原子物理复习总结
原子物理_总结

Be ,~
RBe
4
2
1 m2
1 n2
2. 原子核运动对里德堡常数的影响
2 2e4
2 2me4
1
RA (40 )2 h3c (40 )2 h3c 1 m
M
R
1 1 m
M
3、 索末菲理论
量子化通则
pdq nh n 1,2,3,
气体分子发出, 谱线分段密集, 形成一个个带。
二、氢原子光谱
巴耳末公式
=B
n
n2 2
4
n 3, 4,5,...
令 % 1 , ṽ 称为波数,巴耳末公式可改写为
%
1
1 B
n2 4 n2
4 B
1 22
1 n2
RH
1 22
1 n2
n 3, 4,5,...
原子物理学
课程总复习
第一章 原子的基本状况
一、了解汤姆逊原子模型
• 1903年英国科学家 汤姆逊提出 “葡萄干 蛋糕”式原子模型或
称为“西瓜”模型。
卢瑟福的粒子散射实验
放射源
放射源为放入一小铅盒中的少量放射性元素钋,用来产生α粒子。 轰击对象金箔为微米级薄片。荧光屏为接受屏,其后有显微镜可观 察到发生的现象。荧光屏和显微镜可以围绕金箔在一圆周上运动,
巴耳末系
氢原子光谱的其他线系
1914年 赖曼发现 赖曼系:
1908年 帕邢发现 帕邢系:
~
RH
1 (12
1 n2
),
n
原子物理知识点总结

原子物理知识点总结1. 原子的基本结构原子的基本结构由核和电子组成。
原子核位于原子的中心,它由质子和中子组成。
质子带正电荷,中子不带电,它们共同组成原子核的内部结构。
原子核的直径约为10^-15米,但它包含了原子的绝大部分质量。
电子绕着原子核运动,它们带负电荷,质量远小于质子和中子。
电子的外轨道上有固定的能量,可以跃迁到不同的能级,从而导致原子的发光和吸收现象。
2. 原子核原子核是原子的中心部分,它由质子和中子组成。
质子和中子是由夸克组成的基本粒子,它们之间通过强相互作用力相互作用。
质子和中子在原子核中相互聚集,通过核力相互作用,维持着原子核的结构。
原子核的质量集中在原子核的小范围内,并且它带有整数的电荷,这使得原子核可以被外部的电场所控制。
3. 原子的谱线原子的谱线是原子的能级结构在光谱上的体现。
原子的能级是电子在原子轨道上具有的稳定能量,不同的能级对应着不同的波长和频率的电磁波谱线。
当电子从高能级跃迁到低能级时,会放出能量,产生发射谱线。
而当原子吸收能量后,电子会从低能级跃迁到高能级,产生吸收谱线。
通过观察原子的谱线,可以了解原子的能级结构和原子的性质。
4. 原子的量子力学原子的性质可以通过量子力学的理论来解释。
量子力学是一种描述微观粒子运动和相互作用的理论,它通过波函数描述了微观粒子的运动状态和性质。
原子内的电子是以波动形式存在的,它们的轨道运动是由波函数描述的。
波函数是满足薛定谔方程的解,并且它们描述了电子的位置、动量、运动轨道等性质。
量子力学的理论可以解释原子的光谱、化学键、原子的稳定性等现象,为我们理解原子的性质和行为提供了重要的理论基础。
总之,原子物理是研究原子内部结构和性质的重要学科,它对于我们理解物质的性质和行为具有重要的意义。
通过了解原子的基本结构、原子核、原子的谱线和原子的量子力学等知识点,我们可以更深入地理解原子的性质和行为,为相关领域的研究和应用提供理论基础。
希望本文的总结对读者有所帮助,也希望大家能够深入学习原子物理,探索更多有关原子的奥秘。
原子物理学总复习

段正路
2014年
1
第一章 原子的基本状况
重点: 1,原子的核式结构 2,α粒子散射实验的意义
2
1、卢瑟福的原子核式模型
原子中的全部正电荷和几乎全部质量都集中在原子中央一 个很小的体积内,称为原子核。原子中的电子在核的周围 绕核运动。
2. α粒子的散射实验:
α粒子被静止核的库仑场散射的角度θ由下式决定
• Z:质子数 • A: 质量数
C4 0
20
a
原子核的角动量
P 核 LnSnLpSp
P核 I(I1)h
原子核的磁矩
I g
I(I1) he 2M
38
原子核的统计性:A为奇数的原子核属于费米子;A为偶 数的原子核属于玻色子。
原子核的结合能
E [Z m p (A Z )m n m 核 ]C 2 或 E [Z m H (A Z )m n m 原 子 ]C 2
r rr 总角动量 JLS JLS,LS 1 ,......,LS
L LS耦合下的原子态符号表示:
2S 1
s=0,单重态
J s=1,三重态
能级排布规则
洪特定则 朗德间隔定则
