分数指数幂教案

合集下载

分数指数幂教学案例二

分数指数幂教学案例二

分数指数幂教学案例二。

一、教学目标
1.学生能够理解分数幂的定义和基本性质。

2.学生能够应用分数幂的知识解决实际问题。

3.学生能够设计并解决与分数幂相关的问题。

二、教学内容
分数幂的概念、定义和基本性质。

三、教学过程及活动设计
1.活动一:引入知识点
通过展示实际问题引入分数幂的概念,例如物理学中所涉及的功率和液体中的密度。

2.活动二:呈现知识点
用课件或黑板呈现分数幂的定义和基本性质,包括“a的m/n次方根等于a的m次方的n次方根”。

3.活动三:示范应用
通过实际的例子,呈现分数幂的应用方法,例如计算火箭的推力和水平抛射的距离。

4.活动四:小组合作
让学生分成几个小组,设计相关问题并解决这些问题。

例如,一组学生可以设计一道问题:“如果一个物体的密度为1.5克/立方厘米,物体的质量是多少?”其他学生可以使用分数幂的知识点来解决这个问题。

5.活动五:辅助工具
在教学过程中,可以使用一些辅助工具来帮助学生更好地理解分数幂的知识点,例如计算器和图形化的展示方式。

四、教学效果及评价
通过这些活动,学生能够更好地理解分数幂的定义和应用方法,同时也能够设计和解决相关问题。

此外,这种图形化和实例化的教学方法有利于帮助学生更好地记忆和理解知识点。

五、教学总结
分数幂是数学中比较复杂的一种知识点,初学者很难理解其基本概念和应用。

本教学案例以图形化、实例化的方式来帮助初学者更好
地掌握分数幂的知识点。

通过本教学案例,学生能够更好地理解分数幂的定义和应用方法,同时也能够设计和解决相关问题。

必修一第二章教案2分数指数幂

必修一第二章教案2分数指数幂

课题:分数指数幂
授课时间:
教学目标
知识与技能
理解分数指数幂的概念。

过程与方法
让学生感受由特殊到一般的数学思想方法,通过一般化促进学生在原有的基础上的自足构建,从而增强学生对数学本质的认识。

情感,态度与价值观
让学生感受探究未知世界的乐趣,从而培养学生对数学的热爱情感。

重点难点
重点:利用正分数有理指数幂的运算性质,计算、化简有理数指数幂的算式。

难点:正分数有理指数幂的运算性质。

教法学法:探讨研究
教学用具:多媒体。

分数指数幂市公开课获奖教案省名师优质课赛课一等奖教案

分数指数幂市公开课获奖教案省名师优质课赛课一等奖教案

分数、指数和幂是数学中非常重要的概念。

掌握这些概念对于学生在数学学习中是至关重要的。

本教案将介绍如何教授分数、指数和幂的概念以及相关的计算方法。

一、教学目标通过本节课的教学,学生应能够:1. 了解分数、指数和幂的概念;2. 掌握分数的四则运算规则;3. 掌握指数和幂的基本性质和计算方法;4. 能够应用所学知识解决实际问题。

