全等三角形章末重难点题型分类练习

合集下载

全等三角形题型分类及练习

全等三角形题型分类及练习

全等三角形知识要点② 全等三角形面积相等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 3. 请填空1) 全等形的概念两个______________的图形叫全等形。

2) 全等形的性质全等图形的________和__________都相同。

3) 全等三角形的判定____________________________________________________ 4)角平分线的性质角平分线的性质:___________________________ 5)角平分线的判定角平分线的判定的判定定理:_________________________________________ 6)三角形角平分线的性质三角形的三条内角平分线交于一点,并且这一点到三条边的距离相等。

题型汇总一、填空题(3分×10=30分) 题型:边角边证明三角形全等 1.如图(1),△ABC 中,AB =AC ,AD 平分∠BAC ,则__________≌__________.2.如图4,已知AB=BE ,BC=BD ,∠1=∠2,那么图中 ≌ ,AC= ,∠ABC= .3、如图,AB =AD ,∠BAD =∠C AE ,AC=AE ,求证:CB=ED4、已知:如图,AB =CD ,AB ∥DC. 求证:,AD∥BC , AD =BCAB CDE5、如图,D 、E 在BC 上,且BD=CE ,AD=AE ,∠ADE=∠AED ,求证:AB=AC 。

6、如图,已知AB=AD ,且AC 平分∠BAD ,求证:BC=DC题型:角角边证明三角形全等 1.如图(3),若∠1=∠2,∠C =∠D ,则△ADB ≌__________,理由______________________.2.如图(5),AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,交BD 于P ,则PD __________PE (填“<”或“>”或“=”).AB C D题型:角边角证明三角形全等1.如图(4),∠C=∠E,∠1=∠2,AC=AE,则△ABD按边分是__________ 三角形.2.(5分)已知EF是AB上的两点,AE=BF,AC∥BD,且AC=DB,求证:CF=DE.题型:边边边证明三角形全等1.如图(6),△ABC中,AB=AC,现利用证三角形全等证明∠B=∠C,若证三角形全等所用的公理是SSS公理,则图中所添加的辅助线AD应是____________________________.题型:角平分线的应用1、如图,在△AB C中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为___________。

全等三角形知识点章末重难点题型(举一反三)

全等三角形知识点章末重难点题型(举一反三)

