等差数列的概念教案

合集下载

高三数学数列教案5篇

高三数学数列教案5篇

高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。

等差数列的定义与通项公式教案

等差数列的定义与通项公式教案

等差数列的定义与通项公式教案第一章:等差数列的概念引入1.1 等差数列的定义1.1.1 引导学生回顾自然数的排列,引入等差数列的概念。

1.1.2 通过具体例子,让学生理解等差数列的含义。

1.1.3 引导学生总结等差数列的特点。

1.2 等差数列的表示方法1.2.1 介绍等差数列的表示方法,引导学生理解首项、末项、公差等概念。

1.2.2 通过示例,让学生学会用符号表示等差数列。

1.2.3 让学生尝试自己表示一些等差数列,并判断其是否正确。

第二章:等差数列的性质2.1 等差数列的通项公式2.1.1 引导学生探究等差数列的通项公式。

2.1.2 通过推导,让学生理解并掌握等差数列的通项公式。

2.1.3 让学生运用通项公式计算等差数列的特定项。

2.2 等差数列的求和公式2.2.1 引导学生探究等差数列的求和公式。

2.2.2 通过推导,让学生理解并掌握等差数列的求和公式。

2.2.3 让学生运用求和公式计算等差数列的前n项和。

第三章:等差数列的通项公式的应用3.1 求等差数列的特定项3.1.1 让学生运用通项公式求解等差数列的特定项。

3.1.2 提供一些练习题,让学生巩固求特定项的方法。

3.2 求等差数列的前n项和3.2.1 让学生运用求和公式求解等差数列的前n项和。

3.2.2 提供一些练习题,让学生巩固求前n项和的方法。

第四章:等差数列的综合应用4.1 等差数列与函数的关系4.1.1 引导学生理解等差数列与函数的关系。

4.1.2 提供一些示例,让学生学会如何将等差数列问题转化为函数问题。

4.2 等差数列在实际问题中的应用4.2.1 提供一些实际问题,让学生运用等差数列的知识解决问题。

4.2.2 引导学生思考等差数列在其他领域的应用,如数学建模、数据处理等。

第五章:总结与拓展5.1 等差数列的定义与通项公式的总结5.1.1 与学生一起总结等差数列的定义与通项公式的关键点。

5.1.2 鼓励学生提出疑问,解答学生的疑惑。

等差数列教学设计

等差数列教学设计

等差数列教学设计等差数列教学设计(精选5篇)作为一名默默奉献的教育工作者,时常要开展教学设计的准备工作,借助教学设计可以让教学工作更加有效地进行。

一份好的教学设计是什么样子的呢?以下是店铺帮大家整理的等差数列教学设计(精选5篇),欢迎大家分享。

等差数列教学设计1教学目标:1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。

2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。

3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。

教学重点:等差数列的概念及通项公式。

教学难点:(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

教具:多媒体、实物投影仪教学过程:一、复习引入:1.回忆上一节课学习数列的定义,请举出一个具体的例子。

表示数列有哪几种方法——列举法、通项公式、递推公式。

我们这节课接着学习一类特殊的数列——等差数列。

2.由生活中具体的数列实例引入(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?(2)某剧场前10排的座位数分别是:48、46、44、42、40、38、36、34、32、30引导学生观察:数列①、②有何规律?引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2。

二.新课探究,推导公式1.等差数列的概念如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调以下几点:① “从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。

数学等差数列教案优秀8篇

数学等差数列教案优秀8篇

数学等差数列教案优秀8篇一、预习问题:1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。

2、等差中项:若三个数组成等差数列,那么A叫做与的即或。

3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。

4、等差数列的通项公式:。

5、判断正误:①1,2,3,4,5是等差数列;()②1,1,2,3,4,5是等差数列;()③数列6,4,2,0是公差为2的等差数列;()④数列是公差为的等差数列;()⑤数列是等差数列;()⑥若,则成等差数列;()⑦若,则数列成等差数列;()⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()⑨等差数列的公差是该数列中任何相邻两项的差。

()6、思考:如何证明一个数列是等差数列。

二、实战操作:例1、(1)求等差数列8,5,2,的第20项。

(2)是不是等差数列中的项?如果是,是第几项?(3)已知数列的公差则例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法,通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

教学过程:一、片头(30秒以内)前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。

本节微课重点讲解等差数列的定义,并且能初步判断一个数列是否是等差数列。

30秒以内二、正文讲解(8分钟左右)第一部分内容:由三个问题,通过判断分析总结出等差数列的定义 60 秒第二部分内容:给出等差数列的定义及其数学表达式50 秒第三部分内容:哪些数列是等差数列?并且求出首项与公差。

