椭圆离心率常见求法整理归纳
求离心率的经典方法归纳

求离心率的经典方法归纳
离心率是描述椭圆轨道形状的重要参数之一,有多种方法可以计算离心率。
以下是一些经典的方法:
1. 观测法:对于太阳系中的行星,可以根据其轨道在不同时间的观测数据来计算离心率。
2. Kepler第一定律:根据Kepler第一定律,行星在椭圆轨道上运行时,太阳位于轨道焦点处。
因此,可以通过测量轨道直径和焦距的比值来计算离心率。
3. 能量守恒法:通过能量守恒定律,可以得到行星在不同位置处的速度和距离之间的关系,从而计算出离心率。
4. 角动量守恒法:根据角动量守恒定律,可以得到行星在不同位置处的速度和距离之间的关系,从而计算出离心率。
5. 牛顿第二定律:通过牛顿第二定律,可以得到行星在不同位置处的加速度和距离之间的关系,从而计算出离心率。
总的来说,不同的方法适用于不同的情况,选择合适的方法可以更准确地计算离心率。
- 1 -。
椭圆常见结论求解离心率

椭圆离心率ace =的求法1.椭圆方程()01:2222>>=+b a by a x C 的右焦点为F ,过F 的直线l 与椭圆C 相交于B A ,两点,直线l 的倾斜角为60°,FB AF 2=,求椭圆的离心率?(焦半径公式11ex a PF +=,22ex a PF -=的应用左加右减,弦长公式为直线的斜率k x x k d ,1212-+=)2.椭圆方程()01:2222>>=+b a b y a x C 的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆的离心率的范围?(焦准距cb 2的应用)3.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是?(关于c a ,的二元二次方程022=++pc nac ma 解法)4.已知F 是椭圆C 的一个焦点,B 是短轴上的一个端点,线段BF 的延长线交C 于D ,且FD BF 2=,则C 的离心率为?(相似三角形性质:对应边成比例 的应用)5.过椭圆()01:2222>>=+b a by a x C 的左焦点F ,右顶点为A ,点B 在椭圆上,且x BF ⊥轴,直线AB 交y 轴于点P ,若PB AP 2=,则椭圆的离心率为?(相似三角形性质的应用)6.过椭圆()01:2222>>=+b a by a x C 的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若︒=∠6021PF F ,则椭圆的离心率为?(椭圆焦三角形面积)(2tan 212PF F b S ∠==θθ)7.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率?(椭圆基本性质222c b a +=的应用)8.椭圆1422=+y x 的离心率为?(椭圆基本性质222c b a +=的应用)9.椭圆()01:2222>>=+b a by a x C 的焦点为21,F F ,两条准线与x 轴的交点为N M ,,若212F F MN ≤,则该椭圆的离心率的取值范围是?(椭圆基本性质222c b a +=的应用)10.设21,F F 分别是椭圆()01:2222>>=+b a b y a x C 的左、右焦点,若在其右准线上存在点P ,使线段1PF 的中垂线过点2F ,则椭圆的离心率的取值范围是?(焦准距cb 2;垂直平分线性质:垂直平分线上的点到线段两端距离相等;三角形性质:两边之和大于第三边 应用)11.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为?(通径ab 22,焦准距c a 2)12.已知椭圆()01:2222>>=+b a by a x C 的左右焦点分别为21,F F ,若椭圆上存在点P 使1221sin sin F PF cF PF a =,则该椭圆的离心率的取值范围是?(正弦定理R CcB b A a 2sin sin sin ===,第一定义a PF PF 221=+)13.在平面直角坐标系中,2121,,,B B A A 为椭圆的四个顶点,F 为其右焦点,直线21B A 与直线F B 1相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为? (直线方程交点坐标)14.在ABC ∆中,187cos ,-==B BC AB .若以B A ,为焦点的椭圆经过点C ,则该椭圆的离心率为?(余弦定理A bc c b a cos 2222-+=,第一定义)15.已知正方形ABCD ,则以B A ,为焦点,且过两点D C ,的椭圆的离心率为?(通径ab 22)16.已知椭圆的焦距为c 2,以点O 为圆心,a 为半径作圆M 。
求离心率的范围问题整理分类

求离心率的范围问题求离心率范围的方法 一、建立不等式法:1.利用曲线的范围建立不等关系。
2.利用线段长度的大小建立不等关系。
F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1|∈[a -c ,a +c ];F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,|PF 1|≥c -a .3.利用角度长度的大小建立不等关系。
4.利用题目不等关系建立不等关系。
5. 利用判别式建立不等关系。
6.利用与双曲线渐近线的斜率比较建立不等关系。
7.利用基本不等式,建立不等关系。