专题1.3全等三角形章末重难点题型【考点1全等三角形的性质(线段的和差)】【方法点拨】解决此类问题要抓住全等三角形的对应边相等,利用线段相等进行等量代换即可求解.【例1】(2020春•万州区期末)如图,△ABC≌△DEC,A和D,B和E是对应点,B、C、D在同一直线上,且CE=5,AC=7,则BD的长为()A.12B.7C.2D.14【分析】根据全等三角形的性质即可得到结论.【答案】解:如图,△ABC≌△DEC,A和D,B和E是对应点,B、C、D在同一直线上,且CE=5,AC=7,∴BC=EC=5,CD=AC=7,∴BD=BC+CD=12.故选:A.【点睛】本题主要考查的是全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.【变式1-1】(2019秋•秦淮区期末)如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.7【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【答案】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∵CF=EF﹣EC=7﹣5=2.故选:A.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.【变式1-2】(2019秋•邳州市期中)如图,点B、E、A、D在同一条直线上,△ABC≌△DEF,AB=7,AE=2,则AD的长是()A.4B.5C.6D.7【分析】根据全等三角形的性质可得AB=ED,再根据等式的性质可得EB=AD,进而可得答案.【答案】解:∵△ABC≌△DEF,∴AB=ED,∴AB﹣AE=DE﹣AE,∴EB=AD,∵AB=7,AE=2,∴EB=5,∴AD=5.故选:B.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等.【变式1-3】(2019秋•拱墅区校级期中)若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()A.3B.4C.1或3D.3或5【分析】根据全等求出DE=AB=2,DF=AC=4,根据△DEF的周长为奇数求出EF的长为奇数,再根据EF长为奇数和三角形三边关系定理逐个判断即可.【答案】解:∵△ABC≌△DEF,AB=2,AC=4,∴DE=AB=2,DF=AC=4,∵△DEF的周长为奇数,∴EF的长为奇数,D、当EF=3或5时,符合EF的长为奇数和三角形的三边关系定理,故本选项正确;A、当EF=3时,由选项D知,此选项错误;B、当EF=4时,不符合EF为奇数,故本选项错误;C、当EF=1或3时,其中1无法构成三角形,故本选项错误;故选:D.【点睛】本题考查了全等三角形的性质和三角形三边关系定理的应用,能正确根据全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【考点2全等三角形的性质(角的计算)】【方法点拨】解决此类问题要抓住全等三角形的对应角相等,利用角度之间的关系进行等量代换即可求解. 【例2】(2019秋•江北区期末)如图,在△ABC中,∠A=30°,∠ABC=50°,若△EDC≌△ABC,且A,C,D在同一条直线上,则∠BCE=()A.20°B.30°C.40°D.50°【分析】根据在△ABC中,∠A=30°,∠ABC=50°,可以得到∠DCB的度数,再根据△EDC≌△ABC,可以得到∠ECA的度数,从而可以求得∠BCE的度数.【答案】解:∵在△ABC中,∠A=30°,∠ABC=50°,∴∠BCD=80°,∵△EDC≌△ABC,∴∠DCE=∠BCA,∵∠DCE=∠DCB+∠BCE,∠BCA=∠BCE+∠ECA,∴∠DCB=∠ECA,∴∠ECA=80°,∴∠BCE=180°﹣∠DCB﹣∠ECA=180°﹣80°﹣80°=20°,故选:A.【点睛】本题考查全等三角形的性质,解答本题的关键是明确题意,利用全等三角形的性质和数形结合的思想解答.【变式2-1】(2020春•南岗区校级期中)如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B =∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB为()A.40°B.50°C.55°D.60°【分析】设AD与BF交于点M,要求∠DFB的大小,可以在△DFM中利用三角形的内角和定理求解,转化为求∠AMC的大小,再转化为在△ACM中求∠ACM就可以.【答案】解:设AD与BF交于点M,∵∠ACB=105,∴∠ACM=180°﹣105°=75°,∠AMC=180°﹣∠ACM﹣∠DAC=180°﹣75°﹣10°=95°,∴∠FMD=∠AMC=95°,∴∠DFB=180°﹣∠D﹣∠FMD=180°﹣95°﹣25°=60°.故选:D.【点睛】本题考查了全等三角形的性质,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.【变式2-2】(2019秋•洛阳期中)如图,△ABC≌△AED,连接BE.若∠ABC=15°,∠D=135°,∠EAC =24°,则∠BEA的度数为()A.54°B.63°C.64°D.68°【分析】直接利用全等三角形的性质结合三角形内角和定理得出∠BAE=54°,进而得出答案.【答案】解:∵△ABC≌△AED,∠D=135°∴∠C=∠D=135°,AB=AE,∴∠ABE=∠AEB,∵∠ABC=15°,∠D=∠C=135°,∴∠BAC=30°,∵∠EAC=24°,∴∠BAE=54°,则∠BEA 的度数为:12×(180°﹣54°)=63°. 故选:B .【点睛】此题主要考查了全等三角形的性质,正确得出∠BAE =54°是解题关键.【变式2-3】(2020春•沙坪坝区校级期末)如图,△ABC ≌△ADE ,且AE ∥BD ,∠BAD =130°,则∠BAC 度数的值为 .【分析】根据全等三角形的性质,可以得到AB =AD ,∠BAC =∠DAE ,从而可以得到∠ABD =∠ADB ,再根据AE ∥BD ,∠BAD =130°,即可得到∠DAE 的度数,从而可以得到∠BAC 的度数.【答案】解:∵△ABC ≌△ADE ,∴AB =AD ,∠BAC =∠DAE ,∴∠ABD =∠ADB ,∵∠BAD =130°,∴∠ABD =∠ADB =25°,∵AE ∥BD ,∴∠DAE =∠ADB ,∴∠DAE =25°,∴∠BAC =25°,故答案为:25°.【点睛】本题考查全等三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【考点3全等三角形的判定(选择条件)】【方法点拨】判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【例3】(2020春•常熟市期末)如图,点C 、D 分别在BO 、AO 上,AC 、BD 相交于点E ,若CO =DO ,则再添加一个条件,仍不能证明△AOC ≌△BOD 的是( )A.∠A=∠B B.AC=BD C.∠ADE=∠BCE D.AD=BC【分析】根据题目给出的条件结合全等三角形的判定定理分别分析即可.【答案】解:A、可利用AAS证明△AOC≌△BOD,故此选项不合题意;B、不可利用SSA证明△AOC≌△BOD,故此选项符合题意;C、根据三角形外角的性质可得∠A=∠B,再利用AAS证明△AOC≌△BOD,故此选项不合题意;D、根据线段的和差关系可得OA=OB,再利用SAS证明△AOC≌△BOD,故此选项不合题意.故选:B.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式3-1】(2020春•崇川区期末)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.∠B=∠E,∠A=∠D D.BC=DC,∠A=∠D【分析】根据全等三角形的判定方法分别进行判定即可.【答案】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;D、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式3-2】(2020春•竞秀区校级期末)如图,AB=DC,BF=CE,需要补充一个条件,就能使△ABE≌△DCF,小明给出了四个答案:①AE=DF;②AE∥DF;③AB∥DC;④∠A=∠D,其中正确的是()A.①③B.①②C.①②③D.①②③④【分析】先求出BE=CF,根据平行线的性质得出∠AEF=∠DFC,再根据全等三角形的判定定理推出即可.【答案】解:∵BF=CE,∴BE=CF.①AE=DF时,在△ABE和△DCF中,{AB=DCAE=DFBE=CF,∴△ABE≌△DCF(SSS);故①正确;②∵AE∥DF,∴∠AEF=∠DFC.在△ABE和△DCF中,AB=DC,BE=CF,∠AEF=∠DFC.不能判定△ABE与△DCF全等,故②不正确;③∵AB∥DC,∴∠B=∠C,在△ABE和△DCF中,{AB=DC ∠B=∠C BE=CF,∴△ABE≌△DCF(SAS);故③正确;④在△ABE和△DCF中,AB=DC,BE=CF,∠A=∠D.不能判定△ABE与△DCF全等,故④不正确;故选:A.【点睛】本题考查了平行线的性质,全等三角形的判定的应用,能正确运用全等三角形的判定定理进行推理是解此题的关键.【变式3-3】(2020春•金牛区期末)如图,已知:在△AFD和△CEB,点A、E、F、C在同一直线上,在给出的下列条件中,①AE=CF,②∠D=∠B,③AD=CB,④DF∥BE,选出三个条件可以证明△AFD ≌△CEB的有()组.A.4B.3C.2D.1【分析】根据题目中的条件,先把AE=CF和DF∥BE能够得到的条件写出来,然后再根据题意,写出其中的三个为条件,是否可以证明△AFD≌△CEB,本题得以解决.【答案】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∴若①②③为条件,不能证明△AFD≌△CEB,若①②④为条件,能证明△AFD≌△CEB(AAS),若①③④为条件,不能证明△AFD≌△CEB,若②③④为条件,能证明△AFD≌△CEB(AAS),故选:C.【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用全等三角形的判定方法解答.【考点4全等三角形的判定(判定依据)】【方法点拨】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【例4】(2019秋•广安期末)如图,在∠AOB 的两边上,分别取OM =ON ,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分∠AOB 的依据是( )A .SSSB .SASC .AASD .HL【分析】利用判定方法“HL ”证明Rt △OMP 和Rt △ONP 全等,进而得出答案.【答案】解:在Rt △OMP 和Rt △ONP 中,{OM =ON OP =OP, ∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP =∠NOP ,∴OP 是∠AOB 的平分线.故选:D .【点睛】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.【变式4-1】(2019秋•江津区期末)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与点M ,N 重合,过角尺顶点C 作射线OC .由此作法便可得△MOC ≌△NOC ,其依据是( )A .SSSB .SASC .ASAD .AAS【分析】由作图过程可得MO =NO ,NC =MC ,再加上公共边CO =CO 可利用SSS 定理判定△MOC ≌△NOC .【答案】解:∵在△ONC 和△OMC 中{ON =OMCO =CO NC =MC,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【点睛】此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.【变式4-2】(2019秋•西宁期末)如图,P A⊥OM,PB⊥ON,垂足分别为A,B,P A=PB.则△OAP≌△OBP的依据不可能是()A.SSS B.SAS C.AAS D.HL【分析】先根据角平分线的性质定理的逆定理得到∠POA=∠POB,然后根据三角形全等的判定方法对各选项进行判断.【答案】解:∵P A⊥OM,PB⊥ON,∴∠OAP=∠OBP=90°,而P A=PB,∴OP平分∠AOB,即∠POA=∠POB,∴可根据:“SAS”或“AAS”或“AAS”判断△OAP≌△OBP.故选:A.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法.【变式4-3】(2019秋•正定县期中)一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块和以前一样的玻璃,你认为她带哪两块去玻璃店了()A.带其中的任意两块B.带1,4或3,4就可以了C.带1,4或2,4就可以了D.带1,4或2,4或3,4均可【分析】要想买一块和以前一样的玻璃,只要确定一个角及两条边的长度或两角及一边即可,即简单的全等三角形在实际生活中的应用.【答案】解:由图可知,带上1,4相当于有一角及两边的大小,即其形状及两边长确定,所以两块玻璃一样;同理,3,4中有两角夹一边,同样也可得全等三角形;2,4中,4确定了上边的角的大小及两边的方向,又由2确定了底边的方向,进而可得全等.故选:D.【点睛】本题考查了全等三角形的判定;熟练掌握全等三角形的判定,能够联系实际,灵活应用所学知识.【考点5全等三角形的判定与性质(基础证明)】【方法点拨】全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【例5】(2020春•工业园区期末)已知:如图,点A、E、C同一条直线上,AB⊥BC,AD⊥DC,AB=AD.求证:BE=DE.【分析】根据HL证明Rt△ABC与Rt△ADC全等,利用全等三角形的性质得出∠BAE=∠DAE,进而利用SAS证明△ABE≌△ADE,进而解答即可.【答案】证明:∵AB⊥BC,AD⊥DC,∴在Rt△ABC与Rt△ADC中{AB=ADAC=AC,∴Rt△ABC≌Rt△ADC(HL),∴∠BAE=∠DAE,在△ABE与△ADE中{AB =AD ∠BAE =∠DAE AE =AE,∴△ABE ≌△ADE (SAS ),∴BE =DE .【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.【变式5-1】(2020•鞍山)如图,在四边形ABCD 中,∠B =∠D =90°,点E ,F 分别在AB ,AD 上,AE =AF ,CE =CF ,求证:CB =CD .【分析】先证明△AEC ≌△AFC ,根据全等三角形的性质得出∠CAE =∠CAF ,利用角平分线的性质解答即可.【答案】证明:连接AC ,在△AEC 与△AFC 中{AC =AC CE =CF AE =AF,∴△AEC ≌△AFC (SSS ),∴∠CAE =∠CAF ,∵∠B =∠D =90°,∴CB =CD .【点睛】本题考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.【变式5-2】(2020春•雨花区期末)如图,已知AB ⊥CF 于点B ,DE ⊥CF 于点E ,BH =EG ,AH =DG ,∠C =∠F .(1)求证:△ABH ≌△DEG ;(2)求证:CE =FB .【分析】(1)由HL 可证明△ABH ≌△DEG ;(2)证明△ABC ≌△DEF (AAS ).得出BC =EF ,则可得出结论.【答案】(1)证明:∵AB ⊥CF ,DE ⊥CF ,∴∠DEG =∠ABH =90°,在Rt △ABH 和Rt △DEG 中,∵{BH =EG AH =DG, ∴Rt △ABH ≌Rt △DEG (HL ).(2)∵Rt △ABH ≌Rt △DEG (HL ).∴AB =DE ,在△ABC 和△DEF 中,∵{∠ABC =∠DEF =90°∠C =∠F AB =DE,∴△ABC ≌△DEF (AAS ).∴BC =EF ,∴CE =FB .【点睛】本题考查了全等三角形的性质和判定、垂直的定义;熟练掌握全等三角形的判定与性质是解题的关键.【变式5-3】(2020春•历下区期末)如图1,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:∠ABE =∠ACE ;(2)如图2,若BE 的延长线交AC 于点F ,CE 的延长线交AB 于点G .求证:EF =EG .【分析】(1)根据已知条件可以证明△ABD 和△ACD 全等,可得∠BAD =∠CAD ,再证明△ABE 和△ACE 全等,即可得结论;(2)结合(1)根据△ABE 和△ACE 全等可得BE =CE ,再证明△BEG ≌△CEF ,即可得结论.【答案】解:(1)证明:∵点D 是BC 的中点,∴BD =CD ,在△ABD 和△ACD 中,{AB =AC AD =AD BD =CD,∴△ABD ≌△ACD (SSS ),∴∠BAD =∠CAD ,在△ABE 和△ACE 中,{AB =AC ∠BAE =∠CAE AE =AE,∴△ABE ≌△ACE (SAS ),∴∠ABE =∠ACE ;(2)如图,由(1)知,△ABE ≌△ACE ,∴BE =CE ,∠ABE =∠ACE ,在△BEG 和△CEF 中,{∠GBE =∠FCE BE =CE ∠GEB =∠FEC,∴△BEG ≌△CEF (ASA ),∴EG =EF .【点睛】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.【考点6全等三角形的判定与性质(多结论)】【例6】(2020春•高明区期末)如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF .给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AC =3BF .其中正确的结论为( )A .①②③B .①②④C .②③④D .①②③④【分析】根据△ABD ≌△ACD 即可得到BD =CD ,AD ⊥BC ,故②③正确;通过△CDE ≌△DBF 即可得到DE =DF ,CE =BF ,故①④正确.【答案】解:∵BF ∥AC ,∴∠C =∠CBF ,∵BC 平分∠ABF ,∴∠ABC =∠CBF ,∴∠C =∠ABC ,∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD ,又∵AD =AD ,∴△ABD ≌△ACD (AAS ),∴BD =CD ,故②正确,∠ADB =∠ADC =90°,∴AD ⊥BC ,故③正确,在△CDE 与△DBF 中,{∠C =∠CBF CD =BD ∠EDC =∠BDF,∴△CDE ≌△DBF (ASA ),∴DE =DF ,CE =BF ,故①正确,∵AE =2BF ,∴AE =2CE ,∴AC =AE +CE =3CE =3BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定和性质,平行线的性质,掌握全等三角形的对应边相等是解题的关键.