17
j-j 耦合
rjrj21 rrll12srsr12 rr r Jj1j2
j1 l1 s 1 ,l1 s 1 1 ,....,l1 s 1 j2 l2 s 2 ,l2 s 2 1 ,....,l2 s 2 Jj1j2,j1j2 1 ,....,j1j2
% 1R (m 12n 1 2)Tm Tn
R — 里德堡常数;T(m) —光谱项。
光谱线系 m = 1,n = 2、3、4…,赖曼系(紫外) m = 2,n = 3、4、5…,巴尔末系(可见光) m = 3,n = 4、5、6…,帕邢系(红外) m = 4,n = 5、6、7…,布喇开系(远红外)
原子物理复习总结

原子物理学总复习总结一、原子物理学发展中重大事件1.1897年汤姆孙通过阴极射线管实验发现电子,从而打破了原子不可分的神话,并提出关于原子结构的“葡萄干面包”模型。
2.1900年普朗克提出能量量子化假说,解释黑体辐射问题。
3.1905年爱因斯坦提出光量子假说,并用以解释光电效应。
4.1910年密立根采用“油滴实验”方法精确地测定了电子的电荷,并发现电荷是量子化的。
5.1908年卢瑟福的学生盖革-马斯顿在 粒子散射实验中发现大角度散射现象,1911年卢瑟福基于此实验提出原子的核式结构模型,从而否认了汤姆孙的模型。
但是这种核式结构模型不能解释原子的稳定性、同一性和再生性。
6.1913年波尔为了解释氢原子光谱提出氢原子理论模型,提出三个基本假设:定态理论、能级跃迁条件和轨道量子化条件,可以解释氢原子和类氢原子的光谱。
7.1914年为了验证波尔的能级理论,弗兰克-赫兹实验用电子轰击汞原子,证明了能级的存在,即原子内部定态的能量是量子化的。
8.1916年索末菲将波尔的圆形轨道推广为椭圆轨道理论,并引入相对论修正.9.1921年施特恩-盖拉赫提出一个能直接显示原子轨道角动量空间量子化的实验方案,用银原子束通过不均匀磁场,原子磁矩在不均匀磁场中受磁力,力的大小和方向与原子磁矩空间取向有关。
10.1925年乌伦贝克和古兹密特提出电子自旋假设,电子自旋的引入可以解释碱金属双线结构、赛曼效应和施特恩-盖拉赫实验。
11.1925年泡利提出泡利不相容原理。
提出了多电子原子中电子的排列规则问题。
此定理对费米子系统成立,但是对于玻色子系统不成立。
二、 基本物理规律、定理和公式1.库仑散射公式:,22θctg a b = 为库仑散射因子其中Ee Z Z a 02214πε≡,为散射角参数,为瞄准距离,或者碰撞θb 2.卢瑟福公式:微分散射截面:2sin 16')()(42θθσθσa Nntd dN d d C =Ω=Ω=物理意义:α粒子散射到θ方向单位立体角内每个原子的有效散射截面.3.原子核大小的估计(即入射粒子与原子核的最小距离):a r =min4.光电效应:221m mv h +=φν 其中00λνφc h h ==为金属的结合能(脱出功),0ν和0λ分别为金属的红限频率和波长,2021m mv eV =,0V 为遏制电压。
原子物理学知识点总结

原子物理学知识点总结一、理论知识基础1。
离子化合物原子的结构是由原子核和电子组成,原子核又由质子和中子组成,而质子与中子又可以有不同的结合能状态,但其最稳定的结合方式是结合成带正电荷的原子核,所以质子与中子便有不同的能量状态,而根据原子的能级知识,高能级原子会向低能级原子转变,因此在实验室中经常观察到了同种元素的气态氢化物比其固态氢化物稳定。
除此之外,原子的能级状态还与其带电的状态有关。
如上述气态氢化物因为同种元素的原子核带同种电荷,因此它们的结合能最大,所以也就更加稳定。
而根据电荷守恒,气态非金属元素的阳离子由于失去一个电子,所以其结合能比其阴离子小,因此更加稳定。
2。
共价化合物 2。
共价化合物1。
配位化合物配位化合物是含有共用电子对的分子。
其实质是在形成配位键时,电子云必须重新排布。
两种元素的原子只有各自得到两个电子才形成稳定的配位键,因此元素原子的核电荷数等于零,它们的原子彼此形成的是共价键。
2。
配位多面体( NaFeCl3, Cl2)配位多面体指的是元素间形成配位键时,有四个原子与另一元素形成四个共价键的情况。
配位多面体是平面正方形的对角线围城的封闭区域,该区域具有平行于对角线的一组相互垂直的平面,因此每条边长为1, 3。
1。
