图形的认识-基本图形
图形的认识

图形的认识在我们日常生活中,图形无处不在。
从简单的几何图形到复杂的艺术作品,图形扮演着重要的角色。
对图形的认识不仅仅是一种视觉感知,更体现了人类对于形态、结构和美学的理解。
图形的基本概念图形是平面上由线条或颜色界定的形态。
最基本的图形包括点、线和面。
点是最简单的图形,没有长度和宽度,只有位置的概念。
线由无数点连成,具有长度但没有宽度。
而面则是由线条围成的封闭区域,具有长度和宽度。
图形在二维空间中具有各种属性,如形状、大小、位置、方向等。
通过这些属性,我们可以描述图形的特征,并对其进行分类和比较。
图形的分类根据形状和属性的不同,图形可以分为几何图形和非几何图形。
几何图形是指具有几何特征的图形,如圆形、三角形、正方形等。
这些图形具有明确的形状和结构特征,可以通过几何学知识进行描述和推导。
非几何图形则是指那些形状不规则或无法用几何学方法描述的图形,如自然界中的各种形态、抽象艺术作品等。
非几何图形更注重对视觉和感知的创造和表达,具有更加自由和丰富的表现形式。
图形的应用图形不仅仅是一种艺术表现形式,也在各个领域得到了广泛的应用。
在设计和建筑领域,图形是表达和传达设计概念的重要工具,通过对图形的运用,设计师可以更好地呈现空间和结构的关系。
在科学和工程领域,图形也扮演着重要角色。
科学家和工程师通过绘制各种图形来展示数据分析结果、模拟系统运行状态等,帮助人们更直观地理解抽象概念和复杂过程。
结语通过对图形的认识,我们不仅可以欣赏美丽的艺术作品,还可以更好地理解世界的结构和规律。
图形作为一种视觉语言,帮助我们沟通和表达,丰富了我们的生活和思维。
在日常生活中,我们可以多关注周围的图形,从简单的几何图形到复杂的艺术品,感受图形之美,拓展视野,提升审美和逻辑思维能力。
图形的认识是一场奇妙的旅程,让我们一起走进这个多彩的世界!。
第四单元 图形的初步认识

第四章 图形初步认识第一课时 图形初步认识一、知识归纳1、几何图形:平面图形和立体图形。
都在同一平面内的图形叫做平面图形。
如:不都在同一平面内的图形叫做立体图形。
如:[1]下列物体与哪种立体图形相类似?请用直线连接起来。
2、从不同方向看立体图形(三视图) 常见几何体的三视图:立体图形 俯视图 左视图 正视图长方体圆柱体圆锥 棱锥 球长方形正方形三角形五边形圆六边形篮球 粉笔盒 金字塔易拉罐3、常见几何体的平面展开图4、点、线、面、体的关系(1)几何体简称体,包围着体的是面,面有平面和曲面;面与面相交成线,线有直线和曲线;线与线相交成点。
(2)点动成线,线动成面,面动成体。
〔3〕第二行的图形围绕红线旋转一周,便能形成第一行的某个几何体,用线连一连.二、典型题型(1)下列图形中,棱锥是 ( )(2)如图这个物体的俯视图是 ( )C(A ) (B )(C )(D )(A )(B ) (C )第二课时 线1、直线、射线、线段性质:(1)经过两点有一条直线,并且只有一条直线。
即:两点确定一条直线。
(2)连接两点的线段的长,叫做两点间的距离;两点之间线段最短。
线段的中点及等分点:(1)若点C 把线段AB 分为相等的两条线段AC 和BC ,则点C 叫做线段的中点。
(2)若点B 、C 是线段AD 上的两点,且AB=BC=CD=31AD,我们称B 、C 为线段AD的三等分点。
如图:比较线段大小的方法:(1)叠合法;(2)度量法:①直尺度量;②圆规度量。
名 称 直 线射 线 线 段 图 形表示方法 直线AB 或直线l 射线AB 或射线l线段AB 或线段a概 念 直线是一个点在平面或者空间内沿着一定方向和其反方向运动的轨迹,不弯曲的线。
直线上的点和一旁的部分叫做射线。
直线上的两点和它们之间的部分叫做线段。
端点 没有端点 只有一个端点 有两个端点延伸性向两方向延伸向一个方向延伸不能延伸作图语言过A 、B 两点作直线AB以A 为端点作射线AB连接ABABlABlA B a · AB C A B D· C ·典型题型:一、选择题1.下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线垂直B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线D. 过一点有且只有一条直线与已知直线平行2.平面上的三条直线最多可将平面分成()部分A .3 B.6 C . 7 D.93.如果A BC三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为()A .2CM B. 6CM C .2 或6CM D .