【变式6-1】(2019秋•潜山市期末)如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ =PQ ,PR =PS ,那么下面四个结论:①AS =AR ;②QP ∥AR ;③△BRP ≌△QSP ;④BR =QS ,其中一定正确的是(填写编号) .【分析】通过证明△APR ≌△APS ,可得AS =AR ,∠BAP =∠P AS ,可证QP ∥AR ,可求解.【答案】解:如图,连接AP ,①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,且AP=AP,∠ARP=∠ASP=90°,∴△APR≌△APS(AAS),∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QP A,∵∠QAP=∠BAP,∴∠QP A=∠BAP,∴QP∥AR,∴②正确;③④在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③④错误;故答案为:①②【点睛】本题考查了全等三角形的性质和判定,平行线的判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.【变式6-2】(2020春•平阴县期末)如图,EB交AC于点M,交C于点D,AB交FC于点N,∠E=∠F =90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②CD=DN;③△ACN≌△ABM;④BE =CF.其中正确的结论有.(填序号)【分析】①根据已知条件可以证明在△ABE和△ACF全等,即可得∠1=∠2;②没有条件可以证明CD=DN,即可判断;③结合①和已知条件即可得△ACN≌△ABM;④根据△ABE ≌△ACF ,可得BE =CF ,【答案】解:①在△ABE 和△ACF 中,{∠E =∠F ∠B =∠C AE =AF,∴△ABE ≌△ACF (AAS ),∴∠EAB =∠F AC ,∴∠EAB ﹣∠BAC =∠F AC ﹣∠BAC ,∴∠1=∠2.∴①正确;没有条件可以证明CD =DN ,∴②错误;∵△ABE ≌△ACF ,∴AB =AC ,在△ACN 和△ABM 中,{∠C =∠B AC =AB ∠CAB =BAC,∴△ACN ≌△ABM (ASA ),∴③正确;∵△ABE ≌△ACF ,∴BE =CF ,∴④正确.∴其中正确的结论有①③④.故答案为:①③④.【点睛】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.【变式6-3】(2020春•雨花区期末)如图,在四边形ABCD 中,AB =AD ,∠BAD =140°,AB ⊥CB 于点B ,AD ⊥CD 于点D ,E 、F 分别是CB 、CD 上的点,且∠EAF =70°,下列说法正确的是 .(填写正确的序号)①DF =BE ,②△ADF ≌△ABE ,③F A 平分∠DFE ,④AE 平分∠F AB ,⑤BE +DF =EF ,⑥CF +CE >FD +EB .【分析】延长EB 到G ,使BG =DF ,连接AG ,根据全等三角形的判定定理求出△ADF ≌△ABG ,根据全等三角形的性质得出AF =AG ,∠G =∠DF A ,∠DAF =∠BAG ,求出∠F AE =∠EAG =70°,根据全等三角形的判定定理得出△F AE ≌△GAE ,根据全等三角形的性质得出∠FEA =∠GEA ,∠G =∠EF A ,EF =EG ,再进行判断即可.【答案】解:延长EB 到G ,使BG =DF ,连接AG ,∵AB ⊥CB ,AD ⊥CD ,∴∠D =∠ABG =90°,在△ADF 和△ABG 中{AD =AB ∠D =∠ABG DF =BG,∴△ADF ≌△ABG (SAS ),∴AF =AG ,∠G =∠DF A ,∠DAF =∠BAG ,∵∠EAF =70°,∠DAB =140°,∴∠DAF +∠EAB =∠DAB ﹣∠F AE =140°﹣70°=70°,∴∠EAG =∠EAB +∠BAG =∠EAB +∠F AD =70°,∴∠F AE =∠EAG =70°,在△F AE 和△GAE 中{AE =AE ∠FAE =∠EAG AF =AG,∴△F AE ≌△GAE (SAS ),∴∠FEA =∠GEA ,∠G =∠EF A ,EF =EG ,∴EF =EB +DF ,∠F AE ≠∠EAB ,故⑤正确,④错误;∴∠G=∠EF A=∠DF A,即AF平分∠DFE,故③正确;∵CF+CE>EF,EF=DF+BE,∴CF+CE>DF+BE,故⑥正确;根据已知不能推出△ADF≌△ABE,故①错误,②错误;故答案为:③⑤⑥.【点睛】本题考查了全等三角形的性质和判定定理,角平分线的定义,三角形的三边关系定理,垂直定义等知识点,能灵活运用全等三角形的判定和性质定理进行推理是解此题的关键.【考点7全等三角形的判定与性质(动点问题)】【例7】(2019春•平阴县期末)如图,已知在△ABC中,AB=AC,BC=12厘米,点D为AB上一点且BD=8厘米,点P在线段BC上以2厘米/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.(1)用含t的式子表示PC的长为;(2)若点Q的运动速度与点P的运动速度相等,当t=2时,三角形BPD与三角形CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使三角形BPD 与三角形CQP全等?【分析】(1)先表示出BP,根据PC=BC﹣BP,可得出答案;(2)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等.(3)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【答案】解:(1)BP =2t ,则PC =BC ﹣BP =12﹣2t ;故答案为(12﹣2t )cm .(2)当t =2时,BP =CQ =2×2=4厘米,∵BD =8厘米.又∵PC =BC ﹣BP ,BC =12厘米,∴PC =12﹣4=8厘米,∴PC =BD ,又∵AB =AC ,∴∠B =∠C ,在△BPD 和△CQP 中,{BD =PC∠B =∠C BP =CQ,∴△BPD ≌△CQP (SAS );③∵v P ≠v Q ,∴BP ≠CQ ,又∵△BPD ≌△CPQ ,∠B =∠C ,∴BP =PC =6cm ,CQ =BD =8cm ,∴点P ,点Q 运动的时间t =PB 2=62=3秒,∴V Q =CQ t =83厘米/秒.即点Q 的运动速度是83厘米/秒时,能够使三角形BPD 与三角形CQP 全等.【点睛】此题考查了全等三角形的判定,主要运用了路程=速度×时间的公式,要求熟练运用全等三角形的判定和性质.【变式7-1】(2019秋•德惠市期中)如图,在△ABC 中,∠ACB =90,AC =6,BC =8.点P 从点A 出发,沿折线AC ﹣﹣CB 以每秒1个单位长度的速度向终点B 运动,点Q 从点B 出发沿折线BC ﹣CA 以每秒3个单位长度的速度向终点A 运动,P 、Q 两点同时出发.分别过P 、Q 两点作PE ⊥l 于E ,QF ⊥l 于F .设点P 的运动时间为t (秒):(1)当P 、Q 两点相遇时,求t 的值;(2)在整个运动过程中,求CP 的长(用含t 的代数式表示);(3)当△PEC 与△QFC 全等时,直接写出所有满足条件的CQ 的长.【分析】(1)由题意得t +3t =6+8,即可求得P 、Q 两点相遇时,t 的值;(2)根据题意即可得出CP 的长为{6−t(t ≤6)t −6(6<t ≤14); (3)分两种情况讨论得出关于t 的方程,解方程求得t 的值,进而即可求得CQ 的长.【答案】解:(1)由题意得t +3t =6+8,解得t =72(秒),当P 、Q 两点相遇时,t 的值为72秒; (2)由题意可知AP =t ,则CP 的长为{6−t(t ≤6)t −6(6<t ≤14); (3)当P 在AC 上,Q 在BC 上时,∵∠ACB=90,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠EPC+∠PCE=90°,∠PEC=∠CFQ=90°,∴∠EPC=∠QCF,∴△PCE≌△CQF,∴PC=CQ,∴6﹣t=8﹣3t,解得t=1,∴CQ=8﹣3t=5;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,6﹣t=3t﹣8,解得t=3.5,∴CQ=3t﹣8=2.5,当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6,综上,当△PEC与△QFC全等时,满足条件的CQ的长为5或2.5或6.【点睛】本题考查了三角形全等的判定和性质,根据题意得出关于t的方程是解题的关键.【变式7-2】(2019秋•花都区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=112或192时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P 在BC 上时,②当点P 在BA 上时,分别画出图形,利用三角形的面积之间的关系,求出点P 移动的距离,从而求出时间即可;(2)由△APQ ≌△DEF ,可得对应顶点为A 与D ,P 与E ,Q 与F ;于是分两种情况进行解答,①当点P 在AC 上,②当点P 在AB 上,分别求出P 移动的距离和时间,进而求出Q 的移动速度.【答案】解:(1)①当点P 在BC 上时,如图①﹣1,若△APC 的面积等于△ABC 面积的一半;则CP =12BC =92cm ,此时,点P 移动的距离为AC +CP =12+92=332,移动的时间为:332÷3=112秒, ②当点P 在BA 上时,如图①﹣2若△APC 的面积等于△ABC 面积的一半;则PD =12BC ,即点P 为BA 中点,此时,点P 移动的距离为AC +CB +BP =12+9+152=572cm , 移动的时间为:572÷3=192秒, 故答案为:112或192;(2)△APQ ≌△DEF ,即,对应顶点为A 与D ,P 与E ,Q 与F ;①当点P 在AC 上,如图②﹣1所示:此时,AP =4,AQ =5,∴点Q 移动的速度为5÷(4÷3)=154cm /s ,②当点P 在AB 上,如图②﹣2所示:此时,AP =4,AQ =5,即,点P 移动的距离为9+12+15﹣4=32cm ,点Q 移动的距离为9+12+15﹣5=31cm ,∴点Q 移动的速度为31÷(32÷3)=9332cm /s , 综上所述,两点运动过程中的某一时刻,恰好△APQ ≌△DEF ,点Q 的运动速为154cm /s 或9332cm /s .【点睛】考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.【变式7-3】(2019秋•内乡县期末)如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC ⊥AB ,BD ⊥AB ”改为“∠CAB =∠DBA ”,点Q 的运动速度为xcm /s ,其它条件不变,当点P 、Q 运动到何处时有△ACP 与△BPQ 全等,求出相应的x 的值.【分析】(1)利用AP =BQ =2,BP =AC ,可根据“SAS ”证明△ACP ≌△BPQ ;则∠C =∠BPQ ,然后证明∠APC +∠BPQ =90°,从而得到PC ⊥PQ ;(2)讨论:若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,即5=7﹣2t ,2t =xt ;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,即5=xt ,2t =7﹣2t ,然后分别求出x 即可.【答案】解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°,∵AP =BQ =2,∴BP =5,∴BP =AC ,在△ACP 和△BPQ 中{AP =BQ ∠A =∠B AC =BP,∴△ACP ≌△BPQ (SAS );∴∠C =∠BPQ ,∵∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ ;(2)①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,可得:5=7﹣2t ,2t =xt解得:x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,可得:5=xt ,2t =7﹣2t解得:x =207,t =74.综上所述,当△ACP 与△BPQ 全等时x 的值为2或207.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【考点8全等三角形的判定与性质(添辅助线)】【例8】(2020•黄州区校级模拟)如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠F AE 的度数;(3)求证:CD =2BF +DE .【分析】(1)根据题意和题目中的条件可以找出△ABC ≌△ADE 的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠F AE 的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.【答案】证明:(1)∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =90°,∠CAD +∠DAE =90°,∴∠BAC =∠DAE ,在△BAC 和△DAE 中,{AB =AD ∠BAC =∠DAE AC =AE,∴△BAC ≌△DAE (SAS );(2)∵∠CAE =90°,AC =AE ,∴∠E =45°,由(1)知△BAC ≌△DAE ,∴∠BCA =∠E =45°,∵AF ⊥BC ,∴∠CF A =90°,∴∠CAF =45°,∴∠F AE =∠F AC +∠CAE =45°+90°=135°;(3)延长BF 到G ,使得FG =FB ,∵AF ⊥BG ,∴∠AFG =∠AFB =90°,在△AFB 和△AFG 中,{BF =GF∠AFB =∠AFG AF =AF,∴△AFB ≌△AFG (SAS ),∴AB =AG ,∠ABF =∠G ,∵△BAC ≌△DAE ,∴AB =AD ,∠CBA =∠EDA ,CB =ED ,∴AG =AD ,∠ABF =∠CDA ,∴∠G =∠CDA ,∵∠GCA =∠DCA =45°,在△CGA 和△CDA 中,{∠GCA =∠DCA ∠CGA =∠CDA AG =AD,∴△CGA ≌△CDA (AAS ),∴CG =CD ,∵CG =CB +BF +FG =CB +2BF =DE +2BF ,∴CD =2BF +DE .【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.【变式8-1】(2020春•青羊区期末)如图,△ABC 中,AB =AC ,∠EAF ═12∠BAC ,BF ⊥AE 于E 交AF 于点F ,连结CF .(1)如图1所示,当∠EAF 在∠BAC 内部时,求证:EF =BE +CF .(2)如图2所示,当∠EAF 的边AE 、AF 分别在∠BAC 外部、内部时,求证:CF =BF +2BE .【分析】(1)在EF 上截取EH =BE ,由“SAS ”可证△ACF ≌△AHF ,可得CF =HF ,可得结论;(2)在BE 的延长线上截取EN =BE ,连接AN ,由“SAS ”可证△ACF ≌△ANF ,可得CF =NF ,可得结论.【答案】证明:(1)如图,在EF 上截取EH =BE ,连接AH ,∵EB =EH ,AE ⊥BF ,∴AB =AH ,∵AB =AH ,AE ⊥BH ,∴∠BAE =∠EAH ,∵AB =AD ,∴AC =AH ,∵∠EAF ═12∠BAC∴∠BAE +∠CAF =∠EAF ,∴∠BAE +∠CAF =∠EAH +∠F AH ,∴∠CAF =∠HAF ,在△ACF 和△AHF 中,{AC =AH ∠CAF =∠HAF AF =AF,∴△ACF ≌△AHF (SAS ),∴CF =HF ,∴EF =EH +HF =BE +CF ;(2)如图,在BE 的延长线上截取EN =BE ,连接AN ,∵AE ⊥BF ,BE =EN ,AB =AC ,∴AN =AB =AC ,∵AN =AB ,AE ⊥BN ,∴∠BAE =∠NAE ,∵∠EAF ═12∠BAC ∴∠EAF +∠NAE =12(∠BAC +2∠NAE )∴∠F AN =12∠CAN ,∴∠F AN =∠CAF ,在△ACF 和△ANF 中,{AC =AN ∠CAF =∠NAF AF =AF,∴△ACF ≌△ANF (SAS ),∴CF =NF ,∴CF =BF +2BE .【点睛】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.【变式8-2】(2020春•南岸区期末)在∠MAN 内有一点D ,过点D 分别作DB ⊥AM ,DC ⊥AN ,垂足分别为B ,C .且BD =CD ,点E ,F 分别在边AM 和AN 上.(1)如图1,若∠BED =∠CFD ,请说明DE =DF ;(2)如图2,若∠BDC =120°,∠EDF =60°,猜想EF ,BE ,CF 具有的数量关系,并说明你的结论成立的理由.【分析】(1)根据题目中的条件和∠BED =∠CFD ,可以证明△BDE ≌△CDF ,从而可以得到DE =DF ;(2)作辅助线,过点D 作∠CDG =∠BDE ,交AN 于点G ,从而可以得到△BDE ≌△CDG ,然后即可得到DE =DG ,BE =CG ,再根据题目中的条件可以得到△EDF ≌△GDF ,即可得到EF =GF ,然后即可得到EF ,BE ,CF 具有的数量关系.【答案】解:(1)∵DB ⊥AM ,DC ⊥AN ,∴∠DBE =∠DCF =90°,在△BDE 和△CDF 中,∵{∠BED =∠CFD ,∠DBE =∠DCF ,BD =CD ,∴△BDE ≌△CDF (AAS ).∴DE =DF ;(2)EF =FC +BE ,理由:过点D 作∠CDG =∠BDE ,交AN 于点G ,在△BDE 和△CDG 中,{∠EBD =∠GCD BD =CD ∠BDE =∠CDG,∴△BDE ≌△CDG (ASA ),∴DE =DG ,BE =CG .∵∠BDC =120°,∠EDF =60°,∴∠BDE +∠CDF =60°.∴∠FDG =∠CDG +∠CDF =60°,∴∠EDF =∠GDF .在△EDF 和△GDF 中,。

