求孪生素数问题
[精品文档]问题求孪生素数问题。孪生素数是指两个相差为2的素数,例
![[精品文档]问题求孪生素数问题。孪生素数是指两个相差为2的素数,例](https://img.taocdn.com/s3/m/6b1204300622192e453610661ed9ad51f01d544d.png)
问题求孪生素数问题。
孪生素数是指两个相差为2的素数,例如:3和5,5和7,11和13 等。
编程实现输出15对孪生素数。
分析判断是否是循环需要循环,找到15对孪生素数也需要循环,因此该问题是二重循环问题。
数据要求问题中的常量:无问题的输入:无。
问题的输出:15对孪生素数。
设计初始算法1 初始化nCount为零。
2 从2开始判断某个数是否是素数,并且这个数加2是不是素数3 找到15对孪生素数,结束。
算法细化我们在循环中引入一个nCount来控制找到15对孪生素数就行。
附加的程序变量Int nCount=0;步骤2的细化2.1 判断某个数是否是素数2.2 判断这个数加2是不是素数其中步骤2可以进一步细化,因为求素数是一个简单的问题,我们需要判断比这个数小的数中,除了它本身和1之外,还有没有别的约数就可以了。
步骤2.1细化2.1 for(i=2;i<=n-1;i++)如果(n%i==0){break;}流程图实现#include "stdio.h"#include "math.h"int isprime(int n){int nRet=1;int i;if(n<2)nRet=0;for(i=2;i<=n-1;i++)if(n%i==0){nRet=0;break;}return nRet;}main( ){ int k=2,nCount=0;do{ if(isprime(k)&&isprime(k+2)){ nCount+=1;printf(“%d,%d”,k,k+2);}k=k+1;} while(n<15);}测试输出15对孪生素数,略。
孪生素数猜想初等证明详解

孪生素数猜想初等证明详解齐宸孪生素数是指相差2的素数对,例如3和5,5和7,11和13…。
孪生素数猜想正式由希尔伯特在1900年国际数学家大会的报告上第8个问题中提出,可以这样描述:存在无穷多个素数p,使得p + 2是素数。
素数对(p, p + 2)称为孪生素数。
孪生素数由两个素数组成,相差为2。
为了证明孪生素数猜想,无数的数学家曾为之奋斗,但美丽的公主仍然犹抱琵琶半遮面。
1.孪生素数分类及无个位表示方法孪生素数按两个素数个位不同划分3类(不包括10以下的3-5、5-7),分别是:1、孪生素数中两个素数个位为1和3,如11-13,41-43等;2、孪生素数中两个素数个位为7和9,如17-19,107-109等;3、孪生素数中两个素数个位为9和1,如29-31,59-61等。
三类孪生素数中个位为1和3的第一类是我们需要重点研究的,其他两类可以忽略不计。
因为只要第一类孪生素数无限,也就等价于证明了孪生素数猜想。
自有孪生素数概念以来它们就是由两个素数表示的。
若是能简化成一个数字那孪生素数猜想这一世界数学难题也许就向前迈进了一步。
无论这一步是一小步,还是一大步。
但毕竟能将两个素数组成的孪生素数降格成了像素数那样的单个数字。
分析一下个位为1和3的这一类孪生素数,如41-43这对孪生素数。
首先,分别去掉个位1和3后,可以看到剩下了两个数字4和4。
用这两个数字完全可以表示一对孪生素数,当然我们心里要想着在这两个数字后面是有个位1和3的。
其次,这两个去掉个位的数字又是完全相同的,都是一个数字“4”。
这样也就完全可以用一个数字“4”来表示一对孪生素数,也可以说4是一个单数字无个位孪生素数。
当然表面上看只有第一类、第二类孪生素数可以用一个数字表示(实际上第三类也可以)。
为什么一定要去掉个位呢?可将自然数变成互为补集的两类:孪生素数和非孪生素数。
并利用一种简单的筛法,将自然数中的非孪生素数及其补集孪生素数分开。
而且这个筛法所要得到的是非孪生素数。
网友再次发现了有关孪生素数的一个猜想——杜伯纳猜想