二、函数法:1. 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2.通过确定函数的定义域;3.利用函数求值域的方法求解离心率的范围.练习利用曲线的范围建立不等关系1.F 1,F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.2.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA = , 则椭圆离心率的范围是_________.3.设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12B .13 C.2 D.32π4.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 6.已知点()()000,P x y x a ≠±在椭圆()2222:10x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO PM ⊥(O为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .⎛ ⎝⎭B .()0,1C .⎫⎪⎪⎝⎭D .⎛ ⎝⎭利用线段长度的大小建立不等关系7. 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。
求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。
一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。
小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。
二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。
小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。
三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。
小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。
四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。
椭圆离心率的三种求法、中点弦方程三种求法

椭圆离心率的三种求法:(1)若给定椭圆的方程,则根据焦点位置确定a 2,b 2,求a ,c 的值,利用公式e =c a 或利用221ab e -=直接求解. (2)求椭圆的离心率时,若不能直接求得c a的值,通常由已知寻求a ,b ,c 的关系式,再与a 2=b 2+c 2组成方程组,消去b 得只含a ,c 的方程,再化成关于e 的方程求解.(3)求离心率时要充分利用题设条件中的几何特征构建方程求解,从而达到简化运算的目的. 涉及椭圆离心率的范围问题要依据题设条件首先构建关于a ,b ,c 的不等式,消去b 后,转化为关于e 的不等式,从而求出e 的取值范围.1. 若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被点⎪⎭⎫ ⎝⎛0,2b 分成5∶3的两段,则此椭圆的离心率为( )A.1617B.41717C.45D.255解析 依题意,得c +b 2c -b 2=53,∴c =2b ,∴a =b 2+c 2=5b ,∴e =2b 5b=255. 答案D 点评 本题的解法是直接利用题目中的等量关系,列出条件求离心率.2. 设P 是椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,F 1,F 2是其左,右焦点.已知∠F 1PF 2=60°,求椭圆离心率的取值范围.分析 本题主要考查椭圆离心率取值范围的求法,建立不等关系是解答此类问题的关键. 解 方法一 根据椭圆的定义,有|PF 1|+|PF 2|=2a .①在△F 1PF 2中,由余弦定理,得cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=12, 即|PF 1|2+|PF 2|2-4c 2=|PF 1||PF 2|.②①式平方,得|PF 1|2+|PF 2|2+2|PF 1||PF 2|=4a 2.③由②③,得|PF 1||PF 2|=4b 23.④ 由①和④运用基本不等式,得|PF 1||PF 2|≤2212||||⎪⎭⎫ ⎝⎛+PF PF ,即4b 23≤a 2. 由b 2=a 2-c 2,得43(a 2-c 2)≤a 2,解得e =c a ≥12. 又e <1,∴该椭圆的离心率的取值范围是[12,1). 方法二 如图,设椭圆与y 轴交于B 1,B 2两点,则当点P 位于B 1或B 2处时,点P 对两焦点的张角最大,故∠F 1B 2F 2≥∠F 1PF 2=60°,从而∠OB 2F 2≥30°.在Rt △OB 2F 2中,e =c a =sin ∠OB 2F 2≥sin 30°=12. 又e <1,∴12≤e <1. ∴该椭圆的离心率的取值范围是[12,1). 点评 在求椭圆离心率的取值范围时,常需建立不等关系,通过解不等式来求离心率的取值范围,建立不等关系的途径有:基本不等式,利用椭圆自身存在的不等关系(如基本量之间的大小关系或基本量的范围,点与椭圆的位置关系所对应的不等关系,椭圆上点的横、纵坐标的有界性等),判别式,极端情况等等.如上面方法二就应用了“当点P 运动到短轴的端点时,点P 对两焦点的张角最大”这一极端情况.(2016全国Ⅰ高考)直线l 经过椭圆的一个顶点和一个焦点,若椭圆的中心到的距离为短轴长的41,则该椭圆的离心率为( B ) A. 31 B. 21 C. 32 D.43 解:设椭圆是焦点在x 轴上的标准方程,上顶点与右焦点分别为)0,(),0(c F b B 、,则直线l 的方程为0=-+bc cy bx 。