人教版八年级上册数学 全等三角形章末训练(Word版 含解析)

人教版八年级上册数学 全等三角形章末训练(Word版 含解析)

一、八年级数学全等三角形解答题压轴题(难)1.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的二分之一,上述结论是否仍然成立,并说明理由.(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.【答案】(1)EF=BE+DF.(2)成立,理由见解析;(3)10.【解析】【分析】(1)如图1,延长FD到G,使得DG=DC,先证△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,进一步根据题意得∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(2)如图2,延长FD到点G.使DG=BE.连结AG,证得△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,再结合题意得到∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(3)如图3,延长DC到点G,截取CG=AE,连接BG,先证△AEB≌△CGB,得到BE=BG,∠ABE=∠CBG,结合已知条件得∴∠CBF+∠CBG=45°,再证明△EBF≌△GBF,得到EF=FG,最后求三角形的周长即可.【详解】解答:(1)解:如图1,延长FD到G,使得DG=DC在△ABE和△ADG中,∵DC DGB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)解:如图3,延长DC到点G,截取CG=AE,连接BG,在△AEB与△CGB中,∵AE CGA BOG AF BF=⎧⎪∠=∠⎨⎪=⎩,∴△AEB≌△CGB(SAS),∴BE=BG,∠ABE=∠CBG.∵∠EBF=45°,∠ABC=90°,∴∠ABE+∠CBF=45°,∴∠CBF+∠CBG=45°.在△EBF与△GBF中,∵BE BGEBF GBF BF BF=⎧⎪∠=∠⎨⎪=⎩,∴△EBF≌△GBF(SAS),∴EF=GF,∴△DEF的周长=EF+ED+CF=AE+CF+DE+DF=AD+CD=10.【点睛】本题主要考查了三角形全等的判定和性质,灵活运用全等三角形的性质和判定是解答本题的关键.但本题分为三问,难度不断增加,对提升思维能力大有好处.2.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.【答案】(1)详见解析;(2)BE+CF>EF,证明详见解析【解析】【分析】(1)先利用ASA判定△BGD≅CFD,从而得出BG=CF;(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而得到EG=EF,两边之和大于第三边从而得出BE+CF>EF.【详解】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵DBG DCF BD CDBDG CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.【点睛】本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.3.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或32(3)9s 【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.【详解】(1)当t=1时,AP=BQ=3,BP=AC=9,又∵∠A=∠B=90°,在△ACP与△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS),∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°,∠CPQ=90°,则线段PC与线段PQ垂直.(2)设点Q的运动速度x,①若△ACP≌△BPQ,则AC=BP,AP=BQ,912tt xt=-⎧⎨=⎩,解得31t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,912xt t t=⎧⎨=-⎩ 解得632t x =⎧⎪⎨=⎪⎩, 综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. (3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,设经过x 秒后P 与Q 第一次相遇,∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点;∴EB=EA=18cm.当V Q =1时,依题意得3x=x+2×9,解得x=9;当V Q =32时, 依题意得3x=32x+2×9, 解得x=12.故经过9秒或12秒时P 与Q 第一次相遇.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.4.已知:平面直角坐标系中,点A (a ,b )的坐标满足|a ﹣b|+b 2﹣8b+16=0.(1)如图1,求证:OA 是第一象限的角平分线;(2)如图2,过A 作OA 的垂线,交x 轴正半轴于点B ,点M 、N 分别从O 、A 两点同时出发,在线段OA 上以相同的速度相向运动(不包括点O 和点A ),过A 作AE⊥BM 交x 轴于点E ,连BM 、NE ,猜想∠ONE 与∠NEA 之间有何确定的数量关系,并证明你的猜想;(3)如图3,F 是y 轴正半轴上一个动点,连接FA ,过点A 作AE⊥AF 交x 轴正半轴于点E ,连接EF ,过点F 点作∠OFE 的角平分线交OA 于点H ,过点H 作HK⊥x 轴于点K ,求2HK+EF 的值.【答案】(1)证明见解析 (2)答案见解析 (3)8【解析】【分析】(1)过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM,根据非负数的性质求出a 、b 的值即可得结论;(2)如图2,过A 作AH 平分∠OAB ,交BM 于点H ,则△AOE ≌△BAH ,可得AH =OE ,由已知条件可知ON=AM ,∠MOE =∠MAH ,可得△ONE ≌△AMH ,∠ABH =∠OAE ,设BM 与NE 交于K ,则∠MKN =180°﹣2∠ONE =90°﹣∠NEA ,即2∠ONE ﹣∠NEA =90°; (3)如图3,过H 作HM ⊥OF ,HN ⊥EF 于M 、N ,可证△FMH ≌△FNH ,则FM =FN ,同理:NE =EK ,先得出OE+OF ﹣EF =2HK ,再由△APF ≌△AQE 得PF =EQ ,即可得OE+OF =2OP =8,等量代换即可得2HK+EF 的值.【详解】解:(1)∵|a ﹣b|+b 2﹣8b+16=0∴|a ﹣b|+(b ﹣4)2=0∵|a ﹣b|≥0,(b ﹣4)2≥0∴|a ﹣b|=0,(b ﹣4)2=0∴a =b =4过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM∴OA 平分∠MON即OA 是第一象限的角平分线(2)过A 作AH 平分∠OAB ,交BM 于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE 在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.5.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E不与点A重合,请说明BF DC AE=+;()2当点E在线段DA的延长线上()DE DB>时,用等式表示线段,,AE BF CD之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF=AE-CD【解析】【分析】(1)①根据等边对等角,求到B C∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC∠=∠=︒,推出ABF ACD∆∆≌,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG,再推出AE=GF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG ,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,∴+=+==BF CD BF BG GF AE=-.故BF AE CD【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.6.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。

专题12.1全等三角形-重难点题型(教师版含解析)2022年八年级数学上册举一反三系列(人教版)

专题12.1全等三角形-重难点题型(教师版含解析)2022年八年级数学上册举一反三系列(人教版)