无法确定 4.下列4.说法正确的是()A.延长直线AB到C; B.延长射线OA到C;C.平角是一条直线; D.延长线段AB到C5.如果你想将一根细木条固定在墙上,至少需要几个钉子()A.一个 B.两个 C.三个 D.无数个6.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个 B.3个 C.2个 D.1个7.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC 的中点,那么线段OB的长度是()A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝10.如果AB=8,AC=5,BC=3,则()A.点C在线段AB上 B.点B在线段AB的延长线上C.点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外二、填空题1.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.2.经过一点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;经过四点最多能确定条直线。
图形的认识知识点六年级

图形的认识知识点六年级一、图形的基本概念图形是我们日常生活中经常遇到的一种几何形状。
它们可以是平面图形或立体图形,组成了我们所见到的世界。
图形可以通过各种几何属性进行分类和描述,深入了解图形的认识知识,有助于我们更好地理解和应用它们。
二、平面图形1. 点点是平面上最基本的图形,它没有长度、宽度和高度。
点用字母表示,如A、B、C等。
2. 线段线段是由两个端点所确定的直线部分,可以直接测量其长度。
线段用两个点的名字表示,如AB,BC等。
3. 直线直线是无限延伸的线段,没有端点。
直线用两个点上面加一撇表示,如AB。
4. 射线射线是由一个端点和与它直线性质相同、并在另一端射出去的线段所组成的图形。
射线用一个点和一个字母上面加一撇表示,如OA。
5. 角角是由两条射线公共端点构成的图形。
角可以用弧度或度数来度量,最常用的表示方法是使用字母。
6. 三角形三角形是由三条线段连接成的围成的一个封闭图形。
三角形可以根据边长和角的大小进行分类,如等边三角形、等腰三角形等。
7. 四边形四边形是由四条线段组成、并围成一个封闭图形的图形。
常见的四边形包括矩形、正方形、菱形和平行四边形等。
8. 多边形多边形是由多条线段连接而成、并围成一个封闭图形的图形。
多边形可以根据边的数量进行命名,如五边形、六边形等。
三、立体图形1. 立方体立方体是由六个相等的正方形组成的立体图形。
它具有六个面、八个顶点和十二条边。
2. 正四面体正四面体是由四个等边三角形构成的立体图形。
它具有四个面、四个顶点和六条边。
3. 正方体正方体是由六个相等的正方形构成的立体图形。
它具有六个面、八个顶点和十二条边。
4. 圆柱体圆柱体有两个底面和一个侧面组成,底面为圆形。
它具有三个面、两个顶点和一个侧面。
5. 圆锥体圆锥体有一个底面和一个侧面组成,底面为圆形。
它具有两个面、一个顶点和一个侧面。
6. 球体球体是由无数个点离一个确定点的距离都相等所组成的立体图形。
它具有无边界、无面、一个顶点和一个体积。
认识基本的几何图形:数学知识点

认识基本的几何图形:数学知识点几何学是数学中的一个重要分支,研究的是形状、大小、相对位置以及它们之间的关系。
在几何学中,我们学习了很多基本的几何图形,它们在我们的生活中无处不在。
本文旨在介绍一些常见的基本几何图形及其数学知识点。
1. 点(point):点是几何中最基本的概念之一,它没有大小和形状,只有位置。
我们可以用大写字母来表示一个点,例如,点A、点B等。
2. 线段(line segment):线段由两个点A和点B之间所有的点组成,并在两端用端点A和端点B表示。
我们可以使用符号“AB”来表示线段。
3. 直线(line):直线是由无数个点连在一起而成的,它没有长度,也没有宽度。
我们可以用一个小箭头来表示一条直线,例如,直线AB。
4. 射线(ray):射线是由一个起点和一个方向组成的,它只有一个端点,却可以延伸到无穷远处。
我们可以使用符号“→”来表示一条射线,例如,射线AB。
5. 角(angle):角是由两条射线的公共起点和它们的非公共部分组成的。
我们可以使用大写字母来表示一个角,例如,角ABC。