钠原子Na的结合能比较低,与水作用放出大量的热,水的结合能比钠的低,放出的热也少,反应速度很快,这说明钠原子只能和活泼金属反应,那么钠原子能否与活泼金属钠和碱反应呢?从微观角度来看,一般认为钠原子具有8电子,和氯原子的外层电子差不多,但钠原子比氯原子小,所以钠原子的能级与氯原子相近,故钠原子也只能与活泼金属反应。
2。
锂原子Li与活泼金属反应的时候能放出大量的热,这些热是由Li原子内层2电子与2个原子核形成共价键的热运动放出的,可见锂原子内部能级比较高,所以锂原子也不容易与活泼金属反应。
2。
锂原子Li的结合能比钠原子小,所以Li能与活泼金属锂发生置换反应, 2Li+3H2O=LiCl2+2H2↑,或者2Li+Li2O2=Li2CO3+2H2↑。
原子核物理复习资料归纳整理

原子核物理复习资料归纳整理名词解释1、核的自旋:原子核的角动量,通常称为核的自旋。
2、衰变常量:衰变常量是在单位时间内每个原子核的衰变概率。
3、半衰期:半衰期是放射性原子核数衰减到原来数目的一半所需的时间。
4、平均寿命:平均寿命是指放射性原子核平均生存的时间。
5、放射性活度:在单位时间内有多少核发生衰变,亦即放射性核素的衰变率,叫衰变率。
6、放射性:原子核自发地放射各种射线的现象,称为放射性。
7、放射性核素:能自发的放射各种射线的核素称为放射性核素,也叫做不稳定核素。
8、核衰变:原子核衰变是指原子核自发的放射出α或β 等粒子而发生的转变。
9、衰变能:原子核衰变时所放出的能量。
10、核素:具有相同质子数Z和中子数N的一类原子核,称为一种核素。
11、同位素:质子数相同,中子数不同的核素。
12、同中子素:中子数相同,质子数不同的核。
13、同量异位素:质量数相同,质子数不同的核素14、同核异能素:质量数和质子数相同而能量状态不同的核素。
15、镜像核:质子数和中子数呼唤的一对原子核。
16、质量亏损:组成某一原子核的核子质量与该原子核质量之差。
17、核的结合能:自由核子组成原子核所释放的能量。
18、比结合能:原子核平均每个核子的结合能。
19、最后一个核子的结合能:是一个自由核子与核的其余部分组成原子核时,所释放的能量。
20、内转换现象:跃迁时可以把核的激发能直接交给原子的壳层电子而发射出来。
21、内转换现象:原子核从激发态到较低的能态或基态的跃迁时把核的激发能直接交给原子的壳层电子而发射出来。
22、内转换电子:内转换过程中放出来的电子。
(如果单出这个就先写出内转换现象的定义)23、内电子对效应:24、级联γ辐射的角关联:原子核接连的放出的两个γ光子,若其概率与这两个γ光子发射方向的夹角有关,即夹角改变时,概率也变化,这种现象称为级联γ辐射角关联,亦称γ-γ角关联。
25、穆斯堡尔效应:原子核辐射的无反冲共振吸收。
张东海原子物理学考点总结

原子物理学考点总结第一章 原子的基本状况(总结)一、 原子的大小和质量1、 原子的大小各种原子有不同的半径,其数量级均为10-10m.2、 原子的质量在化学和物理学上原子的质量通常用它们的相对质量来表示,质量单位为12C 的质量的1/12。
二、 原子的组成1、E. Rutherford 原子核式结构模型原子是由原子核和核外电子组成:原子核处于原子的中心位置,其半径在10-15m 到10-14m 之间,原子核带正电荷,其数值为原子序数乘单位电荷数值;电子分布在原子核外,分布半径为10-10m 。
2、E. Rutherford 原子核式结构模型的验证1)、库仑散射公式(1)式中:M 为α粒子的质量,v 为α粒子的速度,Z 为原子核的电荷数,θ为散射角,b 为碰撞参数。
公式(1)无法直接和实验进行比较。
2)、E. Rutherford 散射公式2sin )()41(422220θπεσΩ=d Mv Ze d (2)式中:d σ称为微分散射截面,其物理意义是α粒子散射到θ-θ+d θ之间立体角为d Ω内每个原子的有效散射截面。
公式的实用范围θ=450-1500.3、 原子核的大小估计利用E. Rutherrford 散射理论可以估计出原子核的大小,即α粒子距原子核的最近距离:))2s i n (11(241220θπε+=Mv Ze r m 由于E. Rutherford 散射公式在θ=1500时仍有效,所以取θ=1500。