专题12.1全等三角形-重难点题型【人教版】【知识点1全等三角形的性质】全等三角形的对应边相等,对应角相等.(另外全等三角形的周长、面积相等,对应边上的中线、角平分线、高线均相等)【题型1全等三角形的对应元素判断】【例1】(2020秋•潍城区期中)如图,△ABC≌△DEF,点E、C、F、B在同一条直线上.下列结论正确的是()A.∠B=∠D B.∠ACB=∠DEF C.AC=EF D.BF=CE【分析】根据全等三角形的对应边相等、对应角相等解答.【解答】解:∵△ABC≌△DEF,∴∠B=∠E,但∠B与∠D不一定相等,A选项结论错误,不符合题意;∵△ABC≌△DEF,∴∠ACB=∠EFD,当∠ACB与∠DEF不一定相等,B选项结论错误,不符合题意;∵△ABC≌△DEF,∴AC=DF,当AC与EF不一定相等,C选项结论错误,不符合题意;∵△ABC≌△DEF,∴BC=EF,∴BC﹣CF=EF﹣CF,即BF=CE,D选项结论正确,符合题意;故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.【变式1-1】(2020秋•合江县月考)如图,已知△ABC≌△CDA,下面四个结论中,不正确的是()A.△ABC和△CDA的面积相等B.△ABC和△CDA的周长相等C.∠B+∠ACB=∠D+∠ACD D.AD∥BC,且AD=CB=S△CDA,△ABC和△CDA的周长相等,AD=CB,∠B=∠D,【分析】由全等三角形的性质可得S△ABC∠ACB=∠DAC,进而可得AD∥BC,即可求解.【解答】解:∵△ABC≌△CDA,=S△CDA,△ABC和△CDA的周长相等,AD=CB,∠B=∠D,∠ACB=∠DAC,∴S△ABC∴AD∥BC,故选项A、B、D都不符合题意,∵∠ACB不一定等于∠ACD,∴∠B+∠ACB不一定等于∠D+∠ACD,故选项C符合题意,故选:C.【点评】本题考查了全等三角形的性质,掌握全等三角形的性质是本题的关键.【变式1-2】(2020秋•海珠区校级期中)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于下列结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】利用全等三角形的性质可得答案.【解答】解:∵△ABC≌△AEF,∴AF=AC,EF=CB,∠FAE=∠BAC,∴∠FAE﹣∠FAB=∠BAC﹣∠BAF,即∠BAE=∠FAC,∴正确的结论是①③④,共3个,故选:C.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形,对应边相等,对应角相等.【变式1-3】(2020秋•北碚区期中)如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC其中正确的有()个.A.2B.3C.4D.5【分析】根据全等三角形的对应角相等得出∠ABD=∠EBD,即可判断①;先由全等三角形的对应边相等得出BD=CD,BE=CE,再根据等腰三角形三线合一的性质得出DE⊥BC,则∠BED=90°,再根据全等三角形的对应角相等得出∠A=∠BED=90°,即可判断②;根据全等三角形的对应角相等得出∠ABD=∠EBD,∠EBD=∠C,从而可判断∠C,即可判断③;根据全等三角形的对应边相等得出BE=CE,再根据三角形中线的定义即可判断④;根据全等三角形的对应边相等得出BD=CD,但A、D、C 可能不在同一直线上,所以AD+CD可能不等于AC.【解答】解:①∵△ADB≌△EDB,∴∠ABD=∠EBD,∴BD是∠ABE的平分线,故①正确;②∵△BDE≌△CDE,∴BD=CD,BE=CE,∴DE⊥BC,∴∠BED=90°,∵△ADB≌△EDB,∴∠A=∠BED=90°,∴AB⊥AD,∵A、D、C可能不在同一直线上∴AB可能不垂直于AC,故②不正确;③∵△ADB≌△EDB,△BDE≌△CDE,∴∠ABD=∠EBD,∠EBD=∠C,∵∠A=90°若A、D、C不在同一直线上,则∠ABD+∠EBD+∠C≠90°,∴∠C≠30°,故③不正确;④∵△BDE≌△CDE,∴BE=CE,∴线段DE是△BDC的中线,故④正确;⑤∵△BDE≌△CDE,∴BD=CD,若A、D、C不在同一直线上,则AD+CD>AC,∴AD+BD>AC,故⑤不正确.故选:A.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.也考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,难度适中.【题型2利用全等三角形的性质求角度】【例2】(2020秋•兰山区期末)如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=30°,∠CGF=88°,则∠E的度数是()A.30°B.50°C.44°D.34°【分析】根据角平分线的性质得到∠ACD=∠BCD=12∠BCA,根据全等三角形的性质得到∠D=∠A=30°,根据三角形的外角性质、全等三角形的性质解答即可.【解答】解:∵CD平分∠BCA,∴∠ACD=∠BCD=12∠BCA,∵△ABC≌△DEF,∴∠D=∠A=30°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF﹣∠D=58°,∴∠BCA=116°,∴∠B=180°﹣30°﹣116°=34°,∵△ABC≌△DEF,∴∠E=∠B=34°,故选:D.【点评】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.【变式2-1】(2020春•沙坪坝区校级期末)如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC 度数的值为.【分析】根据全等三角形的性质,可以得到AB=AD,∠BAC=∠DAE,从而可以得到∠ABD=∠ADB,再根据AE∥BD,∠BAD=130°,即可得到∠DAE的度数,从而可以得到∠BAC的度数.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠ABD=∠ADB,∵∠BAD=130°,∴∠ABD=∠ADB=25°,∵AE∥BD,∴∠DAE=∠ADB,∴∠DAE=25°,∴∠BAC=25°,故答案为:25°.【点评】本题考查全等三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式2-2】(2020秋•覃塘区期中)如图,已知△AEF≌△ABC,点E在BC边上,EF与AC交于点D.若∠B=64°,∠C=30°,求∠CDF的度数.【分析】根据全等三角形的性质和三角形外角性质解答即可.【解答】解:∵△AEF≌△ABC,∴AE=AB,∠AEF=∠B=64°,∵点E在BC边上,∴∠AEB=∠B=64°,∴∠DEC=180°﹣∠AEB﹣∠AEF=180°﹣64°﹣64°=52°,又∵∠C=30°,且∠CDF是△CDE的外角,∴∠CDF=∠DEC+∠C=52°+30°=82°.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角相等解答.【变式2-3】(2020秋•西湖区校级月考)如图,△ABC≌△ADE,BC的延长线分别交AD,DE于点F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.【分析】先根据全等三角形的性质得∠BAC=∠DAE,由于∠DAE+∠CAD+∠BAC=120°,则可计算出∠BAC=55°,所以∠BAF=∠BAC+∠CAD=65°,根据三角形外角性质可得∠DFB=∠BAF+∠B=90°,∠DGB=65°.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∵∠EAB=120°,∴∠DAE+∠CAD+∠BAC=120°,∵∠CAD=10°,∴∠BAC=12(120°﹣10°)=55°,∴∠BAF=∠BAC+∠CAD=65°,∴∠DFB=∠BAF+∠B=65°+25°=90°;∵∠DFB=∠D+∠DGB,∴∠DGB=90°﹣25°=65°.【点评】本题考查了全等三角形的性质:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.【题型3利用全等三角形的性质求线段长度】【例3】(2020秋•永吉县期中)如图,△EFG≌△NMH,E,H,G,N在同一条直线上,EF和NM,FG 和MH是对应边,若EH=1.1cm,NH=3.3cm.求线段HG的长.【分析】由△EFG≌△NMH,EF和NM,FG和MH是对应边,得到EG和NH是对应边,根据全等三角形的性质得到EG=NH,根据线段的和差计算即可得到结果.【解答】解:∵△EFG≌△NMH,EF和NM,FG和MH是对应边,∴EG和NH是对应边,∴EG=NH,∴EH+HG=HG+NG,∴EH=NG,∵EH=1.1,∴NG=1.1∵NH=3.3cm,∴HG=NH﹣NG=3.3﹣1.1=2.2(cm).【点评】本题主要考查了全等三角形全等的性质,熟练找出两个全等三角形的对应边是解此题的关键.【变式3-1】(2020秋•永定区期中)如图,△ADE≌△BCF,AD=8cm,CD=6cm,则BD的长为cm.【分析】根据全等三角形的性质得出AD=BC=8cm,进而即可求得BD=BC﹣CD=2cm.【解答】解:∵△ADE≌△BCF,∴AD=BC=8cm,∵BD=BC﹣CD,CD=6cm,∴BD=8﹣6=2(cm).故答案为:2.【点评】本题考查了全等三角形的性质,熟记性质是解题的关键.【变式3-2】(2020秋•东莞市校级月考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知△AEH≌△CEB,EB=5,AE=7,则CH的长是.【分析】根据全等三角形的性质分别求出EC、EH,结合图形计算,得到答案.【解答】解:∵△AEH≌△CEB,∴EC=AE=7,EH=EB=5,∴CH=EC﹣EH=7﹣5=2,故答案为:2.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.【变式3-3】(2020秋•中山市期中)一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x﹣2y,x+2y,若这两个三角形全等,则x+y的值是.【分析】根据全等三角形的性质可得方程组3−2=53−2=7,解方程组可得答案.+2=7,或+2=5【解答】解:由题意得3−2=53−2=7,+2=7,或+2=5解得:=3=2或=3=1,x+y=5或x+y=4,故答案为:5或4【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应边相等.【题型4与全等三角形性质有关的证明】【例4】(2020秋•安徽月考)如图,△ABC≌△ADE,点E在边BC上,求证:∠BED=∠BAD.【分析】根据全等三角形的性质和三角形的外角的性质即可得到结论.【解答】证明:∵△ABC≌△ADE,∴∠C=∠AED,∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠CAE=∠BAD,∵∠AEB=∠AED+∠DEB=∠CAE+∠C,∴∠CAE=∠BED,∴∠BED=∠BAD.【点评】本题考查了三角形全等的性质,三角形的外角的性质,关键是熟练掌握全等三角形的性质.【变式4-1】(2020秋•大安市校级期中)已知△ABF≌△DCE,E与F是对应顶点.证明AF∥DE.【分析】根据全等三角形的性质得出∠B=∠C,∠BAF=∠CDE,根据三角形外角性质求出∠AFE=∠DEF,根据平行线的判定得出即可.【解答】证明:∵△ABF≌△DCE,∴∠B=∠C,∠BAF=∠CDE,∴∠B+∠BAF=∠C+∠CDE,∴∠AFE=∠DEF,∴AF∥DE.【点评】本题考查了全等三角形的性质,三角形外角性质,平行线的判定等知识点,能灵活运用定理机芯推理是解此题的关键.【变式4-2】(2020春•成都期中)如图,△ABC中,点E是AB边上一点,△BCE≌△ACE,ED∥AC,DF ⊥AB.(1)判断CE与AB是否垂直,并说明理由;(2)证明:∠EDF=∠BDF.【分析】(1)根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质和平行线的判定和性质即可得到结论.【解答】解:(1)CE⊥AB,理由:∵△BCE≌△ACE,∴BEC=∠AEC=12×180°=90°,∴CE⊥AB;(2)∵ED∥AC,∴∠DEC=∠ACE,∵△BCE≌△ACE,∴∠BCE=∠ACE,∴∠CED=∠DCE,∵DF⊥AB,∴DF∥CE,∴∠BDF=∠DCE,∠EDF=∠CED,∴∠EDF=∠BDF.【点评】本题考查了全等三角形的性质,平行线的性质,正确的识别图形是解题的关键.【变式4-3】(2020秋•定远县月考)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,BC∥DE?【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.【解答】(1)证明:∵△ABC≌△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵BC∥DE,∴∠BCE=∠E,又∵△ABC≌△DAE,∴∠ACB=∠E,∴∠ACB=∠BCE,又∵∠ACB+∠BCE=180°,∴∠ACB=90°,即当△ABC满足∠ACB为直角时,BC∥DE.【点评】本题考查了全等三角形的判定定理和平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【题型5与全等三角形性质有关的综合】【例5】(2020秋•朔州月考)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【解答】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.【变式5-1】(2020秋•新罗区校级月考)如图,点A、B、C在同一直线上,点E在BD上,且△ABD≌△EBC,AB=2cm,BC=3cm.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.(3)判断直线AD与直线CE的位置关系,并说明理由.【分析】(1)根据全等三角形的对应边相等得到BD=BC=5cm,BE=AB=2cm,计算即可;(2)根据全等三角形的对应角相等和平角的定义解答;(3)根据全等三角形的对应角相等和三角形内角和定理进行解答.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=3cm,BE=AB=2cm,∴DE=BD﹣BE=1cm;(2)DB与AC垂直,理由:∵△ABD≌△EBC,∴∠ABD=∠EBC,又A、B、C在一条直线上,∴∠EBC=90°,∴DB与AC垂直.(3)直线AD与直线CE垂直.理由:如图,延长CE交AD于F,∵△ABD≌△EBC,∴∠D=∠C,∵Rt△ABD中,∠A+∠D=90°,∴∠A+∠C=90°,∴∠AFC=90°,即CE⊥AD.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.【变式5-2】(2018春•德化县期末)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.【分析】(1)根据全等三角形的性质得出AB=DE=8,BE=BC=5,即可求出答案;(2)①根据全等三角形的性质得出∠A=∠D=35°,∠DBE=∠C=60°,根据三角形内角和定理求出∠ABC,即可得出答案;②根据三角形外角性质求出∠AEF,根据三角形外角性质求出∠AFD即可.【解答】解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.【点评】本题考查了全等三角形的性质,三角形内角和定理,三角形外角性质的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【变式5-3】(2020春•铁西区期中)如图,点A、B、C、D在同一条直线上,点E、F是直线.AD上方的点,连接AE、CE、BF、DF,若△ACE≌△FDB,FD=3,AD=8.(1)判断直线CE与DF是否平行?并说明理由;(2)求CD的长;(3)若∠E=26°,∠F=53°,求∠ACE的度数.【分析】(1)根据全等三角形的性质和平行线的判定定理即可得到结论;(2)根据全等三角形的性质即可得到结论;(3)根据全等三角形的性质和三角形的内角和即可得到结论.【解答】解:(1)CE∥DF,理由:∵△ACE≌△FDB,∴∠ACE=∠D,∴CE∥DF;(2)∵△ACE≌△FDB,∴AC=DF=3,∵AD=8,∴CD=AD﹣AC=8﹣3=5;(3)∵△ACE≌△FDB,∴∠DBF=∠E=26°,∵CE∥DF,∴∠1=∠F=53°,∴∠ACE=180°﹣26°﹣53°=101°.【点评】本题考查了全等三角形的性质,平行线的判定,三角形的内角和,正确的识别图形是解题的关键.【题型6与全等三角形性质有关的动点问题】【例6】(2020秋•丹徒区校级月考)如图,已知AB=3,AC=2,点D、E分别为线段BA、CA延长线上的动点,如果△ABC与△ADE全等,则AD为.【分析】分△ABC≌△ADE和△ABC≌△ADE两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△ADE时,AD=AB=3,当△ABC≌△AED时,AD=AC=2,故答案为:2或3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.【变式6-1】(2020秋•滨湖区期中)如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.【分析】由条件分两种情况,当△BPE≌△CQP时,则有BE=PC,由条件可得到关于t的方程,当△BPE≌△CPQ,则有BP=PC,同样可得出t的方程,可求出t的值.【解答】解:∵AB=20cm,AE=6cm,BC=16cm,∴BE=14cm,BP=2tcm,PC=(16﹣2t)cm,当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.【点评】本题主要考查全等三角形的性质,由条件分两种情况得到关于t的方程是解题的关键.【变式6-2】如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s速度从点A 出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s【分析】分△ABC≌△PQA和△ABC≌△QPA两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△PQA时,AP=AC=8,∵点P的速度为2cm/s,∴8÷2=4(s);当△ABC≌△QPA时,当AP=BC=4,∵点P的速度为2cm/s,∴4÷2=2(s)故选:D.【点评】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等,全等三角形的对应角相等是解题的关键,注意分情况讨论思想的应用.【变式6-3】(2020春•广饶县期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P在AC上,AP=4,AQ=5,②当点P在AB上,AP=4,AQ=5,分别求出P移动的距离和时间,进而求出Q的移动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=12BC=92cm,此时,点P移动的距离为AC+CP=12+92=332,移动的时间为:332÷3=112秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=12BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+152=572cm,移动的时间为:572÷3=192秒,故答案为:11或19;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=154cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=9332cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为154cm/s或9332cm/s.【点评】考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.。