二、教学准备1. 教材:《数学学习》第六册;2. 教具:课件、黑板、粉笔。

三、教学过程1. 导入(5分钟)老师简单介绍什么是分数、指数和幂的概念,以及它们在生活中的应用,激发学生对本节课的兴趣。

2. 分数(20分钟)(1)概念讲解:老师通过示例展示分数的定义和表示方法,并解释分子和分母的含义。

帮助学生理解分数的意义和基本性质。

(2)基本运算:接下来,老师介绍分数的加减乘除规则,并通过具体的例子进行讲解。

在讲解过程中,鼓励学生积极回答问题,加深对分数运算规则的理解。

3. 指数与幂(30分钟)(1)概念讲解:老师通过例子,引入指数和幂的定义和概念,帮助学生理解指数和幂的含义和基本性质。

(2)指数运算:老师重点讲解指数运算的基本规则和性质,包括指数相同、指数相加、指数相减的计算方法,并通过实例进行讲解和练习。

(3)幂运算:老师介绍幂运算的基本规则和性质,包括幂的乘方法则和幂的倒数法则,并通过例题和练习加深学生对幂运算的理解。

4. 实际应用(20分钟)老师提供一些与分数、指数和幂相关的实际问题,并指导学生如何应用所学知识解决这些问题。

通过解决实际问题,加深学生对所学知识的理解和掌握。

5. 总结(5分钟)老师对本节课的内容进行总结,并强调学生在日常学习中要多加练习,将所学知识应用到实际生活中。

四、作业布置布置相关的习题作为课后作业,巩固学生对分数、指数和幂的掌握程度。

以上是本节课的教案,通过有序的教学过程,学生应能够掌握分数、指数和幂的概念、运算规则以及应用方法。

希望本节课能够帮助学生在数学学习中取得更好的成绩。

分数指数幂课程设计二

分数指数幂课程设计二

分数指数幂课程设计二。

一、教学大纲1.分数指数的概念(1)分数指数的定义:正实数的分数指数幂是指一个正实数的幂次方的指数是一个分数。

(2)分数指数的含义:分数指数表示的是指数为分数时,底数的幂次方需要根号或分数幂次方来表示。

如2的1/2次方表示为根号下2,2的1/3次方表示为2的开3次方。

(3)分数指数与整数指数的联系:整数指数是分数指数的特殊情况。

当指数为自然数时,分数指数的定义就是整数指数的拓展。

2.分数指数的性质(1)分数指数的加减法:分数指数的加减法可以用指数乘法公式进行推导。

如:a^(b+c)=a^b * a^ca^(b-c)=a^b / a^c(2)分数指数的乘除法:分数指数的乘除法需要用到指数运算法则和根号的概念。

如:a^(b*c)=(a^b)^ca^(b/c)=c√a^b(3)分数指数的零次幂和负次幂:分数指数的零次幂等于1,分数指数的负次幂可以用整数指数的规律进行推导。

a^0=1a^(-n)=1/a^n, (a不等于0)(4)分数指数与根号的关系:分数指数可以使用根号来表示。

二、教学策略1.针对分数指数概念的教学策略(1)引导学生理解分数指数的概念:可以通过实际应用来引导学生去理解分数指数的概念,如温度的变化规律以及物体的增长规律。

(2)梳理分数指数概念的难点:针对学生理解分数指数概念的难点,可以利用多媒体课件、数据分析软件、教学视频等教学资源。

(3)给予学生分数指数各类例题的练习:通过让学生多做几个分数指数的例题,可以让学生更加清晰分数指数的概念与性质。

2.针对分数指数性质的教学策略(1)强调分数指数的运算法则:可以通过多个例子引导学生去理解分数指数的运算法则,让学生能够更加清晰分数指数的乘除和加减法。

(2)引导学生树立自主思考的意识:在教学过程中,需要引导学生养成自主思考的习惯,让学生能够根据已经学习到的基本知识,去发掘新的知识点。

(3)引导学生发现分数指数的特殊性质:通过引导学生去发现分数指数的特殊性质,可以让学生通过掌握少量分数指数的性质,就能够快速掌握分数指数的运算法则。

《分数指数幂》教学设计

《分数指数幂》教学设计

教学设计:《分数指数幂》教学目标〖知识与技能〗(1) 理解分数指数幂的概念,掌握有理数指数幂的运算性质,并能运用性质进行计算和化简。

(2) 会对根式、分数指数幂进行互化。

(3) 了解无理指数幂的概念 〖过程与方法〗通过对实际问题的探究过程,感知应用数学解决问题的方法,理解分类讨论思想、化归与转化思想在数学中的应用。

〖情感、态度与价值观〗通过对数学实例的探究,感受现实生活对数学的需求,体验数学知识与现实的密切联系。

教学重难点根式、分数指数幂的概念及其性质。

教学情景设计1、复习讨论(1)根式的相关概念(2)整数指数幂:a a a a n⨯⨯⨯= 运算性质:n n n mn n m nm nmb a ab a a a a a ===⋅+)(,)(,)1,,,0(*>∈>n N n m a 。

2、问题情境设疑问题1、当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系5730)21(tP =,考古学家根据这个式子可以知道,生物死亡t 年后,体内碳14含量P 的值。

例如:当生物死亡了5730,2×5730,3×5730,……年后,它体内碳14的含量P 分别为21,2)21(,3)21(,…… 21,2)21(,3)21(,……是正整数指数幂。