椭圆离心率求法大全

椭圆离心率求法大全
椭圆离心率又叫做偏心率,是衡量椭圆的对称性的重要特征值,表示椭圆的离心程度,离心率值越大椭圆形状越扁,可以表示为0≤E≤1,其中较接近圆形的图形偏心率接近0,而较远离圆形图形的离心率则更接近1。
下面是求椭圆离心率的公式及求法:
(1)根据椭圆的标准方程:
$$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$
,其中a为长轴,b为短轴,可以求出椭圆的离心率E,公式为:
(2)也可以根据椭圆的几何定义求出离心率:
椭圆的离心率按照以下公式求出:
其中,e表示椭圆的外径c与内径b的绝对值的差值,e=|c-b|。
(3)根据椭圆的离心率及长短轴的比值,可以得出椭圆的长轴a和短轴b的关系:
a=b/E
(4)可以根据椭圆的中心坐标和其上任意点坐标进行求椭圆离心率计算:
(i)得到椭圆的中心坐标(h,k),任意点坐标为(x,y),并设椭圆的离心率为E。
(ii)根据点(h,k)和点(x,y)求椭圆的半长轴长:
a = $\sqrt{(x-h)^2+(y-k)^2}$
(iii)半短轴长可以求得:
(iv)根据半长轴长a及半短轴长b求离心率:
根据以上公式及求法,可以计算出椭圆的离心率。
注意,离心率在[0,1]之间,较接
近圆形的图形偏心率接近0,而较远离圆形图形的离心率则更接近1。
专题讲座:椭圆离心率的常规求法(文)

a,c的齐次式,解出e. 2.思想方法:
方程的思想,转化的思想
六.课后练习
1.若一个椭圆长轴的长度、短轴的长度和焦距长 成等差数列,求该椭圆的离心率.
2.设椭圆的两个焦点分别为F1和F2 ,过F2作椭圆 长轴的垂线交椭圆于点P,若为△F2PF1等腰直角 三角形,求椭圆的离心率.
专题讲座
椭圆离心率的常规求法
刘帅帅
一.复习巩固
二.离心率的常见题型及解法
题型一:定义法 例1.已知椭圆方程为 x2 + y2 =1,求椭圆的离心率;
16 8
y
P
a
F1(-c,0)o c F2(c,0)
x
1.直接算出a、c带公式求e 2. 几何意义:e为∠OPF2的正弦值
变式训练1:
若椭圆x2 + y2 =1的离心率为1/2,求m的值.
四.高考链接
( (a>2b0>102)新的课左标、全右国焦卷点),设P为F1直和线F2是x=椭3圆a ax上22 +一by点22 =,1
2
△ F2 P F1是底角为30°的等腰三角形, 求该椭圆
的离心率。
y P
30°
2c
F1 (-c,0)o2c
F2
(c,0)
c
x
2c=3a/2
x=3a/2
五.小结
3.已知椭圆的两个焦点为F1和F2,A为椭圆上一 点 ,且AF1⊥AF2,∠AF1F2=60°,求该椭圆的 离心率。
变式训练2:
椭圆
x a
2 2
+
y2 b2
椭圆离心率求法总结

椭圆离心率的解法一、 运用几何图形中线段的几何意义。
基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F ,设椭圆的离心率为e ,则①e=错误!②e=错误!③e=错误!④e=错误!⑤e=错误!评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。
∵|AO |=a ,|OF |=c,∴有⑤;∵|AO |=a,|BO |= 错误!∴有③.题目1:椭圆x2 a2+错误!=1(a 〉b 〉0)的两焦点为F1 、F2 ,以F1F2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ?思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF2 的中点B ,连接BF1 ,把已知条件放在椭圆内,构造△F1BF2分析三角形的各边长及关系.解:∵|F1F2|=2c |BF1|=c |BF2|=错误!cc+错误!c=2a ∴e= 错误!= 错误!-1变形1:椭圆错误! +错误!=1(a 〉b 〉0)的两焦点为F1 、F2 ,点P 在椭圆上,使△OPF1 为正三角形,求椭圆离心率?解:连接PF2 ,则|OF2|=|OF1|=|OP|,∠F1PF2 =90°图形如上图,e=错误!—1变形2:椭圆错误! +错误!=1(a>b 〉0)的两焦点为F1 、F2 ,AB为椭圆的顶点,P是椭圆上一点,且PF1 ⊥X轴,PF2 ∥AB,求椭圆离心率?解:∵|PF1|=错误!错误!|F2 F1|=2c |OB|=b |OA|=aPF2 ∥AB ∴错误!= 错误!又∵b= 错误!∴a2=5c2 e=错误!点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a与c的方程式,推导离心率.二、运用正余弦定理解决图形中的三角形题目2:椭圆错误! +错误!=1(a〉b >0),A是左顶点,F是右焦点,B是短轴的一个顶点,∠ABF=90°,求e?解:|AO|=a |OF|=c |BF|=a |AB|=错误!a2+b2+a2 =(a+c)2 =a2+2ac+c2 a2—c2—ac=0 两边同除以a2e2+e—1=0 e=错误! e=错误!(舍去)变形:椭圆错误! +错误!=1(a〉b 〉0),e=错误!, A是左顶点,F是右焦点,B是短轴的一个顶点,求∠ABF?点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5椭圆的离心率1.设12F F ,分别是椭圆22221(0)x ya b a b+=>>的左、右焦点,若椭圆上存在点A ,使1290F AF ∠=且123AF AF =,则椭圆的离心率为 .2.