八年级数学上册第十二章全等三角形重难点归纳(带答案)

八年级数学上册第十二章全等三角形重难点归纳(带答案)

八年级数学上册第十二章全等三角形重难点归纳单选题1、如图,若△ABC≌△ADE则下列结论中不成立...的是()A.∠BAD=∠CAEB.∠BAD=∠CDEC.DA平分∠BDED.AC=DE答案:D分析:根据全等三角形的性质得出∠B=∠ADE,∠BAC=∠DAE,AB=AD,∠E=∠C,再逐个判断即可.解:A.∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠BAD=∠CAE,故本选项不符合题意;B.如图,∵△ABC≌△ADE,∴∠C=∠E,∵∠AOE=∠DOC,∠E+∠CAE+∠AOE=180°,∠C+∠COD+∠CDE=180°,∴∠CAE=∠CDE,∵∠BAD=∠CAE,∴∠BAD=∠CDE,故本选项不符合题意;C.∵△ABC≌△ADE,∴∠B=∠ADE,AB=AD,∴∠B=∠BDA,∴∠BDA=∠ADE,∴AD平分∠BDE,故本选项不符合题意;D.∵△ABC≌△ADE,∴BC=DE,故本选项符合题意;故选:D.小提示:本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等,对应边相等.2、下列说法不正确的是()A.有两条边和它们的夹角对应相等的两个三角形全等B.有三个角对应相等的两个三角形全等C.有两个角及其中一角的对边对应相等的两个三角形全等D.有三条边对应相等的两个三角形全等答案:B分析:根据全等三角形的判定定理逐一判断即可得答案.A.符合判定SAS,故该选项说法正确,不符合题意,B.全等三角形的判定必须有边的参与,AAA不能判定两个三角形全等,故该选项说法不正确,符合题意,C.正确,符合判定AAS,故该选项说法正确,不符合题意,D.正确,符合判定SSS,故该选项说法正确,不符合题意,故选:B.小提示:本题考查全等三角形的判定,全等三角形常用的判定方法有:SSS、SAS、AAS、ASA、HL,注意:AAS、AAA不能判定两个三角形全等,当利用SAS判定两个三角形全等时,角必须是两边的夹角;熟练掌握全等三角形的判定定理是解题关键.3、小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.在角的内部,到角的两边距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形的三条高交于一点D.三角形三边的垂直平分线交于一点答案:A分析:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,因为是两把完全相同的长方形直尺,可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB如图所示:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.小提示:本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.4、如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE//AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9答案:A分析:根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF≌△DEC,求出BF=CD=3,故A错误.解:在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DF⊥AB,∴CD=DF=3,故B正确;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正确;∴AC=AE+CE=9,故D正确;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,∴BF=CD=3,故A错误;故选:A.小提示:此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.5、如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°答案:B分析:由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可证Rt△BEC≌Rt△CDB(HL),得出∠BCD =∠CBE=70°即可.解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,,{CE=BDBC=CB∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故选:B.小提示:本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键.6、如图,为测量桃李湖两端AB的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C,测得∠ACB的度数,在AC的另一侧测得∠ACD=∠ACB,CD=CB,再测得AD的长,就是AB的长.那么判定△ABC≌△ADC的理由是()A.SASB.SSSC.ASAD.AAS答案:A分析:已知条件是∠ACD=∠ACB,CD=CB,AC=AC,据此作出选择.解:在△ADC与△ABC中,{CD=CB∠ACD=∠ACBAC=AC.∴△ADC≌△ABC(SAS).故选:A.小提示:此题考查了全等三角形的应用,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个答案:C分析:①证明△BAD≌△CAE,再利用全等三角形的性质即可判断;②由△BAD≌△CAE可得∠ABF=∠ACF,再由∠ABF+∠BGA=90°、∠BGA=∠CGF证得∠BFC=90°即可判定;③分别过A作AM⊥BD、AN⊥CE,根据全等三角形面积相等和BD=CE,证得AM=AN,即AF平分∠BFE,即可判定;④由AF平分∠BFE结合BF⊥CF即可判定.解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE在△BAD和△CAE中AB=AC, ∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A作AM⊥BD、AN⊥CE垂足分别为M、N ∵△BAD≌△CAE∴S△BAD=S△CAE,∴12BD⋅AM=12CE⋅AN∵BD=CE∴AM=AN∴AF平分∠BFE,无法证明AF平分∠CAD.故③错误;∵AF平分∠BFE,BF⊥CF∴∠AFE=45°故④正确.故答案为C.小提示:本题考查了全等三角形的判定与性质、角平分线的判定与性质以及角的和差等知识,其中正确应用角平分线定理是解答本题的关键.8、如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED答案:B分析:根据全等三角形的性质即可得到结论.解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.小提示:本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9、如图,在△ABC中,∠C=90°,以点B为圆心,任意长为半径画弧,分别交AB、BC于点M、N.分别以点M、MN的长度为半径画弧,两弧相交于点P,过点P作线段BD,交AC于点D,过点D作N为圆心,以大于12∠ABC;③BC=BE;④AE=BE中,一定正确的是()DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=12A.①②③B.①②③④C.②④D.②③④答案:A分析:由作法可知BD是∠ABC的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL可得Rt△BDC≌Rt△BDE,故BC=BE,③正确,解:由作法可知BD是∠ABC的角平分线,故②正确,∵∠C=90°,∴DC⊥BC,又DE⊥AB,BD是∠ABC的角平分线,∴CD=ED,故①正确,在Rt△BCD和Rt△BED中,,{DE=DCBD=BD∴△BCD≌△BED,∴BC=BE,故③正确.故选A.小提示:本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键.10、判断两个直角三角形全等的方法不正确...的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等答案:D分析:根据直角三角形全等的判定条件逐一判断即可.解:A、两条直角边对应相等,可以利用SAS证明两个直角三角形全等,说法正确,不符合题意;B、斜边和一锐角对应相等,可以利用AAS证明两个直角三角形全等,说法正确,不符合题意;C、斜边和一条直角边对应相等,可以利用HL证明两个直角三角形全等,说法正确,不符合题意;D、两个锐角对应相等,不可以利用AAA证明两个直角三角形全等,说法错误,符合题意;故选D.小提示:本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.填空题11、如图,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=18cm,AB=11cm,那么DE的长度为_____________________cm.答案:3.5分析:过C点作CF⊥AB于F,如图,根据角平分线的性质得到CF=CE,再证明Rt△ACE≌Rt△ACF得到AF=AE,证明△CBF≌△CDE得到BF=DE,然后利用等线段代换,利用AF=AE得到11+DE=18-DE,从而可求出DE的长.解:过C点作CF⊥AB于F,如图,∵AC平分∠BAD,CE⊥AD,CF⊥AB,∴CF=CE,在Rt△ACE和Rt△ACF中,,{AC=ACCF=CE∴Rt△ACE≌Rt△ACF(HL),∴AF=AE,∵∠ABC+∠D=180°,∠ABC+∠CBF=180°,∴∠CBF=∠D,在△CBF和△CDE中,{∠CBF=∠D∠CFB=∠CEDCF=CE,∴△CBF≌△CDE(AAS),∴BF=DE,∵AF=AE,∴AB+BF=AD-DE,即11+DE=18-DE,∴DE=3.5cm.所以答案是:3.5.小提示:本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质.12、如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件____,使△ABC≌△ADC.答案:∠D=∠B(答案不唯一)分析:本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.解:添加的条件为∠D=∠B,理由是:在△ABC和△ADC中,{∠BAC =∠DAC∠D =∠B AC =AC,∴△ABC ≌△ADC (AAS ),所以答案是:∠D =∠B .小提示:本题主要考查全等三角形的判定定理,能熟记全等三角形的判定定理是解决本题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .13、如图,OP 平分∠MON,PE ⊥OM 于点E ,PF ⊥ON 于点F ,PE =PF,OA =OB ,则图中有__________对全等三角形.答案:3分析:根据角平分线的性质得到PE =PF ,根据全等三角形的判定定理判断即可.解:如图,OP 平分∠MON,PE ⊥OM 于点E ,PF ⊥ON 于点F ,PE =PF ,∴∠1=∠2,在△AOP 和△BOP 中,{OA =OB ,∠1=∠2,OP =OP ,∴△AOP ≌△BOP (SAS ),∴AP =BP ,在Rt △EOP 和Rt △FOP 中,{PE =PF ,OP =OP,∴Rt △EOP ≌Rt △FOP (HL ),在Rt △AEP 和Rt △BFP 中,{PA =PB,PE =PF,∴Rt △AEP ≌Rt △BFP (HL ),∴图中有3对全等三角形.所以答案是:3.小提示:本题考查的是角平分线的性质、全等三角形的判定,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14、如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是________.答案:5分析:过D 作DE ⊥AB 于E ,由△DAE ≌△DAC 得到DE 的长,进而解答;解:如图,过D 作DE ⊥AB 于E ,△DAE 和△DAC 中,AD 平分∠BAC ,则∠DAE =∠DAC ,∠DEA =∠DCA =90°,DA =DA ,∴△DAE ≌△DAC (AAS ),∴DE =DC =2,∴△ABD 的面积=12×AB ×DE =12×5×2=5,所以答案是:5;小提示:本题考查了角平分线的概念,全等三角形的判定(AAS )和性质;熟练掌握全等三角形的判定和性质是解题的关键.15、如图,在等腰Rt △ABC 中,AC =BC ,D 为△ABC 内一点,且∠BCD =∠CAD ,若CD =4,则△BCD 的面积为________.答案:8分析:由线段CD 的长求ΔBCD 的面积,故过B 作CD 的垂线,则由三角形面积公式可知:S ΔBCD =12×CD ×BE ,再由题中的∠BCD =∠CAD 和等腰直角三角形ABC ,即可求证ΔACD ≌ΔCBE ,最后由CD =BE =4即可求解. 解:过点B 作CD 的垂线,交CD 的延长线于点E∵∠ACB =90°∴∠BCD +∠ACD =90°∵∠BCD =∠CAD∴∠ACD +∠CAD =90°∴∠ADC =90°∵BE ⊥CD∴∠E =90°∴∠BCD +∠CBE =90°∴∠ACD =∠CBE∵AC =CB∴ΔACD ≌ΔCBE∴CD =BE =4∴SΔBCD=12×CD×BE=12×4×4=8故答案是:8.小提示:本题主要考察全等三角形的证明、辅助线的画法、等腰三角形的性质和三角形面积公式,属于中档难度的几何证明题.解题的关键是由三角形面积公式画出合适的辅助线.解答题16、已知:等腰Rt△ABC和等腰Rt△ADE中,AB=AC,AE=AD,∠BAC=∠EAD=90°.(1)如图1,延长DE交BC于点F,若∠BAE=68°,则∠DFC的度数为;(2)如图2,连接EC、BD,延长EA交BD于点M,若∠AEC=90°,求证:点M为BD中点;(3)如图3,连接EC、BD,点G是CE的中点,连接AG,交BD于点H,AG=9,HG=5,直接写出△AEC的面积.答案:(1)68°;(2)见解析;(3)36分析:(1)由已知条件可得∠D=∠C=45°,对顶角∠AQD=∠CQF,则∠DAC=∠DFC,根据∠DAE=∠CAB即可的∠DFC=∠BAE;(2)过点B作ME的垂线交EM的延长线于N,证明△AEC≌△BNA,得AE=BN,进而可得AD=NB,再证明△DAM≌△BNM即可得证点M为BD中点;(3)延长AG至K,使得GK=AG=9,连接CK,设AE交BC于点P,先证明△ABE≌△ACD,进而证明△AEG≌△KCG,根据角度的计算以及三角形内角和定理求得∠BAD=∠KCA,进而证明△ABD≌△CAK,再根据∠CAG=∠ABD,∠BAC=90°,证明AH⊥BD,根据已知条件求得S△ABD最后证明S△AEC=S△ABD即可.(1)设DF交AC于Q,如图1,∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴∠D=∠C=45°∵∠AQD=∠CQF∵∠DAQ=180−∠D−∠AQD,∠QFC=180−∠C−∠CQF∴∠DAQ=∠QFC∵∠BAC=∠EAD=90°即∠BAE+∠EAQ=∠EAQ+∠QAD∴∠BAE=∠QAD∴∠DFC=∠BAE∵∠BAE=68°∴∠DFC=68°故答案为68°(2)如图2,过点B作ME的垂线交EM的延长线于N,∴∠N=90°∵∠AEC=90°∴∠N=∠AEC∵∠BAC=90°∴∠EAC+∠NAB=90°∵∠NAC+∠ACE=90°∴∠NAB=∠ECA∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴AB=AC,AD=AE 又∵AC=AB∴△AEC≌△BNA∴NB=AE∵AE=AD∴AD=NB∵∠DAE=90°∴∠DAM=90°∴∠DAM=∠N又∵∠DMA=∠BMN∴△DAM≌△BNM∴DM=BM即M是BD的中点(3)延长AG至K,使得GK=AG=9,连接CK,设AE交BC于点P,如图∵∠BAC=∠EAD=90°即∠BAE+∠EAC=∠EAC+∠CAD∴∠BAE=∠CAD∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴AB=AC,AE=AD在△ABE与△ACD中,{AE=AD∠BAE=∠CAD AB=AC∴△ABE≌△ACD(SAS)∴S△ABE=S△ABD,BE=CD∵G点是EC的中点∴EG=GC∵∠AGE=∠KGC,AG=GK∴△AGE≌△KGC(SAS)∴AE=CK,∠AEG=∠KCG∴AE=KC=AD,∠ACK=∠ACB+∠BCE+∠KCG=45°+∠AEC+∠BCE=45°+∠ABC+∠BAP=90°+∠BAE=∠BAD∴△AKC≌△ABD(SAS)∴BD=AK=18,∠CAK=∠ABD∵∠BAG+∠CAG=90°∴∠ABD+∠BAG=90°即∠AHB=90°∵AG=9,HG=5∴AH=AG−HG=9−5=4∴S△ABD=12BD⋅AH=12×18×4=36∵S△AEC=S△AEG+S△AGC=S△GCK+S△AGC=S△ACK=S△ABD=36∴S△AEC=36小提示:本题考查了三角形全等的性质与判定,等腰直角三角形的性质,三角形内角和定理,三角形外角性质,构造辅助线是解题的关键.17、如图,在四边形ABCD中,点E为对角线BD上一点,∠A=∠BEC,∠ABD=∠BCE,且AD=BE.(1)证明:①△ABD≅△ECB;②AD≌BC;(2)若BC=15,AD=6,请求出DE的长度.答案:(1)①证明见解析;②证明见解析(2)9分析:(1)①由ASA证明全等即可,②由①可证明;(2)由△ABD≌△ECB可证DE=BD-BE=15-6=9.(1)解:证明:①在△ABD和△ECB中,{∠A=∠BEC∠ABD=∠BCEAD=BE,∴△ABD≌△ECB(ASA),②由①得:△ABD≌△ECB∴∠ADB=∠EBC,∴AD∥BC;(2)∵△ABD≌△ECB,BC=15,AD=6,∴BD=BC=15,BE=AD=6,∴DE=BD-BE=15-6=9.小提示:本题考查了全等三角形的判定与性质、平行线的判定等知识,证明△ABD≌△ECB是解题的关键.18、如图1,已知ΔABC中,∠ACB=90°,AC=BC,BE、AD分别与过点C的直线垂直,且垂足分别为E,D.(1)猜想线段AD、DE、BE三者之间的数量关系,并给予证明.(2)如图2,当过点C的直线绕点C旋转到ΔABC的内部,其他条件不变,如图2所示,①线段AD、DE、BE三者之间的数量关系是否发生改变?若改变,请直接写出三者之间的数量关系,若不改变,请说明理由;②若AD=2.8,DE=1.5时,求BE的长.答案:(1)DE=AD+BE,证明见解析(2)①发生改变,DE=AD−BE;②1.3分析:(1)证明ΔACD≅ΔCBE,可得AD=CE,CD=BE,即可求解;(2)①证明ΔACD ≅ΔCBE ,可得AD =CE ,CD =BE , 即可求解;②由①可得DE =AD −BE ,从而得到BE =AD −DE ,即可求解.(1)解:DE =AD +BE , 理由如下:∵BE 、AD 分别与过点C 的直线垂直,∴∠BEC =∠ADC =90°,∴∠ACD +∠CAD =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE ,在ΔACD 和ΔCBE 中,{∠ADC =∠BEC∠CAD =∠BCE AC =BC,∴ΔACD ≅ΔCBE (AAS ),∴AD =CE ,CD =BE ,∵ DE =EC +CD ,∴DE =AD +BE ;(2)解:①发生改变.∵BE 、AD 分别与过点C 的直线垂直,∴∠BEC =∠ADC =90°,∴∠ACD +∠CAD =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE ,在ΔACD 和ΔCBE 中,{∠ADC =∠BEC∠CAD =∠BCE AC =BC,∴ΔACD≅ΔCBE(AAS),∴AD=CE,CD=BE,∵DE=CE-CD,∴DE=AD−BE;②由①知:DE=AD−BE,∴BE=AD−DE=2.8−1.5=1.3,∴BE的长为1.3.小提示:本题主要考查了全等三角形的判定和性质、等角的余角相等,熟练掌握全等三角形的判定和性质是解题的关键.。