当生物死亡了6000年,10000年,100000年后,根据上式,它体内碳14的含量P 分别为57306000)21(,573010000)21(,5730100000)21(。

设疑:以上三个数的含义到底是什么呢? 问题2:如何计算:322⨯? 分析:66236263332222222=⨯=⨯=⨯,然而普通学生要找到该解法并不容易,如何把这种运算简单化呢?能否类似于整数指数幂的运算来解决上题?3、分数指数幂 实例引入:5102552510)(a a a a===,4123443412)(a a a a===问题:1、从以上两个例子你能发现什么结论?当根式的被开方数的指数能被根指数整除时,根式可以写成根指数被开方数的指数a的形式2、4532,,c b a 如何表示? 结论:规定)1,,,0(*>∈>=n N n m a a an m nm问题3、正数的负分数指数幂是:)1,,,0?(*>∈>=-n N n m a a nm分析:)1,,,0(1*00>∈>===--n N n m a a aa a anmnm nm nm如:3434515=-,)0(13232>=-a aa。

12.7 分数指数幂(1)

12.7 分数指数幂(1)

12.7 分数指数幂(1)教学目标1、理解分数指数幂的意义;能将方根与指数幂互化,体会转化思想.2、能在简单运算中运用有理数指数幂的性质进行计算. 教学重点及难点重点:理解分数指数幂的意义,能将方根与指数幂互化. 难点:能在简单运算中运用有理数指数幂的性质进行计算. 教学用具准备教具、学具、多媒体设备 教学流程设计教学过程设计一、 情景引入1.回顾加法与减法互为逆运算,按照“减去一个数等于加上这个数的相反数”,减法可以转化为加法;同样,除法也可以转化为乘法.那么对互为逆运算的乘方与开方,能否将开方运算转化为某种乘方形式的运算呢? 2.思考:把32表示为2的m 次幂的形式解:假设m 223=成立,那么333)2()2(m = 左边=21,右边=m 32要使 左边=右边 成立,则13=m ,即31=m所以31322=[说明] 因为2的任何整数指数幂都是有理数,而32是一个无理数,可知m 不是整数.因此必须将指数的取值范围扩大,才有可能把32表示为m 2的形式. 3.讨论通过31322=的转化,学生讨论方根与幂的形式如何互化?二、学习新课1.概念辨析(1)分数指数幂)0(1)0(>=≥=-a a aa a a nm nmn m nm (其中m 、n 为整数,1>n ).上面规定中的nm a 和nm a -叫做分数指数幂,a 是底数. [说明] 指数的取值范围扩大到有理数后,方根就可以表示为幂的形式,开方运算可以转化为乘方形式的运算.方根与幂的形式互化过程,以如下表格说明注意事项:整数指数幂和分数指数幂统称有理数指数幂. (3)有理数指数幂的运算性质:设0>a ,0>b ,p 、q 为有理数,那么 (ⅰ)q p q p a a a +=⋅,q p q p a a a -=÷ (ⅱ)pq q p a a =)((ⅲ)pppb a ab =)(,p pp ba b a =)(2.例题分析例1 把下列方根化为幂的形式: (1)35; (2)3251;(3)435; (4)49 解:(1)31355=(2)3232551-=(3)434355=(4))3339(992142424414===或=例2 计算:(1)4181; (2)31)81(;解:(1)333)3(81141441441====⨯(2)21)21(])21[()81(31331331===⨯3.问题拓展例3 计算:(1)31)278(⨯; (2)212182⨯ 解:(1)6632)32()278(313313313331==)=(⨯⨯⨯⨯=⨯ (2)44416828221221221212121==)=(=)=(⨯⨯⨯[说明] 在教学中,要注意以下几点:(1)例1为开方运算向乘方运算转化.在方根转化为幂指数的形式中,根指数在幂指数中作分母,这是学生容易出错的地方,应引起注意. (2)例2利用有理数指数幂的运算法则进行计算,与整数指数幂的运算法则进行比较,这样学生比较容易理解.(3)例3是为了熟练有理数指数幂的运算性质,两小题分别是积的乘法公式互逆运用的举例,其中(1)题解法也可以化成(2)题进行这样计算:632)3()2(2783133133131=⨯=⨯=⨯.三、巩固练习1、课本P 练习12.7(1)2、把下列方根化为幂的形式: (1)46 (2)537 (3)4331(4)325-3、计算: (1)62131)23(-⨯ (2)384323)52(⨯(3)2146)53(⨯ (4)313193⨯四、课堂小结带领学生总结本课知识的过程中,提出两点要求:1、在理解分数指数幂意义的基础上能熟练将方根与指数幂互化;2、能在简单运算中熟练地综合运用有理数指数幂的性质(同底数幂的乘除法、幂的乘方、积的乘方)进行计算,法则不变.五、作业布置练习册P12-13,习题12.7(1)教学设计说明分数指数幂的产生是运用转化思想获得成功的范例.本节开头所述,减法可转化为加法运算,除法可以转化为乘法运算,因此试图将开方运算转化为乘方运算.在保持整数幂运算性质的前提下,探讨指数的范围,从而产生了分数指数幂.在教学中例题的选择上由浅入深,由概念的理解到运算性质的熟练运用,计算题的设计也是由易到难,并与整数指数幂的运算法则进行比较,这样学生比较容易理解,能够轻松掌握此部分知识点.。

