平方与解释变量X的相关图2.戈德菲尔德——匡特检验已知样本容量n=26,去掉中间6个样本点(即约n/4),形成两个样本容量均为10的子样本。

SORT X 将样本数据关于X排序SMPL 1 10 确定子样本1LS Y C X 求出子样本1的回归平方和RSS1SMPL 17 26 确定子样本2LS Y C X 求出子样本2的回归平方和RSS2计算F统计量并做出判断。

解决办法3.加权最小二乘法LS Y C X 最小二乘法估计,得到残差序列GRNR E1=ABS(RESID) 生成残差绝对值序列LS(W=1/E1) Y C X 以E1为权数进行加权最小二成估计二、自相关1.图示法检验LS Y C X 最小二乘法估计,得到残差序列GENR E=RESID 生成残差序列SCAT E(-1) E et—et-1的散点图PLOT E 还可绘制et的趋势图2.广义差分法LS Y C X AR(1) AR(2)首先,你要对广义差分法熟悉,不是了解,如果你是外行,我奉劝你还是用eviews来做就行了,其实我想老师要你用spss无非是想看你是否掌握广义差分,好了,废话不多说了。

接着,使用spss16来解决自相关。

第一步,输入变量,做线性回归,注意在Liner Regression 中的Statistics中勾上DW,在save中勾Standardized,查看结果,显然肯定是有自相关的(看dw值)。

第二步,做滞后一期的残差,直接COPY数据(别告诉我不会啊),然后将残差和滞后一期的残差做回归,记下它们之间的B指(就是斜率)。

第三步,再做滞后一期的X1和Y1,即自变量和因变量的滞后一期的值,也是直接COPY。

如何应付异方差、自相关、多重共线性

如何应付异方差、自相关、多重共线性

异方差:(Heteroscedasticity)一如何检测?①假设我们做一个回归,求出β1、β2、β3,然后返回求出序列{Ut},现在要检测{Ut}是不是异方差的。

②设立辅助方程:既然假设是异方差,那么我们就假设{Ut}与X存在某种关系,这种关系比较复杂,只要我们证明α1、α2、α3……不为0,即可③构建新的统计量:T·R2,先人曾经证明过其服从 卡方(m)分布。

④最后将算出来的T·R2值与卡方分布的临界值比较,……。

二、如何应对?①如果异方差的形式已知,我们可以通过GLS(广义二乘法)来处理:举例说明:②如果异方差的形式未知自相关:(Autocorrelation)一如何检测?我们直接可以看DW值,注意这个ρ值is the残差项之间的estimated correlation coefficient.也可以用另外一种方法:二如何应对?①如果自相关的形式已知•If the form of the autocorrelation is known, we could use a GLS procedureBut such procedures that “correct” for autocorrelation require assumptions about the form of the autocorrelation.②未知:构建动态模型,如:三多重共线性:(Multicollinearity)①如何检测:look at the matrix of correlations between the individual variables.另外:R2 will be high but the individual coefficients will have high standard errors也可能存在多重共线性。

②如何解决:。

【总结】计量经济学异方差性、多重共线性、自相关的联系与区别知识总结

【总结】计量经济学异方差性、多重共线性、自相关的联系与区别知识总结

《计量经济学》中多重共线性、异方差性、自相关三者之间的联系与区别首先我们先来回顾一下经典线性回归模型的基本假设:1、为什么会出现异方差性我们可以从一下两方面来分析:第一,因为随即误差项包括了测量误差和模型中被省略的一些因素对因变量的影响;第二,来自不同抽样单元的因变量观察值之间可能差别很大。

因此,异方差性多出现在截面样本之中。

至于时间序列,则由于因变量观察值来自不同时期的同一样本单元,通常因变量的不同观察值之间的差别不是很大,所以异方差性一般不明显。

含义及影响:y=X β+ε,var(εi )var(εj ), ij ,E(ε)=0,或者记为212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭即违背假设3。

用OLS 估计,所得b 是无偏的,但不是有效的。

111(')'(')'()(')'b X X X y X X X X X X X βεβε---==+=+由于E(ε)=0,所以有E(b )=β。

即满足无偏性。

但是,b 的方差为1111121var(|)[()()'][(')''(')|] (')'['|](') (')'()(')b X E b b E X X X X X X X X X X E X X X X X X X X X X ββεεεεσ------=--===Ω其中212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭2、自相关产生的原因:(1)、经济数据的固有的惯性带来的相关 (2)、模型设定误差带来的相关 (3)、数据的加工带来的相关 含义及影响:cov(,)0,i j i j εε≠≠影响:和异方差一样,系数的ls 估计是无偏的,但不是有效的。

D -W 检验(Durbin -Watson )221212222121212222112112122211221122121()()()2()()222222(1)n i i i n i i n n n i i i i i i i n i i n n n i i i i i i i n n i i n i i i nn n i i i i nn i ie e d e e e e e e e e e e e e e e e e e e e e e e ρρ=-===-=-====-==-===∑-=∑∑+∑-∑=∑∑+∑-∑--=∑∑+=--∑∑+=--∑≈-其中2121n i i i n i ie e e ρ=-=∑=∑是样本一阶自相关函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
与 b 。 a 与 b 的线性相关系数,称为
q
z
的等级相关系数 。
(ai a )(bi b ) rs (ai a ) 2 (bi b ) 2
6 (ai bi ) 2 rs 1 n(n 2 1)
§5.2
等级相关检验
异方差问题
(a) 完成模型的OLS估计,获取残差数据
X 11 f ( X j1 ) X 12 f ( X j2 ) X 1n f ( X jn )