6. 直角(right angle):直角是指两条相互垂直的直线所夹的角,它的度数为90°。
直角可以用一个小方框来表示,例如,∟ABC。
7. 三角形(triangle):三角形是由三条线段组成的,每两条线段之间都有一个角。
三角形有不同的分类,包括等边三角形、等腰三角形、直角三角形等。
8. 长方形(rectangle):长方形是一种具有四个直角的四边形,它的对边相等,且相邻边互相垂直。
9. 正方形(square):正方形是一种特殊的长方形,它的四条边长度相等,且四个角都是直角。
10. 圆(circle):圆是由一个固定点到平面上所有其他点的距离都相等的点的集合。
圆由圆心和半径组成,圆心是圆上任意一点到圆心的直线的中垂线的交点。
11. 梯形(trapezoid):梯形是一种四边形,它的两条边是平行边,且相邻边之间没有交点。
初中数学中考复习考点知识与题型专题讲解15 图形的初步认识(解析版)

初中数学中考复习考点知识与题型专题讲解专题15 图形的基本认识【知识要点】考点知识一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。
常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。
⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。
常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和平面的区别】1、所含平面数量不同。
平面图形是存在于一个平面上的图形。
立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。
2、性质不同。
根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。
由构成原理可知平面图形是构成立体图形的基础。
3、观察角度不同。
平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。
4、具有属性不同。
平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。
立方体图形平面展开图三视图及展开图三视图:从正面,左面,上面观察立体图形,并画出观察界面。
考察点:(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
展开图:正方体展开图(难点)。
正方体展开图口诀(共计11种):“一四一”“一三二”,“一”在同层可任意,“三个二”成阶梯,“二个三”“日”相连,异层必有“日”,“凹”“田”不能有,掌握此规律,运用定自如。
⏹点、线、面、体几何图形的组成:点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
组成几何图形元素的关系:点动成线,线动成面,面动成体。
考点知识二直线、射线、线段⏹直线、射线、线段的区别与联系:【射线的表示方法】表示射线时端点一定在左边,而且不能度量。
经过若干点画直线数量:1.经过两点有一条直线,并且只有一条直线(直线公理)。
认识基本图形

认识基本图形图形是我们日常生活中常见的元素,无处不在。
我们通过观察和学习,不仅可以认识各种图形的形状和特征,还能发现它们在实际应用中的作用。
本文将介绍一些常见的基本图形,以及它们在我们生活中的应用。
1. 圆形圆形是最基本的图形之一,具有无限个点到圆心的距离相等的特点。
在我们日常生活中,圆形的应用广泛,例如轮胎、饮料瓶盖、硬币等都是圆形。
此外,在建筑设计中,圆形的窗户和拱门等也被广泛使用,给人以柔和、温暖的感觉。
2. 正方形正方形是四边相等、四个角都是直角的特殊四边形。
在我们的生活中,正方形也随处可见。
例如电视屏幕、纸张、书籍以及家具等都常用正方形作为基本形状,给人以稳定和整齐的感觉。
3. 矩形矩形是一个拥有四个内角都是直角,相对边两两相等的四边形。
它与正方形相似,但边长可以不相等。
在我们的生活中,矩形的应用非常广泛。
例如电视、计算机屏幕,书桌等通常都是矩形的形状。
4. 三角形三角形是一个拥有三个内角和三条边的图形。
根据其边长和角度的不同,我们可以将三角形分为等腰三角形和直角三角形等。
三角形在我们的生活中也有很多应用。
例如,指南针是一个由三角形构成的形状,道路的交通标志中也常见到三角形的图案。
5. 梯形梯形是一个拥有两对平行边的四边形。