设椭圆C :22221x y a b +=(0a b >>)的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=︒,则椭圆C 的离心率为_____________.3.设1F 、2F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为 .4.已知椭圆22221x y a b +=(0a b >>)的两个焦点为12,F F ,以12F F 为边作正三角形,若椭圆恰好平分正三角形的另外两条边,且124F F =,则a 等于___________.5.椭圆)0(12222>>=+b a b y a x 的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为________.6.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为________.7.设椭圆()2222:10x y C a b a b +=>>的左右焦点为12F F ,,作2F 作x 轴的垂线与C 交于A B ,两点,1F B 与y 轴交于点D ,若1AD F B ⊥,则椭圆C 的离心率等于________.8.过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M是线段AB 的中点,则椭圆C 的离心率为 .9.椭圆C :)0(12222>>=+b a by a x 左右焦21,F F ,若椭圆C 上恰有4个不同的点P ,使得21F PF ∆为等腰三角形,则C 的离心率的取值范围是 _______10.设椭圆()2222:10x y C a b a b+=>>的两个焦点分别为12F F ,,过1F 且斜率为2的直线交椭圆C 于P 、Q 两点,若12PF F 为直角三角形,则椭圆C 的离心率为 .11.直线32y x =与椭圆22221(0)+=>>x y a b a b 相交于A 、B 两点,过点A 作x 轴的垂线,垂足恰好是椭圆的一个焦点,则椭圆的离心率是 .12.设椭圆()2222:10x y C a b a b+=>>的两个焦点分别为12F F ,,点P 在椭圆上,且120PF PF ⋅=,123tan PF F ∠=,则该椭圆的离心率为 . 13.设椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为12F F ,,P 为椭圆C 上任一点,且12PF PF ⋅的最大值的取值范围是222,3c c ⎡⎤⎣⎦,则椭圆C 的离心率的取值范围是________.14.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,过原点的直线与该椭圆交于A B,两点,连接AF ,BF ,若10AB =,6AF =,4cos 5ABF ∠=,则该椭圆的离心率是 .15.设椭圆()2222:10x y C a b a b+=>>的中心、右焦点、右顶点依次分别为O ,F ,G ,且直线2a x c =与x 轴相交于点H ,则FG OH最大时椭圆的离心率为________. 16.在椭圆22221(0)x y a b a b+=>>中,左焦点为F , 右顶点为A , 短轴上方端点为B ,若90ABF ∠=︒,则该椭圆的离心率为___________.517.已知椭圆()2222:10x y C a b a b+=>>的离心率为32,与过右焦点F 且斜率为k(0k >)的直线相交于A 、B 两点.若3AF FB =,则斜率k 是_______.18.若斜率为22的直线l 与椭圆()2222:10x y C a b a b+=>>有两个不同的交点,且这两个交点在x 轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为________.19.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12F F ,,若以2F 为圆心,b c-为半径作圆2F ,过椭圆上一点p 作此圆的切线,切点为T ,且PT 的最小值为3()2a c -,则椭圆的离心率的取值范围是________.20.如图,已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P .若AP =2PB ,则椭圆的离心率是________.21.已知12F F ,是椭圆C 的左、右焦点,点P 在椭圆上,且满足PF 1=2PF 2,∠PF 1F 2=30°,则椭圆的离心率为________.22.设12F F ,分别是椭圆2222x y a b +=1(a >b >0)的左、右焦点,若在直线x =2a c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆的离心率的取值范围是________.23.在平面直角坐标系中,有椭圆2222x y a b+=1(a>b>0)的焦距为2c ,以O 为圆心,a 为半径的圆.过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e =________.24.椭圆2222:1(0)x y C a b a b +=>>的左,右焦点分别为12,F F ,焦距为2c ,若直线3()y x c =+与椭圆C 的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率为 .25.椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为F 1,F 2,焦距为2c.