全等三角形复习分类练习题.docx

全等三角形复习分类练习题.docx

全等三角形知识回顾1、 全等三角形的意义:能够完全重合的两个三角形叫做全等三角形。

一个三角形经过平移、翻折、旋转可以得到它的全等形。

2、 全等三角形的性质:(1) ______________________________ 全等三角形的对应边 、 相等。

(2) _________________________________ 全等三角形的周长相等、 相等。

(3) ________________________________________ 全等三角形的对应边上的中线、 、高线分别相等。

3、 全等三角形的判定方法:(1) __________________________________________________________ 边边边:三边对应相等的两个三角形全等(可简写成 __________________________________________________________ )(2) ___________________________________________________________________ 边角边:两边和它们的夹角对应相等两个三角形全等(可简写成 _________________________________________________ )(3) ______________________________________________________________________ 角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成 ______________________________________________ )(4) ________________________________________________________________________ 角角边:两角和其中-•角的对边对应相等的两个三角形全等(可简写成 ________________________________________ )(5) ____________________________________________________________________________ 斜边•直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成 ____________________________________ )考点一:关于三角形全等的基本定理4. 两三角形有以下元素对应相等,不能判定全等的是( )5. 如果两个三介形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( )针对性练习典型例题例1 •下列命题屮正确的是()A.全等三角形的高相等C.全等三角形的角平分线相等★2.下列说法止确的是() A.周长相等的两个三角形全等C.面积相等的两个三角形全等★3.下列说法屮不正确的是() A.全等三角形的对应高相等C.全等三角形的周长相等 B.全等三角形的中线和等D.全等三角形对应角的平分线相等 B.有两边和其中一边的对角对应和等的两个三角形全等 D.有两角和其中一角的对边对应相等的两个三角形全等 B.全等三角形的面积相等 D.周长相等的两个三角形全等A.两角和一边B.两边及夹角C.三个角D.三条边A. 一定全等B. 一定不全等C.不一定全等D.面积相等1.如果两个三角形屮两条边和具屮一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.不相等C.互余或相等D.互补或相等2.下列各图中,一定全等的是()针对性练习:1. (2008湖北咸宁)如图,在RtZXMC 屮,AB = AC , D 、E 是斜边加 上 两点,顺时针旋转90。

期末复习全等三角形知识总结和经典例题

期末复习全等三角形知识总结和经典例题

全等三角形复习[知识要点]【一、全等三角形】注: ①判定两个三角形全等必须有一组边对应相等;②全等三角形面积相等.2. 证题的思路:角平分线上的点到这个角的两边的距离相等(垂线段相等)判定: 到一个角的两边距离相等的点在这个角平分线上(常作垂线)[多边形的内角和]①三角形的一个外角等于及它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个及它不相邻的内角。

——常用来比较角的大小5.多边形的内角及外角2.多边形的内角和及外角和(识记)(1)多边形的内角和: (n-2)180° (2)多边形的外角和: 360°引申: (1)从n 边形的一个顶点出发能作(n-3)条对角线;(2)多边形有2)3(-n n 条对角线。

(3)从n 边形的一个顶点出发能将n 边形分成(n-2)个三角形;(4)边数=外角和360°÷一个外角 (5)内角和=(边数-2)×180① 3. 轴对称;一个图形沿着一条直线折叠, 两部分能够完全重合, 这个图形是轴对称图形 (选择题应用)点 关于 轴对称的点的坐标为 .[ 关于x 轴对称----横坐标x 不变纵坐标y 互为相反数]② 点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -[关于y轴对称----纵坐标y不变横坐标x互为相反数]x y关于原点对称的坐标为"P(-x,-y)③点P(,)[关于原点对称----横坐标相反, 纵坐标互为相反]4.垂直平分线的性质垂直平分线上的点到这条线段的两个端点的距离相等(直角三角形的斜边相等)---常用来算周长和角度5.等腰三角形的性质:①等腰三角形两腰相等..②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线, 底边上的高相互重合.⑸等边三角形的性质:3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等, 那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点, 作所连线段的垂直平分线.第十五章⑷作已知图形关于某直线的对称图形: (5)做平行线得到等腰、等边三角形第十六章(5)整式乘除及因式分解5.知识点归纳:一、幂的运算:1.同底数幂的乘法法则: (都是正整数)如:2.幂的乘方法则: (都是正整数)如:幂的乘方法则可以逆用: 即如:3.积的乘方法则:(是正整数)积的乘方, 等于各因数乘方的积。

专题01 全等三角形的判定与性质重难点题型专训(原卷版)

专题01 全等三角形的判定与性质重难点题型专训(原卷版)