梯形的上底和下底可以是不等长的。
在我们的生活中,梯形的形状也常见。
例如,电视塔、摩天大楼的外形往往呈现梯形,给人以稳重的感觉。
认识基本图形不仅仅是了解其形状,还要掌握它们在几何学和实际生活中的应用。
通过对图形的认识,我们可以更好地理解数学和几何学的知识,同时也能够更好地理解和使用我们身边的各种事物。
希望本文能为大家提供一些关于基本图形的认识和启发。
以上是对基本图形的简要介绍。
在日常生活中,我们可以通过观察和学习,不断探索和认识更多的图形。
了解基本图形的形状和特征,能够帮助我们在解决实际问题时更准确地把握和运用几何学的知识。
通过不断地学习和实践,我们可以培养自己独特的观察力和创造力,加深对图形及其应用的理解,同时也为我们的未来学习和职业发展打下坚实的基础。
图形的认识

乐杰数理化乐中学,学中杰乐杰数理化教师辅导讲义课题图形的认识基础讲解认识常见的几何图形,角的概念,线的定义教学目标难点:角平分线重点、难点教学内容基础知识回顾:1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
3、常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
4、从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
5、立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
(1)圆柱和圆锥的侧面展开图(2)棱柱和棱锥的展开图(3)根据展开图判断立体图形的规律:A展开图全是长方形或正方形时------正方体或长方体;B展开图中含有三角形时-----棱锥或棱柱;若展开图中含有2个三角形3个长方形-----三棱柱;若展开图中全是三乐杰数理化乐中学,学中杰角形(4个)-----三棱锥。
幼儿园教案:认识基本图形

幼儿园教案:认识基本图形一、引言在幼儿园的数学教育中,认识基本图形是孩子们发展几何思维和培养空间想象力的重要环节。
本教案旨在帮助幼儿通过实际操作与观察,逐步认识圆形、三角形、矩形和正方形这四种基本图形,并能运用所学知识进行分类和比较。
二、认识圆形1. 引导幼儿观察周围环境中的圆形物体,如水杯底部、饼干等,并让他们发现圆形物体是由无数点组成的。
2. 制作各种尺寸的纸片,让每个幼儿把纸片放在圆柱体上并触碰到边缘,从而感受到边缘是有弧线组成的。
3. 制作游戏卡片,列出不同大小的圆并贴在卡片上。
给每个幼儿分发卡片并要求他们根据卡片上所示找到相应大小的圆,以提高他们对不同大小圆之间关系的理解。
三、认识三角形1. 引导幼儿找到周围环境中的三角形,如房顶、山峰等,并让他们观察到三角形有三个直角和三个边。
2. 准备一个大型磁贴板和多个小木块,将小木块拼接成不同大小的三角形。
让每个幼儿在磁贴板上自由拼接,并鼓励他们描述所制作的图形特征。
四、认识矩形1. 引导幼儿观察周围环境中的矩形,如书籍、桌子等,并帮助他们发现矩形有四个直角和四条边。
2. 要求每位幼儿用积木拼接出不同大小的矩形,并比较各自所制作图形之间的差异。
引导他们观察并讨论长方形与正方形之间的关系,进一步加深对这两种图形的理解。
五、认识正方形1. 在教室里放置各种具有正方形外观的物体,如小黑板、盒子等。
引导幼儿观察并通过对比发现正方形都有四条相等的边和四个相等的直角。
2. 删减规格板制作小木块,在每个小木块上标注一个数字并同样标明所制作出来是正方形。
教师将不同数量的正方形木块分发给幼儿们,要求他们分别根据数字确定正确的数量,并进行相关运算。
六、分类与比较1. 教师组织幼儿参加一个游戏,要求他们将各种大小和颜色的图形进行分类。
通过这个游戏,幼儿能够对基本图形有更清晰的认识,并学会表达自己的观察和判断。
2. 使用拼图游戏让幼儿通过比较不同图形之间的特点来判断它们属于哪一类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点三:相交线与平行线