若直线y=3(x+c)与椭圆Γ的一个交点满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于 .26.已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,以原点O 为圆心,OF 1为半径的圆与椭圆在y 轴左侧交于A,B 两点,若△F 2AB 是等边三角形,则椭圆的离心率等于 .27.椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,过F 1作倾斜角为45°的直线与椭圆的一个交点为M ,若MF 2垂直于x 轴,则椭圆的离心率为________.28.在平面直角坐标系xOy 中,以椭圆2222:1(0)x y C a b a b+=>>上的一点A 为圆心的圆与x 轴相切于椭圆的一个焦点,与y 轴相交于B 、C 两点,若△ABC 是锐角三角形,则该椭圆的离心率的取值范围是________.29.椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,过2F 作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.530.已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 相交于B A ,两点,且线段AB 的中点在直线02=-y x 上,则此椭圆的离心率为_______31.已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点O 的对称点为,B F 为其右焦点,若,AF BF ⊥设,ABF α∠=且,,124ππα⎡⎤∈⎢⎥⎣⎦则椭圆离心率的取值范围是 .x32.已知椭圆E 的方程为22221(0)x y a b a b +=>>,AB 是它的一条倾斜角为135的弦,且(2,1)M 是弦AB 的中点,则椭圆E 的离心率为_________.33.已知椭圆22221(0)x y a b a b+=>>的左右焦点为12(,0)(,0)F c F c -、,若存在动点Q ,满足1||2FQ a =,且12F QF ∆的面积等于2b ,则椭圆离心率的取值范围是 . 34.过椭圆2222:1(0)x y C a b a b+=>>的左顶点A 的斜率为k 的直线交椭圆于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若1132k <<,则椭圆离心率的取值范围是_____________.35.已知点P 是以12F F ,为焦点的椭圆22221(0)x y a b a b+=>>上的任意一点,若12PF F α∠=,21PF F β∠=,且cos α=,3sin()5αβ+=,则此椭圆的离心率为 .36. 设12F F ,是椭圆C :22221x y a b+=(0)a b >>的两个焦点,若在C 上存在一点P,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为_____________.37.已知12F F ,是椭圆22x a+22y b =1(a>b>0)的左右焦点,P 是椭圆上一点,∠F 1PF 2=90°,求椭圆离心率的最小值为38.设12F F ,是椭圆C :22221x y a b+=(a >b >0)的左、右焦点,过F 1的直线l 与C 交于A ,B 两点.若AB ⊥AF 2,|AB|:|AF 2|=3:4,则椭圆的离心率为 .39.过椭圆:C 22221(0)x y a b a b+=>>的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰为右焦点F ,若12k =,则椭圆的离心率e 的值是 . 40.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为)0,(),0,21c F c F -(,若椭圆上存在点P 使1221sin sin F PF cF PF a ∠=∠,则该椭圆的离心率的取值范围为___41.在等边ABC ∆中,若以B A ,为焦点的椭圆经过点C ,则该椭圆的离心率为____________42.如图,已知过椭圆()222210x y a b a b+=>>的左顶点(),0A a -作直线l 交y 轴于点P ,交椭圆于点Q ,若AOP ∆是等腰三角形,且2PQ QA =,则椭圆的离心率为 .43.P 为椭圆C 上一点,12,F F 为两焦点,121212||13,||15,tan 5PF PF PF F ==∠=,则椭圆C 的离心率e = .44.设椭圆22221(0)x y a b a b+=>>的四个顶点A 、B 、C 、D, 若菱形ABCD 的内切圆恰好经过5椭圆的焦点, 则椭圆的离心率为 __ .45.已知椭圆)0(12222>>=+b a by a x 的左顶点为A ,上顶点为B ,右焦点为F .设线段AB的中点为M ,若022≥+•,则该椭圆离心率的取值范围为 . 46.以椭圆的右焦点2F 为圆心作一个圆,使此圆过椭圆中心并交椭圆于点M ,N , 若过椭圆左焦点1F 的直线MF 1是圆2F 的切线,则椭圆的离心率为47.椭圆22189x y k +=+的离心率12e =, 则k 的值是 48.椭圆的焦距、短轴长、长轴长组成一个等比数列,则其离心率为 .49.已知M 、N 是椭圆上关于原点对称的两点,P 是椭圆上任意一点,且直线PM 、PN 的斜率分别为k 1、k 2(120k k ≠),若12||||k k +的最小值为1,则椭圆的离心率为 。