X k1 f ( X j1 ) X k2 f ( X j2 ) X kn f ( X jn )
~ Y
Y f (X j )
~ Xi
Xi f (X j )
1 1 1
X 11 X 12 X 1n

Y1 X k 1 f ( X j1 ) Y2 X k2 f ( X j2 ) Y n X kn f ( X jn )
1 f ( X j1 ) 1 f ( X j2 ) 1 f ( X jn )
第五章
异方差与自相关问题
除了本章讨论所涉及的同方差性与不自相关性以外,
关于线性回归模型的其它假定在本章中都成立。 ——广义最小平方估计; ——异方差模型及其估计; ——自相关模型及其估计; ——异方差模型、自相关模型的预测。
§5.1
广义最小平方法
同方差且不自相关
cov(U ) 2 I cov(U ) 2
ei ;
(b) 选择可能与异方差有关的解释变量 rs ( j ),计算变量 X j与变

e 的等级相关系数
(c) 计算统计量
X
j


1 rs2 ( j ) (d)T j 近似服从自由度为n 2 的 t 分布。根据显著性水平
2

2
Tj
rs ( j ) n 2

及自由度 n 2,查取 t 分布临界值 t 。如果 T j t ,则判定
(一)异方差概念
异方差问题
var(U i ) EU i2 i
2
i2
(i 1,2,, n)不全相同
var(Yi ) var(U i )
异方差概念理解 (二)异方差的检测
U i Yi ( 0 1 X 1i k X ki )
ˆ ˆ X ˆ X ) ei Yi ( 0 1 1i k ki
2 n )的观测值。再对模型中的其余变量,以 c 4
的观测值,并使剩余的
ei2
A
A
ei2
B
2 F e i (c)构造统计量
ei2或 F ei2 ei2 ; B
B A
(d)根据显著性水平 ,以及双自由度 n c (k 1) ,查取 F 分布临 界值 F 。若经比较 F F ,则接受模型存在单调形式的异方差,否 则拒绝异方差。
对于与具有较小方差相应的残差,给以较大的权数,使其在确定回 归函数时,起较为重要的作用。或者说使回归函数主要参照那些对应 较小方差的样本点而被决定。
§5.3
(二)参数
异方差模型的估计
1 d1 P 1 dn
d i 的估计

散点图( X , e ji i
) e f (X j) V
e 0 1 X j
1 e 0 1 X j
几种常见的可供参考的函数形式:
e 0 1 X j
取 d 为函数 f ( X j ) 中的可变部分 : X j
1 X j
Xj
§5.3
异方差模型的估计
(三)异方差模型的广义最小平方估计
Y1 Y2 Y n
三个所谓协方差矩阵
(a)OLS估计 ˆ 的协方差矩阵
ˆ ) 2 ( X X ) 1 X X ( X X ) 1 cov(
(b)广义最小平方估计
的协方差矩阵
~
cov( ) 2 ( X 1 X )1
(c)伪协方差矩阵
~
2 ( X X ) 1
§5.2
1. 图示法
( X ji , Yi )
( X ji , ei )
§5.2
2. 等级相关检验 :
设变量
异方差问题
等级相关系数
q
}
i 1, , n
按照某种性能,同方向分别指定各观测值的等级:
{ai , bi }
并由此产生等级变量 与
i 1, , n
ˆ 0.5160 0.0668 X Y
模型存在单调形式的异方差,否则拒绝异方差。
§5.2
3. F 检验
异方差问题
(a)选择可能与异方差有关的解释变量 X j 。将 X j的样本观测值由小到
大进行排列,然后从这一排列的中心删去约 n c
两个子列具有相同数目(
的观测值序号为准,进行相应的删与留,形成A、B两个子样本; (b)两个子样本分别进行OLS估计,获取两个残差平方和:
2
§5.3
异方差模型的估计
(一)广义最小平方估计对于异方差模型的意义
1 2 d 1 1 2 dn
1

~ 1 ~ 1 2 ~ ~~ ~ ~~ (Y X ) (Y X ) (Y X ) (Y X ) 2 ei di
PP I
异方差或自相关
正定
(~)
Y X U

~ ~ ~ Y X U
——(~)模型满足关于线性回归模型的全部基本假定,(~)模型
的普通最小平方估计将给出系数 的线性无偏最小方差估计。
( X 1 X ) 1 X 1Y
~
§5.1
广义最小平方法
~ X0
1 f (X j )
i 1, , k
~ ~ ~ ~ ~ Y 0 X 0 1 X 1 k X k U
§5.3
异方差模型的估计
(四)异方差模型示例5.1 设 Y 表示商场利润总额,X表示商场销售收入。北京市20家最大 的百货商店的销售资料 ,商场按照销售收入规模从大到小排序。
相关文档
最新文档