网友再次发现了有关孪生素数的一个猜想——杜伯纳猜想不久前看到知乎上有人提出了一个关于孪生素数的猜想。
原问题比较晦涩,改述一下题主的问题,其意思是:对任意孪生素数对,总存在另两对孪生素数对,使得另两对的和等于前者。
那么化简一下问题:如果某孪生素数对是(a, a+2),猜想就是说,要存在孪生素数(b, b+2)和(c,c+2),使得: a+(a+2)=b+(b+2)+c+(c+2)化简后可得:a-1=b+c那么以上等式两边加2,即可得:a+1 = (b+1) + (c+1)此处,a+1,b+1和c+1,恰好都是某对孪生素数之间的那个偶数。
如果把一对孪生素数中间的那个偶数叫做“夹心偶数”,则猜想就是:对任意一个“夹心偶数”,都能表示成另两个“夹心偶数”的和。
第一眼看上去,这个猜想不太像是能成立,所以我写了个程序去验证下。
没想到验证了前10万对孪生素数,全部成立。
以下是一些跑出的组合结果:12 = 6 + 618 = 6 + 12108 = 6 + 102198 = 6 + 192828 = 6 + 8221488 = 6 + 14821878 = 6 + 18722088 = 6 + 20823258 = 6 + 32523468 = 6 + 346230 = 12 + 1842 = 12 + 3072 = 12 + 60150 = 12 + 138192 = 12 + 180240 = 12 + 228282 = 12 + 270432 = 12 + 420822 = 12 + 8106270 = 2688 + 35826552 = 2730 + 38226570 = 2802 + 37686300 = 2970 + 33306792 = 2970 + 38226450 = 3120 + 33306660 = 3120 + 35406702 = 3120 + 35826780 = 3252 + 35286690 = 3300 + 33906762 = 3300 + 34626828 = 3300 + 35286870 = 3330 + 35407128 = 3360 + 37686948 = 3390 + 35587212 = 3390 + 38227350 = 3528 + 38227308 = 3540 + 37687590 = 3768 + 3822这个结果让我有点惊讶。
孪生素数个数公式

孪生素数个数计算公式李联忠(营山中学 四川营山 637700)摘要:孪生素数个数计算公式∑-∑-∑-⎥⎥⎦⎤⎢⎢⎣⎡+++⎥⎥⎦⎤⎢⎢⎣⎡⋅++⎥⎥⎦⎤⎢⎢⎣⎡++=≠==p p p x p p x p x Li iiij k j k j k kjik k kIn n n n 2112,1211)1()1()1(、+q-hn 前的素数均是n 的约数时,孪生素数个数计算公式pp p p p p iin L 2212211-⋅⋅-⋅-⋅= +q-h关键词:数论 孪生素数 公式中图分类号: 文献标识号: 文章编号:孪生素数:相差2的素数叫孪生素数。
引理:若ppn i21i 2+≤<,pp pppi ik121,,,,,3,2+== 为连续素数,则在1、2、3…n 中去掉pk的倍数,余下的数(1除外)全为素数。
分析下面相差2的数组(1,3) (2,4)…(m,m+2)…(n,n+2) (1≤m ≤n) 若ppn i21i 2+≤<pp pppi ik121,,,,,3,2+== 为连续素数,在1、2、3…n 中去掉除以pk余0和余(2-pk)的数,则余下的数组(m,m+2)中,m和(m+2)都不是前i个素数的倍数,据引理,余下的数组全为孪生素数(若n 为素数,n+2=p i 21+,(n,n+2)除外,i=1,(1,3)除外),仿照素数公式可得出类似的孪生素数计算公式∑-∑-∑∑++++++++-=≠≠=≠==][][][][ppp xpp p xpp xpxLiiiijk l j k l jkllkj ijk j k jkkjik kkin n n n n2112,1,,3,1,1)1()1(=q-h))2,(),3,1(2101(该去而未去指或、倍数被去掉了;作为的孪生素数,因为它们表不大于+=n n h q p i()(mod20,),(mod20);(mod02211p x pxp x ii 或或≡≡≡⎪⎪⎪⎩⎪⎪⎪⎨⎧≡≡≡⎪⎩⎪⎨⎧≡≡)(m o d 20)(m o d 20)(m o d 0;)(m o d 20)(m o d 2012212112p x p x p x p x p x i ii i jkj kkj或或或或[ ]为取整号,xx i1 ;…,x kj …;…x k 12…为中国剩余定理同余组的解。
孪生素数证明