等差数列的概念教案

等差数列的概念教案

等差数列的概念教案等差数列的概念教案【教学目标】知识与技能:1、理解等差数列的定义,能根据定义判断一个数列是否为等差数列;2、了解公差的概念,会求一个给定等差数列的首项与公差;3、理解等差中项的概念,会利用等差中项解决相应的简单的等差数列问题。

过程与方法:1、通过对情景问题的分析理解和归纳概括,了解等差数列的简单产生过程;2、通过解决基本等差数列问题的过程,加深对等差数列概念、公差、等差中项的理解;情感态度与价值观:1、通过等差数列概念的归纳概括,培养学生的观察能力、分析探索能力激发学生积极思考,追求新知的创新意识;2、通过解决等差数列概念的基本问题,培养学生分析问题解决问题的能力,提高学生的运算能力。

【教学重点】1、理解等差数列的定义,理解等差中项的概念;2、了解公差的概念,根据给定的等差数列求公差。

【教学难点】探索等差数列定义的形成过程。

【教学方法】情境教学法、自主探究法、讲练结合法【教学用具】黑板电子白板【教学课型】新授课【教学设想】本课教学,重点是等差数列的概念,在讲概念时,通过创设情境引导学生分析出等差数列的特点,从而引出等差数列的定义,进一步引导学生通过定义来判断一个数列是否是等差数列。

整个过程以学生自主思考、合作探究、教师适时点拨为主,真正体现课堂教学中学生的主体作用。

【教学准备】1、教师认真备课、制作课件、布置预习内容;2、学生认真阅读课本内容,标出关键词以及不理解的地方,完成预习内容,做好上课准备。

【教学过程】教学环节课前预习学习内容阅读书本P7-9内容,在等差数列定义中的关键词下面用彩笔画线在现实生活中,我们会遇到下面的特殊数列。

活动一情境1:我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,,,,,…。

创设情境2:2000年,在澳大利亚悉尼举行的奥运会情境上,女子举重被正式列为比赛项目。

该项目共设、置了7个级别,其中较轻的4个级别体重组成数导入列(单位:kg):48,53,,63。

等差数列教案(多篇)

等差数列教案(多篇)

一、教学目标1. 知识与技能:(1)理解等差数列的概念及其特点;(2)掌握等差数列的通项公式、求和公式;(3)能够运用等差数列解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质;(2)培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:(2)引导学生运用数学知识解决实际问题,感受数学的应用价值。

二、教学重点与难点1. 教学重点:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式。

2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的应用。

三、教学过程1. 导入新课:(1)回顾等差数列的定义;(2)引导学生思考等差数列的特点。

2. 知识讲解:(1)讲解等差数列的通项公式;(2)讲解等差数列的求和公式。

3. 例题解析:(1)分析等差数列的例题,引导学生运用通项公式和求和公式;(2)讲解解题思路和方法。

4. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)引导学生互相讨论,共同解决问题。

四、课后作业1. 巩固等差数列的概念和性质;2. 练习运用通项公式和求和公式解决实际问题。

五、教学反思1. 总结本节课的收获:(1)学生掌握了等差数列的概念和性质;(2)学生能够运用通项公式和求和公式解决实际问题。

2. 反思教学过程:(1)是否充分讲解等差数列的性质和公式;(2)是否注重学生的参与和思考;(3)是否及时给予学生反馈和指导。

3. 改进措施:(1)针对学生的薄弱环节,加强讲解和练习;(2)鼓励学生积极参与,提高课堂氛围;(3)关注学生的学习进度,及时调整教学节奏。

六、教学评价1. 评价内容:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式;(3)运用等差数列解决实际问题的能力。

2. 评价方式:(1)课堂问答;(2)练习题;(3)课后作业;(4)小组讨论。

七、教学资源1. 教学课件:(1)展示等差数列的定义、性质;(2)呈现通项公式、求和公式的推导过程;(3)提供丰富的例题和练习题。

等差数列的概念教案

等差数列的概念教案

等差数列的概念教案教学目标:1.了解等差数列的定义和性质;2.学会计算等差数列的通项公式;3.能够应用等差数列解决实际问题。

教学内容:一、引入(10分钟)1.引出等差数列的概念:教师出示一个数字序列:1,3,5,7,9,询问学生是否有发现,让学生讨论并总结规律。

2.介绍等差数列的定义:教师解释等差数列的定义:如果一个数列中任意两个相邻的项之差始终保持不变,那么这个数列就是等差数列。

二、定义与性质(20分钟)1.形式化的定义:教师整理上述讨论结果,给出等差数列的形式化定义,即对于数列{a1, a2, a3,..., an},如果有公差d,那么对于任意的n≥2, ai+1 - ai = d。