人教版高中数学教案-分数指数幂

人教版高中数学教案-分数指数幂

2. 1.1第二課時分數指數冪教案【教學目標】1.通過與初中所學知識進行類比,理解分數指數冪的概念進而學習指數冪的性質.2.掌握分數指數冪和根式的互化,掌握分數指數冪的運算性質培養學生觀察分析、抽象類別比的能力3.能熟練地運用有理數指數冪運算性質進行化簡、求值,培養學生嚴謹的思維和科學正確的計算能力.【教學重難點】教學重點:(1)分數指數冪概念的理解.(2)掌握並運用分數指數冪的運算性質.(3)運用有理數指數冪性質進行化簡求值.教學難點:(1)分數指數冪概念的理解(2)有理數指數冪性質的靈活應用.【教學過程】1、導入新課同學們,我們在初中學習了整數指數冪及其運算性質,那麼整數指數冪是否可以推廣呢?答案是肯定的.這就是本節的主講內容,教師板書本節課題—分數指數冪2、新知探究提出問題(1)整數指數冪的運算性質是什麼?a>(2)觀察以下式子,並總結出規律:01051025525===;a a a a()884242===;()a a a a③1212344434()a a a a ===; ④1010522252()aa a a ===.(3) 利用(2)的規律,你能表示下列式子嗎?435,57a ,n m x *(0,,,x m n N >∈且n>1)(4)你能用方根的意義來解釋(3)的式子嗎?(5)你能推廣到一般情形嗎? 活動:學生回顧初中學習的整數指數冪及運算性質,仔細觀察,特別是每題的開始和最後兩步的指數之間的關係,教師引導學生體會方根的意義,用方根的意義加以解釋,指點啟發學生類比(2)的規律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學及時表揚,其他同學鼓勵提示.討論結果:形式變了,本質沒變,方根的結果和分數指數冪是相通的.綜上我們得到正數的正分數指數冪的意義,教師板書:規定:正數的正分數指數冪的意義是*(0,,,1)n nm ma a a m n N n =>∈>.提出問題(1) 負整數指數冪的意義是怎麼規定的? (2) 你能得出負分數指數冪的意義嗎?(3) 你認為應該怎樣規定零的分數指數冪的意義? (4) 綜合上述,如何規定分數指數冪的意義?(5) 分數指數冪的意義中,為什麼規定0a >,去掉這個規定會產生什麼樣的後果? (6) 既然指數的概念從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質是否也適用於有理數指數冪呢?活動:學生回顧初中學習的情形,結合自己的學習體會回答,根據零的整數指數冪的意義和負整數指數冪的意義來類比,把正分數指數冪的意義與負分數指數冪的意義融合起來,與整數指數冪的運算性質類比可得有理數指數冪的運算性質,教師在黑板上板書,學生合作交流,以具體的實例說明0a >的必要性,教師及時作出評價.討論結果:有了人為的規定後指數的概念就從整數推廣到了有理數.有理數指數冪的運算性質如下:對任意的有理數r,s,均有下面的運算性質:①(0,,)r s r s a a a a r s Q +•=>∈②)(0,,)(r s rs a a r s Q a =>∈③()(0,0,)r r r a b a b a b r Q •=>>∈3、應用示例例1 求值:21332416(1)8;(2)25;(3)()81--點評:本題主要考察冪值運算,要按規定來解.要轉化為指數運算而不是轉化為根式. 例2 用分數指數冪的形式表示下列各式.33223;;(0)a a a a a a a ••>點評:利用分數指數冪的意義和有理數指數冪的運算性質進行根式運算時,其順序是先把根式化為分數指數冪,再由冪的運算性質來運算.對結果不強求統一用什麼形式但不能不倫不類.變式訓練求值:(1)363333••; (2)346627()125mn4、拓展提升已知11223,a a +=探究下列各式的值的求法.