专题01 全等三角形的判定与性质重难点题型专训【题型目录】题型一 用“SSS ”证明三角形全等问题题型二 全等的性质与“SSS ”综合问题题型三 用“SAS ”证明三角形全等问题题型四 全等的性质与“SAS ”综合问题题型五 用“ASA(AAS)”证明三角形全等问题题型六 全等的性质与“ASA(AAS)”综合问题题型七 用“HL ”证明三角形全等问题题型八 全等的性质与“HL ”综合问题题型九 灵活选用判定方法证全等题型十 结合尺规作图的全等问题题型十一 与角平分线相关的全等证明问题题型十二 全等三角形的综合问题【知识梳理】知识点、全等三角形的判定一、全等三角形判定1——“边边边”定理1:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .二、全等三角形判定2——“边角边”定理2:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C .注意:1. 这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.三、全等三角形判定3——“角边角”定理3:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .四、全等三角形判定4——“角角边”定理4:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.知识点、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.3.三角形证全等思路SAS HL SSS AAS SAS ASA AAS ASA AASì®ìïï®íïïï®îïï®®ìïï®ìïïííï®íïïïïï®îîïï®ìïí®ïîïî找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边知识点、判定直角三角形全等的特殊方法——“HL ”定理5:在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“HL”).要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【经典例题一【例1①以【变式训练】1.(2022①△ABD【经典例题二 全等的性质与“SSS ”综合问题】【例2】(2023·贵州黔东南·统考二模)如图,在ABC V 中,=90ACB а,按如下步骤操作:①以点A 为圆心,任意长为半径作弧,分别交AC ,AB 于D ,E 两点;②以点C 为圆心,AD 长为半径作弧,交AC 的延长线于点F ;③以点F 为圆心,DE 长为半径作弧,交②中所画的弧于点G ;④作射线CG ,若=40B а,则FCG Ð为( )A .40°B .50°C .60°D .70°【变式训练】1.(2023春·全国·七年级期末)如图,在ACD V 和BCE V 中,AC BC =,AD BE =,CD CE =,55ACE Ð=°,155BCD Ð=°,AD 与BE 相交于点P ,则BPD Ð的度数为( )A .110°B .125°C .130°D .155°2.(2023·全国·八年级假期作业)如图,已知AB AD =,AC AE =,BC DE =,直线BC 与AD ,DE 分别交于点F ,G ,且65DGB Ð=°,120EAB Ð=°,则CAD Ð的度数为___________.3.(2023秋·浙江杭州·八年级校考开学考试)如图,在ABC V 中,点D ,点E 分别在边AB ,边BC 上,连接,DE AD AC =,ED EC =.(1)求证:ADE C Ð=Ð.(2)若,30AB DE B ^Ð=°,求A Ð的度数.【经典例题三 用“SAS ”证明三角形全等问题】【例3】(2022秋·云南昭通·八年级统考期末)如图,AD 是ABC V 的中线,E ,F 分别是AD 和AD 延长线上的点,且CE BF P ,连接BF CE ,,下列说法:①DE DF =;②ABD V 和ACD V 面积相等;③CE BF =;④BDF CDE V V ≌;⑤CEF F ÐÐ=.其中正确的有( )A .1个B .5个C .3个D .4个【变式训练】1.(2022·浙江杭州·校考模拟预测)如图,正五边形ABCDE 中,AF CD ^,则BAF Ð的度数是( )A .50°B .54°C .60°D .72°2.(2022秋·山东聊城·八年级统考期末)如图,在ABC D 中,已知AB AC =,BD CF = ,BE CD =.若40A Ð=°,则EDF Ð的度数为__________.3.(2023春·七年级课时练习)如图,点E 在AB 上,DE BC P ,且DE AB EB BC ==,,连接EC 并延长,交DB 的延长线于点F .(1)求证:AC DB =;(2)若30A Ð=°,40BED Ð=°,求F Ð的度数.【经典例题四 全等的性质与“SAS ”综合问题】【例4】(2023春·全国·七年级专题练习)如图所示,AB AC =,AD AE =,点B 、D 、E 在一条直线上,BAC DAE Ð=Ð,125Ð=°,230Ð=°,则3Ð=( )A .55°B .50°C .45°D .60°【变式训练】1.(2023秋·八年级单元测试)在ABC V 中,D 是BC 边的中点,若9AB =,5AC =,则ABC V 的中线AD 长的取值范围是( )A .59AD <<B .49AD <<C .214AD <<D .27AD <<2.(2023春·广东佛山·七年级校考阶段练习)如图,4cm AB =,3cm AC BD ==,60CAB DBA Ð=Ð=°,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()s t .设点Q 的运动速度为cm/s x ,若使得ACP △与BPQ V 全等,x 的值为_________.3.(2023·河北沧州·统考二模)如图1,C ,O ,B 三点在同一条直线上,点A 在线段OC 上,点D 在线段OE 上,且OA OD =,AC DE =,连接CD ,AE .(1)求证:AE CD =;(2)写出1Ð,2Ð和C Ð三者间的数量关系,并说明理由;(3)如图2,OC ,OE 两根长度相等的木棍固定在点O 处,290Ð=°.点A 在木棍OC 上,点D 在木棍OE 上,AE 与CD 是两根皮筋,皮筋的端点C ,E 固定,改变皮筋端点A ,D 的位置,始终保持OA OD =,且皮筋处于绷直状态,若1Ð增加了3°,则CFE Ð_______(填“增加”或“减少”)_________度.【经典例题五 用“ASA(AAS)”证明三角形全等问题】【例5】(2022春·河南郑州·七年级郑州外国语中学校考期末)小明在学习了全等三角形的相关知识后,发现了一种测量距离的方法,如图,小明直立在河岸边的O 处,他压低帽子帽沿,使视线通过帽沿,恰好落在河对岸的A 处,然后转过身,保持和刷才完全一样的姿势,这时视线落在水平地面的B 处(A ,O ,B 三点在同一水平直线上),小明通过测量O ,B 之间的距离,即得到O ,A 之间的距离.小明这种方法的原理是( )A .SSSB .SASC .ASAD .AAS【变式训练】1.(2022秋·湖北宜昌·八年级校考期中)如图,有一块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是( )A .4B .6C .10D .162.(2023春·山东青岛·八年级统考期中)如图,已知点B ,E ,F ,C 在同一条直线上,BE CF =,AB AF ^,CD DE ^,若添加一个条件(不再添加新的字母)后,能判定ABF △与DCE △全等,则添加的条件可以是______(写出一个条件即可).3.(2023·湖北黄石·黄石十四中校联考模拟预测)如图,90ACB AC BC AD CE BE CE Ð=°=^^,,,,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)若127AD DE ==,,求BE 的长.【经典例题六 全等的性质与“ASA(AAS)”综合问题】【例6】(2023·浙江·八年级假期作业)已知如图:AC CE =,且90ACE Ð=°,AB BD ^于D ,ED BD ^于D . 2BC =,3CD =.连接AD ,AE .则图中阴影部分的面积为( ).A .5B .6C .9D .10【变式训练】1.(2023春·重庆大渡口·七年级重庆市第三十七中学校校考期中)如图,在ABC V 中,60A Ð=°,ABC Ð和ACB Ð的平分线BD 、CE 相交于点O ,BD 交AC 于点D ,CE 交AB 于点E ,若已知ABC V 周长为20,7BC =,:5:4AE AD =,则AD 长为( )A .83B .2.(2023·山东淄博·校考二模)的面积为2,则ABC V 的面积为3.(2023·江苏·八年级假期作业)点M ,BN MN ^于点N (1)若MN 在ABC V 外(如图1),求证:MN AM BN =+(2)若MN 与线段AB 相交(如图2),且 2.6AM =,BN 【经典例题七【例7】(2022春·七年级单元测试)下列说法中,不正确的个数有( )①有一条直角边和斜边上的高对应相等的两个直角三角形全等;②有两边和其中一边的对角对应相等的两个三角形全等;③有两边和第三边上的高对应相等的两个三角形全等;④斜边和斜边上的中线对应相等的两个直角三角形全等.A .1个B .2个C .3个D .4个【变式训练】1.(2022·辽宁葫芦岛·八年级校考期中)如图,CA ⊥AB ,垂足为点A ,AB =12米,AC =6米,射线BM ⊥AB ,垂足为点B ,动点E 从A 点出发以2米/秒沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED =CB ,当点E 经过t 秒时,由点D 、E 、B 组成的三角形与△BCA 全等.请问t 有几种情况?( )A .1种B .2种C .3种D .4种2.(2023·全国·八年级假期作业)如图,在Rt ABC △中,90126C AC BC PQ AB Ð=°===,,,,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使ABC V 和QPA △全等,则AP = ______.3.(2023春·广东深圳·八年级统考阶段练习)如图,ABC V 中,90ACB Ð=°,CA CB =,点F 为BC 延长线上一点,点E 在AC 上,且AF BE =.(1)求证:ACF △≌BCE V ;(2)若23ABE Ð=°,求BAF Ð的度数.【经典例题八 全等的性质与“HL ”综合问题】【例8】(2022秋·河北秦皇岛·八年级统考期末)如图,AB AC =,CF AB ^于F ,BE AC ^于E ,CF 与BE 交于点D .有下列结论:①ABE ACF @V V ;②BDF CDE @V V ;③点D 在BAC Ð的平分线上;④点C 在AB 的中垂线上.以上结论正确的个数是( )A .1B .2C .3D .4【变式训练】1.(2021秋·陕西汉中·八年级统考期末)如图,在ADE V 和ABC V 中,AD AB =,DE BC =,EA CA =,过A 作AF D E ^,垂足为F ,过A 作AH BC ^,垂足为H ,DE 交CB 的延长线于点G ,连接AG .四边形DGBA 的面积为12,4AF =,则FG 的长是( )A.2B.2.53.(2023春·山东枣庄·八年级校考期中)^于点E.点D,CE DE=,求证:(1)若B,C在直线DE的同侧(如图①所示),且AD CE^;①AB AC=+.②DE BD CE=,其他条件不变,(2)若B,C在直线DE的两侧(如图②所示),且AD CE【经典例题九【例9A.BCC .A A ¢Ð=Ð,AB B C ¢¢=,AC A C ¢¢=D .BC B C ¢¢=,AC A B ¢¢=,B C ¢Ð=Ð【变式训练】1.(2022秋·江苏扬州·八年级校考阶段练习)如图,已知AB DC AD BC BE DF =∥,∥,,则图中全等的三角形有( )对.A .3对B .4对C .5对D .6对2.(2023·浙江·八年级假期作业)如图,在ABC V 和DEF V 中,点B ,E ,C ,F 在同条一直线上,下列4个条件:AB DE AC DF ABC DEF BE CF ÐÐ①=;②=;③=;④=,请你从中选3个条件作为题设,余下的1个条件作为结论,写出一个真命题,则你选择作为题设的条件序号为:______,作为结论的条件序号为:______.3.(2022秋·山东威海·八年级统考期中)如图,AD AC AB AE DAB CAE ==Ð=Ð,,.(1)写出ADE V 与ACB △全等的理由;(2)判断线段DF 与CF 的数量关系,并说明理由.【经典例题十 结合尺规作图的全等问题】【例10】(2023春·全国·七年级专题练习)已知ABC V ,按图示痕迹作A B C ¢¢¢V ,得到A ABC B C ¢¢¢≌△△.则在作图时,这两个三角形满足的条件是( )A .,AB A B AC A C ==¢¢¢¢B .,B B AB A B Ð=Ð=¢¢¢C .,,A A B B C C ¢¢¢Ð=ÐÐ=ÐÐ=ÐD .,,AB A B AC A C BC B C ¢¢¢¢¢¢===【变式训练】1.(2022秋·八年级课时练习)已知锐角AOB Ð,如图,(1)在射线OA 上取点C ,E ,分别以点O 为圆心,OC ,OE 长为半径作弧,交射线OB 于点D ,F ;(2)连接CF ,DE 交于点P .根据以上作图过程及所作图形,下列结论错误的是( )A .CE DF=B .PE PF =C .若60AOB Ð=°,则120CPD Ð=°D .点P 在AOB Ð的平分线上2.(2022春·广东揭阳·八年级校考阶段练习)在课堂上,张老师布置了一道画图题:画一个Rt ABC V ,使90B Ð=°,它的两条边分别等于两条已知线段.小刘和小赵同学先画出了90MBN Ð=°之后,后续画图的主要过程分别如图所示.那么小刘和小赵同学作图确定三角形的依据分别是______;_______3.(2023春·七年级课时练习)如图,已知同一平面内四个点A ,B ,C ,D ,请按要求完成下列问题:(1)画直线AB ,射线BD ,连接AC ;(2)在线段AC 上求作点P ,使得CP AC AB =-;(保留作图痕迹)(3)过点P 作直线l ,使得l AB ∥;(保留作图痕迹)(4)请在直线l 上确定一点Q ,使点Q 到点C 与点D 的距离之和最短,并写出画图的依据.【经典例题十一 与角平分线相关的全等证明问题】【例11】(2022秋·江苏无锡·八年级统考期末)如图,已知ABC V 的面积为12,AD 平分BAC Ð,且AD BD ^于点D ,连结CD ,则ADC △的面积是( )A .10B .8C .6D .4【变式训练】A.1个B.2个3.(2023·安徽·校联考一模)如图,在正方形EAFÐ=°.45(1)若EA是BEFÐ的角平分线,求证:(2)若BE DF=,求证:【经典例题十二A .4个B .3个【变式训练】1.(2023秋·广东广州·八年级统考期末)如图,梯形ADC Ð,以下说法:①CDE ÐA .①②④2.(2022秋·贵州遵义线l 上.点P 从点A3.(2023春·广东茂名·七年级校考阶段练习)如图(1),16cm AB =,AC AB ^,BD AB ^,垂足分别为A ,B ,10cm AC =.点P 在线段AB 上以3cm/s 的速度由点A 向点B 运动.同时,点Q 在射线BD 上运动.它们运动的时间为t (s )(当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当2t =时,①试说明ACP BPQ △≌△.②此时,线段PC 和线段PQ 有怎样的关系,请说明理由.(2)如图(2),若“AC AB ^,BD AB ^”改为“60CAB DBA Ð=Ð=°”,点Q 的运动速度为cm /s x ,其他条件不变,当点P ,Q 运动到某处时,有ACP △和BPQ V 全等,求出此时的x ,t 的值.【重难点训练】1.(2023秋·广东梅州·八年级校考阶段练习)如图,在四边形ABCD 中,对角线 AC 平分,BAD AB AD Ð>,下列结论中正确的是( )A .AB AD CB CD->-B .AB AD CB CD -=-C .AB AD CB CD -<-D .AB AD - 与 CB CD -的大小关系不确定2.(2023春·湖北武汉·八年级校考阶段练习)如图,在四边形ABCD 中,F 是对角线AC 的中点,连接DF 并延长交BC 于点E ,若AD BE =,DF EF =,6ABCD S =四边形,则四边形ABED 的面积为( )A .1B .2C .3D .43.(2023春·广东惠州·九年级校考开学考试)如图所示,小语同学为了测量一幢楼高AB ,在旗杆CD 与楼之间选定一点P ,测得PC 与地面夹角38DPC Ð=°,测得PA 与地面夹角52APB Ð=°,量得点P 到楼底的距离PB 与旗杆的高度都是9m ,量得旗杆与楼之间的距离36m DB =,则楼高AB =( )A .36mB .27mC .25mD .18m4.(2023春·广东深圳·八年级校联考期中)如图,在ABC V 和BAD V 中,90C D Ð=Ð=°.在以下条件:①AC BD =;②AD BC =;③BAC ABD Ð=Ð;④ABC BAD Ð=Ð;⑤CAD DBC Ð=Ð中,再选一个条件,就能使ABC BAD ≌△△,共有( )选择.A .2种B .3种C .4种D .5种5.(2022秋·七年级单元测试)ABC V 中,12AB AC ==厘米,B C Ð=Ð,8BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v 厘米/秒,则当BPD △与CQP V 全等时,v 的值为( )A .2B .5C .1或5D .2或36.(2023·全国·九年级专题练习)如图,正方形ABCD 的顶点B 在直线l 上,将直线l 向上平移线段AB 的长得到直线m ,直线m 分别交AD ,CD 于点E ,F .若求DEF V 的周长,则只需知道( )A .AB 的长B .FE 的长C .DE 的长D .DF 的长7.(2023春·全国·七年级专题练习)如图,ABC V 中,90BAC Ð=°,AB AC =、BM 是AC 边的中线,有AD BM ^;垂足为点E 交BC 于点D .且AH 平分BAC Ð交BM 于N .交BC 于H .连接DM .则下列结论:①AMB CMD Ð=Ð;②HN HD =;③BN AD =;④BNH MDC Ð=Ð;错误的有( )个.A .0B .1C .3D .48.(2022秋·福建龙岩·八年级校考阶段练习)如图,在ABC V 中,90BAC Ð=°,2AB AC =,点D 是线段AB 的中点,将一块锐角为45°的直角三角板按如图()ADE V 放置,使直角三角板斜边的两个端点分别与A 、D重合,连接BE 、CE ,CE 与AB 交于点.F 下列判断正确的有()①ACE △≌DBE V ;②BE CE ^;③DE DF =;④DEF ACF S S =V VA .①②B .①②③C .①②④D .①②③④9.(2023·湖北孝感·校考模拟预测)如图,已知CD AB ^,BE AC ^垂足分别为D 、E ,BE 、CD 交于点O ,且BAO CAO Ð=Ð,则图中的全等三角形共有__对.10.(2019春·广东揭阳·七年级统考阶段练习)如图,在ABE V 中,已知AB BE =,过E 作EF AB ^于F ,且BEF △的三条角平分线交于点G ,连接AG ,则AGB Ð=___________度.11.(2022春·七年级单元测试)ABC V 的角平分线AD 交BC 于点D ,过点D 作DE AC ^,交AC 边于点E ,DF AB ^,交AB 边所在的直线于点F ,若52AE BF ==,,则AB 的长为________.12.(2023春·吉林·八年级校考阶段练习)如图,在ABC V 中,AP 垂直ABC Ð的平分线BP 于点P ,若6PBC S D =,且2APB APC S S =V V ,则APB S =△__________.14.(2023春·全国·七年级专题练习)如图,®®路径向终点运动,出发沿A C BA点,点P和Q分别以2cm^动,分别过P和Q作PE l以点Q,F,C为顶点的三角形全等,则15.(2023·江苏·八年级假期作业)已知:在16.(2023·浙江温州·校考三模)如图,在四边形=,AB CE(1)求证:ABD ECD V V ≌;(2)当65DCB Ð=°时,求ABD Ð的度数.17、(2022秋·河南驻马店·八年级统考期末)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,ABC V 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC △≌EDB △的理由是______.A .SSSB .SASC .AASD .HL(2)求得AD 的取值范围是______.A .68AD <<B .68AD ££C .17AD << D .17AD ££【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD 是ABC V 的中线,BE 交AC 于E ,交AD 于F ,且AE EF =.求证:AC BF =.18.(2023春·广东佛山·七年级校考期中)在ABC V 中,90ACB Ð=°,AC BC =,直线MN 经过点C ,且AD MN ^于D ,BE MN ^于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ACD CEB V V ≌;②DE AD BE =+.(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE AD BE 、、具有怎样的等量关系?请写出这个等量关系,并加以证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题 01 全等三角形章末重难点题型汇编【举一反三】变式 1-1】( 2018秋?绍兴期末)如图,△ ABC ≌△EDC ,BC ⊥CD ,点 A ,D ,E 在同一条直线上,∠ ACB = 20°,则∠ ADC 的度数是( )A .55°B .60°C . 65°D . 70°变式 1-2】(2018秋?厦门期末)如图,点 F ,C 在 BE 上,△ ABC ≌△ DEF ,AB 和 DE ,AC 和 DF 是对 应边, AC ,DF 交于点 M ,则∠ AMF 等于( )A .2∠B B .2∠ACBC .∠ A+∠D D .∠ B+∠ ACB变式 1-3】( 2018秋?桐梓县校级期中)如图,△ ABC ≌△ A ′ B ′ C ,∠ ACB = 90°,∠ B = 50°,点 B ′ 在线段 AB 上, AC , A ′ B ′交于点 O ,则∠ COA ′的度数是( )A .50°B .60°C . 70°D . 80°考点 1 利用全等三角形的性质求角】例 1】(2019 春?临安区期中)如图, △ACB ≌△A ′CB ′,∠ACB =70°,∠ACB ′=100°,则∠BCA 的度数为( )40°变式 2-1 】(2019 秋?潘集区期中)在△ ABC 与△ DEF 中,给出下列四组条件:变式 2-2】( 2018春?渝中区校级期中)如图,点 B 、F 、C 、E 在一条直线上,∠ A =∠D ,∠B =∠E ,再 添一个条件仍不能证明△ ABC ≌△ DEF 的是( )A .AB =DE B .BC =EF C .∠ ACB =∠ DFED . AC = DF变式 2-3】(2018 秋?鄂尔多斯期中)如图,已知 AB =AC ,AD =AE ,若要得到“△ ABD ≌△ ACE ”,必须添加一个条件,则下列所添条件不恰当的是( )A .BD =CEB .∠ ABD =∠ ACEC .∠ BAD =∠ CAE D .∠ BAC =∠ DAE考点 3 全等三角形判定的应用】例 3】(2019春?郓城县期末)如图所示,要测量河两岸相对的两点 A 、B 的距离,因无法直接量出 A 、B两点的距离,请你设计一种方案,求出 A 、B 的距离,并说明理由.变式 3-1】(2019春?峄城区期末)如图,点 C 、 E 分别在直线 AB 、DF 上,小华想知道∠ ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先添加一个(1)AB =DE ,AC =DF , BC =EF(3)∠ B =∠ E , BC = EF ,∠ C=∠F 其中能使△ ABC ≌△ DEF 的条件共有( A .1 组 B .2 组 (2)AB =DE ,∠ B =∠ E , BC =EF(4)AB = DE ,∠ B =∠E ,AC =DF , ) 考点 2 全等三角形的判定条C .∠ C =∠D .∠ B =∠B .BC =ED A . AB =连结CF ,再找出 CF 的中点 O,然后连结 EO 并延长 EO 和直线 AB 相交于点 B,经过测量,他发现 EO=BO,因此他得出结论:∠ ACE 和∠ DEC 互补,而且他还发现 BC= EF.小华的想法对吗?为什么?变式 3-2】(2019春?槐荫区期末)王强同学用 10 块高度都是 2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板( AC=BC,∠ ACB =90°),点 C 在 DE 上,点 A 和 B 分别与木墙的顶端重合,求两堵木墙之间的距离.变式 3-3 】如图,两根长 12m 的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.考点 4 利用AAS 证明三角形全等】方法点拨】两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)例 4】(2018秋?仙游县期中)如图,△ ABC 的两条高 AD,BE相交于点 F,请添加一个条件,使得△ ADC ≌△ BEC(不添加其他字母及辅助线),你添加的条件是.并证明结论.变式 4-1】( 2018 春?揭西县期末)如图,∠ ABC =∠ ACB ,∠ ADE =∠ AED ,BE= CD ,试说明:△ ABD≌△ ACE .变式 4-2】( 2018 秋?杭州期中)如图,∠ ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE .求证:△ACD ≌△ACD =90°,且 BC =CE ,求证:△ ABC ≌△ DEC .考点 5 利用 SAS 证明三角形全等】方法点拨】 两边和它们的夹角对应相等两个三角形全等(可简写成 “SAS ”)例 5】(2018 春?金山区期末)如图,已知 CA =CD ,CB =CE ,∠ACB =∠DCE ,试说明△ ACE ≌△ DCB变式 5-1】(2018春?黄岛区期末) 如图,点 E 在 AB 上,AC =AD ,∠CAB =∠DAB ,那么△BCE变式 4-3】( 2018?雁塔区校级二模)如图,在四边形 ABCD 中,点 E 在 AD 上,其中∠ BAE =∠ BCE =∠和△BDE 全等吗?请说明理由.变式 5-2】( 2018秋?仪征市校级月考)如图,已知点B、F、C、E在同一直线上, AC、DF 相交于点 G,AB⊥BE,垂足为 B,DE⊥BE,垂足为 E,且 AB=DE,BF=CE,说明△ ABC与△ DEF 全等的理由.变式 5-3】( 2019秋?东莞市校级月考)如图:△ ABC 和△EAD 中,∠ BAC=∠ DAE,AB=AE,AC=AD,考点 6 利用ASA 证明三角形全等】方法点拨】两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)例 6】(2019秋?利辛县期末)如图,已知 AB=AC,∠ABE=∠ ≌△ACD,BE与CD 相交于 O,求证:△ ABEA=∠ B,AE=BE,点 D 在 AC 边上,∠ 1=∠ 2,AE 和 BD 相交于点 O.求证:△ AEC≌△ BED ;变式 6-2】( 2019 ?陕西模拟)如图,四边形 ABCD 中,E点在 AD 上,其中∠BAE=∠BCE=∠ACD =90°,且 BC=CE,求证:△ ABC≌△ DEC.变式 6-3】( 2019秋?乐清市校级期中)如图,△ ABC 的两条高 AD、BE相交于点 H,且AD=BD,求证:△ BDH ≌△ ADC.考点7 利用SSS 证明三角形全等】方法点拨】三边对应相等的两个三角形全等(可简写成“SSS”)例 7】( 2019春?渝中区校级月考)如图, AB=CD,AE=CF,E、F是BD 上两点,且 BF=DE.求证:△ ABE≌△ CDF .变式 7-1】(2019 秋?扶余县校级月考)如图,在△ ABC 中, AD=AE,BE=CD,AB= AC.1)求证:△ ABD≌△ ACE;2)求证:∠ BAE=∠ CAD .变式 7-2】(2019秋?保亭县校级月考)如图, AB=AD,DC= BC,∠ B与∠ D 相等吗?为什么?变式 7-3】(2019秋?蓬江区校级期末)如图,在△ ABC 中,∠ C=90°,D、E分别为 AC、AB上的点,且 AD=BD,AE=BC,DE=DC,求证: DE⊥ AB.【考点8 利用HL 证明三角形全等】【方法点拨】对于特殊的直角三角形,判定它们全等时,还有 HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例 8】(2018 秋?思明区校级月考)如图,在四边形 ABCD 中,AD⊥ BD ,AC ⊥CB ,BD =AC .求证:△ABD≌△ BAC;变式 8-1】( 2019秋?睢宁县校级月考)如图, Rt△ ABC 中,∠C=90°,BC=2,一条直线MN = AB,M 、 N 分别在 AC 和过点 A 且垂直于 AC 的射线 AP 上运动.问点 M 运动到什么位置,才能使△ ABC 和△ AMN 全等?并证明你的结论.变式 8-2】(2019秋?合浦县期末)如图,已知∠ A =∠ D =90°, E 、F 在线段 BC 上, DE 与AF 交于点变式 8-3】(2019春?醴陵市期末)如图,在四边形 ABCD 中,AB =AD ,CA 平分∠BCD ,AE ⊥BC 于点E ,AF ⊥ CD 交 CD 的延长线于点 F .考点 9 全等三角形的判定与性质综合】 例 9】( 2019?南岸区)如图,在△ ABC 和△ ABD 中,∠BAC =∠ABD =90°,点 E 为 AD 边上的一点,且 AC =AE ,连接 CE 交 AB 于点 G ,过点 A 作AF ⊥AD 交 CE 于点 F .如图 ① ,在△ ABC 中,∠ BAC =90°, AB = AC ,直线m 经过Rt △ABF ≌Rt △DCE .1)求证:△ AGE ≌△AFC ;点 A,BD ⊥直线 m,CE⊥直线 m,垂足分别为点 D、E,求证: DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ ABC 中,AB =AC ,D 、A 、E 三点都在直线 m 上,并且有 ∠BDA =∠ AEC =∠ BAC = α,其中 α为任意钝角,请问结论 DE =BD+CE 是否成立?若成立,请你给 出证明:若不成立,请说明理由.变式 9-2】(2018 秋?天台县期末)如图,∠ ACB =90°, AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别为 D ,考点 10 动点问题中的全等三角形应用】例 10】(2019春?平川区期末) 如图,已知△ ABC 中,AB =AC =10cm ,BC =8cm ,点 D 为AB 的中点.如 果点 P 在线段 BC 上以 3cm/s 的速度由点 B 向 C 点运动,同时,点 Q 在线段 CA 上由点 C 向 A 点运动. (1)若点 Q 的运动速度与点 P 的运动速度相等,经过 1秒后,△1)如图 1,求 BE 的长,写出求解过程; (用含 a , b 的式子表示)2)如图 2,点 D 在△ABC 内部时,直接写出 BE 的长 用含 a ,b 的式子表示)变式 9-3】( 2019 春?道外区期末)如图,四边形 ABCD 中,∠ ABC =∠ BCD = 90°,点 E 在 BC 边上, ∠AED = 90°1)求证:∠ BAE =∠ CED ;2)若 AB+CD =DE ,求证: AE+BE =CE ;E ,若 AD =a ,DE =b ,BPD 与△CQP 是否全等,请说明理由.( 2)若点 Q 的运动速度与点 P 的运动速度不相等,当点 Q 的运动速度为多少时,能够使△ BPD 与△CQP 全等?变式 10-1 】( 2019春?永新县期末)△ABC中,AB=AC,∠A=40°,D、E分别是 AB,AC上的不动点.且BD+CE=BC,点 P 是 BC 上的一动点.( 1)当 PC= CE 时(如图 1),求∠ DPE 的度数;(2)若 PC=BD 时(如图 2),求∠ DPE 的度数还会与( 1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.变式 10-2 】( 2019 春?宝安区期中)如图,在四边形 ABCD 中, AD=BC= 10,AB=CD,BD=14,点 E 从 D 点出发,以每秒 2 个单位的速度沿 DA 向点 A 匀速移动,点 F 从点 C 出发,以每秒 5 个单位的速度沿C→B→C,作匀速移动,点 G从点 B出发沿 BD向点 D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为 t 秒.( 1)试证明: AD∥ BC;( 2)在移动过程中,小明发现有△ DEG 与△ BFG 全等的情况出现,请你探究这样的情况会出现几次?变式 10-3 】(2018 秋?十堰期末)在△ ABC 中, AB= AC,D 是直线 BC 上一点,以 AD 为一条边在 AD 的右侧作△ ADE,使 AE=AD,∠DAE=∠ BAC,连接 CE.第10 页共11 页(1)如图,当点 D 在 BC 延长线上移动时,若∠ BAC=25°,则∠ DCE=.(2)设∠ BAC =α,∠ DCE =β.① 当点 D 在 BC 延长线上移动时,α与β之间有什么数量关系?请说明理由;② 当点 D 在直线 BC 上(不与 B ,C 两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.。

相关文档
最新文档