2.等差数列的特点:-公差d的大小决定了数列每一项之间的差距;-第一项a1的大小、公差d的正负以及项数n的大小决定了整个数列的排列。

三、计算等差数列的通项公式(30分钟)1.推导递推公式:教师给出等差数列的第一项a1和公差d,让学生推导出递推公式。

-a2=a1+d-a3=a1+2d-...- an = a1 + (n-1)d2.总结通项公式:教师引导学生从递推公式中总结出等差数列的通项公式:an = a1 + (n-1)d。

3.练习计算:学生通过练习计算等差数列的通项公式,巩固学习成果。

四、应用示例(30分钟)1.求等差数列的和:教师给出一个等差数列,让学生思考如何通过通项公式求出数列的和,并进行讲解。

2.实际问题的应用:-示例1:小明从1月1日起,每天存入100元,到12月31日共存了多少钱?-示例2:在一座大楼的楼梯间,第一步有10级台阶,之后每一步比前一步多2级,小明从第二步开始每一步以这个规律上楼,到第10步停下,请计算小明一共走了多少级台阶。

学生通过这些实际问题,巩固应用等差数列解决实际问题的能力。

五、练习与总结(10分钟)1.练习题:让学生独立完成一些练习题,检查学生对等差数列的概念和通项公式的理解和应用。

数学等差数列教案

数学等差数列教案

数学等差数列教案数学等差数列教案「篇一」一、等差数列1、定义注:“从第二项起”及“同一常数”用红色粉笔标注二、等差数列的通项公式(一)例题与练习通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。

由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二)新课探究1、由引入自然的给出等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调:① “从第二项起”满足条件; f②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1—an=d (n≥1) ;h4z+0"6vG同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1、 9 ,8,7,6,5,4,√ d=—12、2、2、2、2、2、2、2、2、2、74√ d=0。

013、3、3、3、3、3、3、√ d=04、4、4、4、4、4、4、×5、5、5、5、5、5、×其中第一个数列公差<0,>0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采用讨论式的教学方法。

给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。

通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。

整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

若一等差数列{an }的首项是a1,公差是d。

则据其定义可得:a2 — a1 =d 即: a2 =a1 +da3 – a2 =d 即: a3 =a2 +d = a1 +2da4 – a3 =d 即: a4 =a3 +d = a1 +3d猜想: a40 = a1 +39d进而归纳出等差数列的通项公式:an=a1+(n—1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:a2 – a1 =da3 – a2 =da4 – a3 =dan+1 – an=d将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d 即 an= a1+(n—1) d (1)当n=1时,(1)也成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列的概念教案
【教学目标】
知识与技能:1、理解等差数列的定义,能根据定义判断一个数列是否为等差数列;
2、了解公差的概念,会求一个给定等差数列的首项与公差;
3、理解等差中项的概念,会利用等差中项解决相应的简单的等差数列问题。

过程与方法:1、通过对情景问题的分析理解和归纳概括,了解等差数列的简单产生过程;
2、通过解决基本等差数列问题的过程,加深对等差数列概念、公差、等差中项的理解;
情感态度与价值观:1、通过等差数列概念的归纳概括,培养学生的观察能力、分析探索能力激发学生积极思考,追求新知的创新意识;
2、通过解决等差数列概念的基本问题,培养学生分析问题解决问题的能力,提高学生的运算能力。

【教学重点】1、理解等差数列的定义,理解等差中项的概念;
2、了解公差的概念,根据给定的等差数列求公差。

【教学难点】探索等差数列定义的形成过程。

【教学方法】情境教学法、自主探究法、讲练结合法
【教学用具】黑板电子白板
【教学课型】新授课
【教学设想】本课教学,重点是等差数列的概念,在讲概念时,通过创设情境引导学生分析出等差数列的特点,从而引出等差数列的定义,进一步引导学生通过定义来判断一个数列是否是等差数列。

整个过程以学生自主思考、合作探究、教师适时点拨为主,真正体现课堂教学中学生的主体作用。

【教学准备】1、教师认真备课、制作课件、布置预习内容;
2、学生认真阅读课本内容,标出关键词以及不理解的地方,完成预习内容,做好上课准备。

【教学过程】。

相关文档
最新文档