孪生素数证明
要证明一对孪生素数存在,需要证明以下两个条件成立:
1. 存在一个素数p,使得p和p+2都是素数。
2. 任意大于2的整数n,若n是素数,则n+2或n-2也是素数。
首先,我们证明第一个条件。
假设存在一个素数p,使得p和
p+2都是素数。
我们知道,如果一个数p是素数,那么它不能
被2整除,因此p+2也不能被2整除,所以p+2是奇数。
因此,我们可以将p+2表示为2的倍数加1的形式,即p+2 = 2k+1。
因此,p = 2k-1。
由于p是素数,所以2k-1也是素数。
这证明
了第一个条件成立。
接下来,我们证明第二个条件。
设n为大于2的素数,我们需要证明n+2或n-2也是素数。
假设n+2是合数,那么它可以被
分解为两个因子a和b,其中2 < a < n+2。
由于n是素数,所
以n不能被a整除,否则a将是n的一个非1且小于n本身的
因子,这违背了n是素数的定义。
因此,a > n,即a >= n+1。
同样地,我们可以得到n-2也是素数(以下同理)。
综上所述,我们证明了一对孪生素数的存在性。
关于孪生素数猜想的一个证明

关于孪生素数猜想的一个证明
孪生素数猜想(Twin Prime Conjecture):任意两个连续的大于2的素数,必有一对孪生素数。
思路:
一、利用费马小定理证明
费马小定理:当p是素数时,对于所有正整数a,都有a的p次方与a减去1的商等于1(mod p)。
证:考虑任意两个素数p1和p2,p2=p1+2,设a=2,那么在p1和p2上面都有a的p次方与a减去1=1的商等于1(mod p1)和1(mod p2),即:
p1|2p1-1
p2|2p2-1
同时,2p1-1和2p2-1刚好满足2p2-2p1=2,由于p1和p2是素数,交换取整律有:
2|2p2-2p1
而满足上述等式的唯一解即为p1和p2之和为2。
故证明孪生素数猜想成立。
二、利用数论的方式证明
任意大于2的偶数都可以表示为一对素数之和,即:2n = p1 + p2,其中p1和p2均为素数。
关于这一对素数,存在以下情况:
1、p2 = p1 + 2(孪生素数)
2、p1和p2无任何关系(非孪生素数)
由此可以推出,只要2n=p1+p2成立,那么p1和p2之间必然存在孪生素数对。
故证明孪生素数猜想成立。
小于自然数M内孪生素数的对数一一孪生素数猜想证明的应用

小于自然数M内孪生素数的对数一一孪生素数猜想证明的应用孪生素数都是成对出现的。
给定一个自然数M、在小于M内有多少对孪生素数?(一)本文的计算方法基于孪生素数猜想证明中的以下几条结论:a、任何非1奇数都有奇数核、2n±1两个奇数定义为同核奇数,n即为他们的共同核。
b、同核奇数只可能是三种形态:1、同核的二个奇数皆为合数。
2、同核奇数中一个是合数、另一个是素数。
3、同核的两个奇数都为素数,称为“同核素数〞、也就是学界的孪生素数。
C、根据b、中2、同核奇数中一个是合数另一个是素数得出的推论:单体素数即学界认为除孪生素数外的所有素数、所有单体素数核一定存在于对应的合数核中。
进一步得出的推论是:只要将所有的合数核去除后、则包含在合数核中的单体素数核也同时去除。
d、由c推论:“同核素数”即孪生素数的核一定存在于所有合数核以外的非零自然数N*中,而且有无穷多个。
逻辑如下:非1奇数只可能为合数、单体素数、孪生素数,所以奇合数核也只可能是这三种核;非零自然数N*(1、∞)中每个数均可成为奇数核、全部自然数N*不可能都是合数核、所以自然数N*中去除合数核后、其余的都是孪生素数的核、(因为单体素数的核在去除所有的合数核时也同时被去除)。
一个核产生一对孪生素数。
e、由6列完美等差数列群、可以直接推出、所有素数最终形式为6n±1、孪生素数当然也存在于6n±1之中、6n±1去掉1除以2得出核为3n、即所有孪生素数核一定存在于3n中。
(二)给定一个自然数M、在小于M这个数值内有多少对孪生素数呢?例子:自然教111、小于111的孪生素数有多少对?1、111中有多少奇数核?n=(111-1)/2=55个,加强直观理解、可以验证n=1、2、3、……55、则奇数为3、5、7……111。
2、我们知道所有非零自然数N*都可以成为奇数核,而全部自然数N实质是由3列完美等差数列群组成:3n、3n+1、3n+2(n∈N),分别对这三列等差数列的性质进行研究、可以得出:3n+1、3n+2、(n∈N*)二列无穷等差数列的每个值全部是合数核的值,(参看以前发表的孪生素数猜想证明的文章)。
孪生素数猜想初等证明详解