第二章、原子的能级和辐射(玻尔氢原子理论)一、 玻尔理论1、玻尔理论的基础1)、氢原子光谱的经验规律氢原子光谱的波数的一般规律:)11(~22nm R v H -= (1) 式中:m=1,2,3,…;对每一个m,n=m+1,m+2,m+3,….4354) 、原子的核式结构模型2、玻尔理论电子绕原子核运动体系的总能量:r Ze E 24120πε-= (2) 考虑到光谱的一般规律,(1)式两边同乘hc 则有:)()11(~2222m hcR n hcR n m hcR h v hc H H H ---=-==ν (3) 如果原子辐射前的能量E 2,辐射后的能量为E 1(E 1<E 2),辐射放出的能量为:12E E h -=ν (4)比较(3),(4)式,原子的能量取负数,则有:2nhcR E H -= (5) 考虑到原子的结构,玻尔提出下列假定:假定1:原子中能够实现的电子轨道必须符合下列条件6.131-=E eV由氢原子波数公式,可以得出氢原子的里德伯常数:ch me R H 32042)4(2πεπ= 考虑到原子核的质量不是无限大的,原子核也是运动的,则里德伯常数变为:M m R Mm c h me R A +=+=∞1111)4(232042πεπ 10973731=∞R m -13、玻尔理论的验证1)氢原子的第一玻尔半径的理论值为a 1=0.529×10-10m ,这与原子的大小的数量级是一致的。
高中物理原子物理知识点总结

高中物理原子物理知识点总结一、原子的组成原子是物质的基本单位,由原子核和电子组成。
原子核位于原子的中心,由质子和中子组成,质子带正电荷,中子不带电荷;电子绕着原子核运动,带负电荷。
二、原子的结构1. 核原子核的直径约为10^-15米,质子和中子都存在于核中。
质子的质量大约是中子的1.6726219 × 10^-27 千克,它们的电量相等,大小为1.60217662 × 10^-19 库仑。
2. 电子壳层电子围绕在原子核外部的轨道上,称为电子壳层。
电子壳层的数量决定了原子的大小。
第一层能容纳最多2个电子,第二层最多容纳8个电子,第三层最多容纳18个电子。
三、原子的质量数和原子序数原子的质量数是指原子核中质子和中子的总数。
原子的质量数通常用字母A表示。
原子的原子序数是指原子核中质子的个数,也称为元素的序数。
原子的原子序数通常用字母Z表示。
四、同位素同位素是指化学元素原子中,质子数相同,中子数不同的原子。
同位素具有相同的化学性质,但物理性质可能有所不同。
五、原子的电离原子的电离是指从一个原子中剥离出一个或多个电子形成带电离子的过程。
当原子失去电子后变为带正电荷的离子,称为正离子;当原子获得电子后变为带负电荷的离子,称为负离子。
六、电子能级和电子排布规则电子能级是指电子在原子中的能量状态。
电子按照一定的能级顺序依次填充到不同的能级中。
根据泡利不相容原理和伯利斯规则,电子排布规则如下:1. 每个能级最多只能容纳一定数量的电子;2. 电子填充时要先填满较低的能级;3. 每个能级的轨道填充电子时,按照上层轨道的能级对轨道进行排布。
七、原子的能级跃迁原子的能级跃迁是指电子在不同能级之间跃迁的过程。
根据能级跃迁所产生的能量差异,原子可以发射光线,这种现象称为光谱。
八、原子核的衰变和辐射原子核可以通过放射性衰变进行变化,衰变过程伴随着放射性辐射的释放。
常见的原子核衰变方式包括α衰变、β衰变和γ衰变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子物理学总复习总结
一、原子物理学发展中重大事件
1.1897年汤姆孙通过阴极射线管实验发现电子,从而打破了原子不可分的神话,并提出关于原子结构的“葡萄干面包”模型。
2.1900年普朗克提出能量量子化假说,解释黑体辐射问题。
3.1905年爱因斯坦提出光量子假说,并用以解释光电效应。
4.1910年密立根采用“油滴实验”方法精确地测定了电子的电荷,并发现电荷是量子化的。
5.1908年卢瑟福的学生盖革-马斯顿在 粒子散射实验中发现大角度
散射现象,1911年卢瑟福基于此实验提出原子的核式结构模型,从而否认了汤姆孙的模型。
但是这种核式结构模型不能解释原子的稳定性、同一性和再生性。
6.1913年波尔为了解释氢原子光谱提出氢原子理论模型,提出三个基本假设:定态理论、能级跃迁条件和轨道量子化条件,可以解释氢原子和类氢原子的光谱。
7.1914年为了验证波尔的能级理论,弗兰克-赫兹实验用电子轰击汞原子,证明了能级的存在,即原子内部定态的能量是量子化的。
8.1916年索末菲将波尔的圆形轨道推广为椭圆轨道理论,并引入相对论修正.