1、两条直线的位置关系 在同一平面内,两条直线的位置关系只有两种: (1)相交; (2)平行。 2、相交线 (1)垂线的性质 性质 1:在同一平面内,过一点有且只有一条直线与已知直线垂直。 性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。 (2)点到直线的距离:直线外一点到这条直线的 垂线段的长度,叫作点到直线的距离。 3、平行线 (1)平行公理:经过直线外一点,有且只且一点直线与已知直线平行。 (2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 即“平行于同一条直线的两条直线平行” 。 4、两直线平行的判定方法 (1)平行公理的推论。 (2)同位角相等,两直线平行。 (3)内错角相等,两直线平行。 (4)同旁内角互补,两直线平行。 5、平行线的性质 (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。 6、两条平行线间的距离:在平面内,同时垂直于两条平行线,并且夹在这两条平行线间的 线段的长度叫作这两条平行线间的距离。平行线间的距离处处相等。 例 5:下列命题是真命题的有( )个 ①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等; ④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。 A.1 B.2 C.3 D.4
考点四:平移
1、平移的性质 (1)经过平移后,对应线段平行(或在同一直线上)且相等,对应角相等。 (2)经过平移后,对应点所连的线段平行(或在同一直线上)且相等。 例 6:如图所示,将周长为 8 个单位的△ABC 沿 BC 方向平移 1 个 A 单位得到△DEF,则四边形 ABFD 的周长为( ) A.6 B.8 C.10 D.12
A
B
C
D
(2)把图中的三棱柱展开,所得到的展开图是(
)
A
B
C
D
2
KEYUAN 科苑学校
例 2: (1)图是由 8 个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的 左视图是( )
主 视 图
俯 视 图
A
B
C
D
(2)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体 的小正方体的个数为( )
学
过
程
1
KEYUAN 科苑学校
(2) “2-3-1”型,如图所示。
(3) “3-3”型,如图所示。
(4) “2-2-2”型,如图所示。
2、三视图 (1)主视图:从物体的前面向后面投射所得的视图称主视图――能反映物体的前面形状。 (2)俯视图:从物体的上面向下面投射所得的视图称俯视图――能反映物体的上面形状。 (3)左视图:从物体的左面向右面投射所得的视图称左视图――能反映物体的左面形状。 例 1: (1)下列选项中,经过折叠能围成一个立方体的是( )
一对一个性化教学专用学案
学生姓名 上课时间 课 题 名 称 年级 九年级 学科 数学 授课教师 第( 祝俊姝 )课次
课时计划
图形的认识-基本图形
图形的认识
知识导航 线段、角平行线 平行线的判定与性质 三角形的初步 特殊三角形 等腰三角形 直角三角形
热点聚焦 图形初步的计算和证明
学习
三角形
全等三角形的判定与性质 相似三角形的判定与性质 三角形中位线定理 锐角三角函数及解直角三角形 平行四边形 四边形 特殊平行四边形 与圆有关的性质 圆 与圆有关的位置关系 与圆有关的计算
主视图
左视图
俯视图
A.2 B.3 C.3 D.4 (3)一个立方体图形的三视图如图所示,根据图中数据求得这个立体图形的表面积为 ( )
3 2 左视图 俯视图 2
主视图
A.2Βιβλιοθήκη B.6C.7D.8
考点二:线与角
1、直线、射线与线段 (1)两个重要公理: ①经过两点有且只有一条直线,也称为“两点确定一条直线” 。 ②两点之间的连线中,线段最短,简称“两点之间,线段最短” 。
B E
D
C
F
4
KEYUAN 科苑学校
通过全等、相似解决角度 和线段的计算及证明, 以及与函数的综合问题 利用平行四边形的性质解决 角度、线段相等和求值问题 利用定义和判定证明特殊的四边形 四边形的折叠、剪拼及分割问题 利用特殊四边形的性质 和判定解决与函数的综 合问题 动点问题
目标
教
考点一:平面展开图和三视图
1、正方体的常见展开图 (1) “1-4-1”型,如图所示。
3
KEYUAN 科苑学校
2、角 (1)角的换算:1 度=60 分(1°=60′) ,1 分=60 秒(1′=60″) 。 (2)余角、补角的性质:同角或等角的余(补)角相等。 例 3:已知点 O 在直线 AB 上,且线段 OA 的长度为 6 cm,线段 OB 的长度为 8 cm,点 E, F 分别为 OA,OB 的中点,则线段 EF 的长度为 。 例 4:已知α=34°27′,则α的余角的补角为 。