孪生素数猜想初等证明详解齐宸孪生素数是指相差2的素数对,例如3和5,5和7,11和13…。
孪生素数猜想正式由希尔伯特在1900年国际数学家大会的报告上第8个问题中提出,可以这样描述:存在无穷多个素数p,使得p + 2是素数。
素数对(p, p + 2)称为孪生素数。
孪生素数由两个素数组成,相差为2。
为了证明孪生素数猜想,无数的数学家曾为之奋斗,但美丽的公主仍然犹抱琵琶半遮面。
1.孪生素数分类及无个位表示方法孪生素数按两个素数个位不同划分3类(不包括10以下的3-5、5-7),分别是:1、孪生素数中两个素数个位为1和3,如11-13,41-43等;2、孪生素数中两个素数个位为7和9,如17-19,107-109等;3、孪生素数中两个素数个位为9和1,如29-31,59-61等。
三类孪生素数中个位为1和3的第一类是我们需要重点研究的,其他两类可以忽略不计。
因为只要第一类孪生素数无限,也就等价于证明了孪生素数猜想。
自有孪生素数概念以来它们就是由两个素数表示的。
若是能简化成一个数字那孪生素数猜想这一世界数学难题也许就向前迈进了一步。
无论这一步是一小步,还是一大步。
但毕竟能将两个素数组成的孪生素数降格成了像素数那样的单个数字。
分析一下个位为1和3的这一类孪生素数,如41-43这对孪生素数。
首先,分别去掉个位1和3后,可以看到剩下了两个数字4和4。
用这两个数字完全可以表示一对孪生素数,当然我们心里要想着在这两个数字后面是有个位1和3的。
其次,这两个去掉个位的数字又是完全相同的,都是一个数字“4”。
这样也就完全可以用一个数字“4”来表示一对孪生素数,也可以说4是一个单数字无个位孪生素数。
当然表面上看只有第一类、第二类孪生素数可以用一个数字表示(实际上第三类也可以)。
为什么一定要去掉个位呢?可将自然数变成互为补集的两类:孪生素数和非孪生素数。
并利用一种简单的筛法,将自然数中的非孪生素数及其补集孪生素数分开。
而且这个筛法所要得到的是非孪生素数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1for(i=2;i<=n-1;i++)
如果(n%i==0)
{
break;
}
流程图
实现
#include "stdio.h"
#include "math.h"
int isprime(intn)
{
int nRet=1;
int i;
if(n<2)
nRet=0;
for(i=2;i<=n-1;i++)
2从2开始判断某个数是否是素数,并且这个数加2是不是素数
3找到15对孪生素数,结束。
算法细化
我们在循环中引入一个nCount来控制找到15对孪生素数就行。附加的Leabharlann 序变量IntnCount=0;
步骤2的细化
2.1判断某个数是否是素数
2.2判断这个数加2是不是素数
其中步骤2可以进一步细化,因为求素数是一个简单的问题,我们需要判断比这个数小的数中,除了它本身和1之外,还有没有别的约数就可以了。
求孪生素数问题
问题求孪生素数问题。孪生素数是指两个相差为2的素数,例如:3和5,5和7,11和13等。编程实现输出15对孪生素数。
分析判断是否是循环需要循环,找到15对孪生素数也需要循环,因此该问题是二重循环问题。
数据要求
问题中的常量:
无
问题的输入:
无。
问题的输出:
15对孪生素数。
设计初始算法
1初始化nCount为零。
if(n%i==0)
{
nRet=0;
break;
}
return nRet;
}
main( )
{ int k=2,nCount=0;
do
{ if(isprime(k)&&isprime(k+2))
{ nCount+=1;
printf(“%d,%d”,k,k+2);
}
k=k+1;
} while(n<15);
}
测试输出15对孪生素数,略。