9.1921年施特恩-盖拉赫提出一个能直接显示原子轨道角动量空间量子化的实验方案,用银原子束通过不均匀磁场,原子磁矩在不均匀
磁场中受磁力,力的大小和方向与原子磁矩空间取向有关。
10.1925年乌伦贝克和古兹密特提出电子自旋假设,电子自旋的引入可以解释碱金属双线结构、赛曼效应和施特恩-盖拉赫实验。
11.1925年泡利提出泡利不相容原理。
提出了多电子原子中电子的排列规则问题。
此定理对费米子系统成立,但是对于玻色子系统不成立。
二、 基本物理规律、定理和公式
1.库仑散射公式:,2
2θctg a b = 为库仑散射因子其中E
e Z Z a 02
214πε≡,为散射角参数,为瞄准距离,或者碰撞θb 2.卢瑟福公式:微分散射截面:2
sin 16')()(42θθσθσa Nntd dN d d C =Ω=Ω=
物理意义:α粒子散射到θ方向单位立体角内每个原子的有效散射截面.
3.原子核大小的估计(即入射粒子与原子核的最小距离):a r =min
4.光电效应:221
m mv h +=φν 其中00λνφc h h ==为金属的结合能(脱出
功),0ν和0λ分别为金属的红限频率和波长,2021
m mv eV =,0V 为遏制电
压。
5.波尔的氢原子理论:(1)经典轨道加定态条件、(2)频率条件、(3)角动量量子化。
理论基础是巴尔末公式、光量子理论和原子的核式结构。
对于类氢原子,根据
{ n vr m L r v m r e e e ===2
2024Z πε⇒12
1222)(2121E r Z
n r v n Z c n Z v E E Rhc n Z v m n n P K n e n ====-=-=-=α 6.巴尔末公式:)'121(1
~2
2n R -==λν 7.里德伯公式:)'11(1~22n n R -==λν 8.里德伯常量的相对论修正e
A A m m m +=∞R R A 9.氢原子谱线系:莱曼系(跃迁1'=→n n )、巴尔末系(跃迁2'=→n n )、帕邢系(跃迁3'=→n n )、布拉开系(跃迁4'=→n n )和普丰德系(跃迁5'=→n n )。
其中巴尔末系中的ηγβα,,,谱线分别对应的跃迁为26252423→→→→,,,
10.碱金属与氢原子谱线的差异是由于隧道贯穿和原子实的极化。
11.碱金属谱线系:主线系:S nP 2→;锐线系:P nS 2→;
漫线系: (P nD 2→); 基线系(D nF 3→)
12.电离电势:将电子从基态激发到连续态所需要的最低电压。
13.第一激发电势:将电子从基态激发到第一激发态所需要的电压
14.原子的磁矩:B j j j L μγμ)1(+-=-=;B j j jz g m μμ-=,
15.施特恩-盖拉赫实验:原子束通过非均匀磁场发生偏离:223mv
dD z B g m KT dD z B z z B j j z z ⋅∂∂-=⋅∂∂=μμ,j j j m j --=,...1, 16. 朗德因子:)1()1()1(2123
++-++
=J J L L S S g J
17.碱金属双线结构:由于自旋-轨道耦合导致谱线分裂,裂距为
eV l l n Z E l l n Z U 4340341025.7)1()1(2)(-⨯⨯+=+=∆α或者134
84.5)
1(~-⨯+=∆cm l l n Z ν (说明 :电子自旋磁矩在磁场作用下导致附加能量为B U s
⋅-=μ) 18.塞曼效应:1896年塞曼发现把光源放在磁场内时,光源发出的光谱线发生分裂,表明能量差的变化。
B g m g m h h B μνν)('1122-+=,或者e
m eB g m g m πνν4)('1122-+=。
当体系自旋为零时,为正常塞曼效应,则有),0,('B B h h B B μμνν-+=;当体系电子数目为偶数并形成独态的原子,才能有正常的塞曼效应。
19.电偶极跃迁选择定则:1,012±=-=∆m m m
20.塞曼谱线的偏振特性:1±=∆m 时给出σ偏振,0=∆m 给出π偏振。
在沿着磁场方向,只能观测到σ偏振,呈圆偏振,共2条;在垂直磁场方向,能观测到σ和π偏振,都呈线偏振,共3条。
21.泡利不相容原理:在一个原子中不可能有两个或多个电子具有完全相同的四个量子数),,,(s l m m l n 。
即原子中的每个状态只能容纳一个电子。
22.洪特定则:(1)对于一个给定的电子组态形成的一组原子态,当某原子态具有的S 最大时,它所处的能级位置最低;(2)对于同一个S,又以L 值大的为最低。
23.洪特附则:对于同科电子,关于同一l 值而J 值不同的诸能级的次序。
(1)当同科电子数小于或等于闭壳层占有数的一半时,具有最小
J 值(即S -L )的能级处在最低,称为正常次序;
(2)当同科电子数大于闭壳层占有数的一半时,则具有最大J 值(即S L +)的能级为最低,称为倒转次序。
24.自旋-轨道耦合方式:L-S 耦合【J LS s s s l l l n n →→)()...(...2121)(】,
J-J 耦合【J j j j s l s l s l n n n →→)...())...()((212211】,两种耦合方式得到相同的原子态数和总角动量量子数J 。
25.电子组态:2211l n l n
26.原子态:对于L-S 耦合为J S L 12+,对于J-J 耦合为J j j ),(21
27.偶数定则:对于同科电子,在L-S 耦合下,只有L+S=偶数的原子态存在。
28.多电子原子中,状态的电偶极辐射跃迁选择定则:
对S L -耦合:)0J'01(J 0,J 1,0,L 0,S 除外=→=±=∆±=∆=∆
对于j j -耦合:)0'0(1,0,1,0除外=→=±=∆±=∆J J J j
原子态之间的跃迁还要满足初态和末态的宇称必须相反,即∑∑=⇔=偶数奇数i i l l '
29.描述原子中电子态的量子数有:n (主量子数)、l (角量子数)、l m (轨道磁量子数)、s (自旋角动量量子数)、s m (自旋磁量子数)、
j (总角动量量子数)和j m (总的角动量磁量子数)。
而完整描述一个电子状态的四个独立量子数:s l m m l n ,,, (弱磁场下)或者j
m j l n ,,,(强磁场下)。
30.原子基态规律:对于满壳层或满支壳层的原子,基态为01S ,对于
半满壳层的原子,基态为2/1n S n +(n 为价电子数)。
三、 物理常数 复合常数:eV nm MeV fm e ⋅=⋅=44.11.4440
2
πε; nm eV hc ⋅=1240; eV nm MeV fm c ⋅=⋅=197197 ; keV MeV c m e 511511.02==
基本电荷:C e 1910602.1-⨯=;普朗克常数s eV s J h ⋅⨯=⋅⨯=--153410136.410626.6
里德堡常数 151710097.1101.097R --∞⨯=⨯=cm m
,Rhc=13.6eV 阿伏伽德罗常数 1-23A 10
6.022N -⨯=mol 玻耳兹曼常数 151231061
7.8103
8.1----⋅⨯=⋅⨯=K eV K J k
电子质量 231/511.01011.9c MeV kg m e =⨯=-
质子质量: 227/93810
67.1c MeV kg m p =⨯=- 原子质量单位:227/9311066.1c MeV kg u =⨯=-
玻尔半径: A m c
m r a e 529.010529.041022
010=⨯===-πε 精细结构常数:137
1402
==c e πεα
玻尔磁子: 1512410788.510274.92----⋅⨯=⋅⨯==T eV T J m e e
B μ ----------------------------------------------------------------------------------------------------------。