(1)33221221122;(2);(3)a a a a a a a a-----++-點評::對“條件求值”問題,一定要弄清已知與未知的聯繫,然後採取“整體代換”或“求值後代換”兩種方法求值5、課堂小結 (1)分數指數冪的意義就是:正數的正分數指數冪的意義是*(0,,,1)n n m ma a a m n N n =>∈>,正數的負分數指數冪的意義是*1(0,,,1),n mn nmmaa m n N n a a-==>∈>零的正分數次冪等於零,零的負分數指數冪沒有意義. (2) 規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數. (3)有理數指數冪的運算性質:①(0,,)r s r s a a a a r s Q +•=>∈②)(0,,)(r s rs a a r s Q a =>∈ ③()(0,0,)r r r a b a b a b r Q •=>>∈ 【板書設計】 一、分數指數冪 二、例題 例1 變式1 例2 變式2【作業佈置】課本習題2.1A 組 2、4.2.1.1-2分數指數冪課前預習學案一. 預習目標 1. 通過自己預習進一步理解分數指數冪的概念 2.能簡單理解分數指數冪的性質及運算二. 預習內容1.正整數指數冪:一個非零實數的零次冪的意義是: . 負整數指數冪的意義是: .2.分數指數冪:正數的正分數指數冪的意義是: .正數的負分數指數冪的意義是: . 0的正分數指數冪的意義是: .0的負分數指數冪的意義是: .3.有理指數冪的運算性質:如果a>0,b>0,r,s∈Q,那麼rsaa ⋅= ;)(a rs= ;)(ab r= .4.根式的運算,可以先把根式化成分數指數冪,然後利用 的運算性質進行運算.三. 提出疑惑通過自己的預習你還有哪些疑惑請寫在下面的橫線上課內探究學案一. 學習目標 1. 理解分數指數冪的概念2.掌握有理數指數冪的運算性質,並能初步運用性質進行化簡或求值學習重點:(1)分數指數冪概念的理解.(2)掌握並運用分數指數冪的運算性質. (3)運用有理數指數冪性質進行化簡求值.學習難點:(1)分數指數冪概念的理解 (2)有理數指數冪性質的靈活應用.二. 學習過程 探究一1.若0a >,且,m n 為整數,則下列各式中正確的是 ( ) A 、mmnna a a ÷= B 、mn m n aa a = C 、()nm m n a a += D 、01n n a a -÷=2.c <0,下列不等式中正確的是( )A c 2B cC 2D 2c cc cc c.≥.>.<.>()()()1212123.若)2143(x --有意義,則x的取值範圍是( )A.x∈R B.x≠0.5 C.x>0.5 D.X<0.5 4.比較a=0.70.7、b=0.70.8、c=0.80.7三個數的大小關係是________. 探究二例1:化簡下列各式:(1)()()()2233111a a a -+-+-;(2))3324()3(5621121231b a baba-÷---例2:求值:(1)已知a xx =+-22(常數)求88xx -+的值;(2) 已知x+y=12,xy=9x,且x<y,求yxy x 21212121++的值例3:已知ax212+=,求aa aaxxx x --++33的值.三. 當堂檢測1.下列各式中正確的是( )A.1)1(0-=- B.1)1(1-=-- C.aa 22313=- D.x x x 235)()(=--2.44等於( ) A 、16aB 、8a C 、4a D 、2a3.下列互化中正確的是( )A.)0(()21≠=--x x x B.)0(3162<=y yyC.)0,((4343)()≠=-y x xy yx D.331x x-=4.若1,0a b ><,且22bba a -+=,則b b a a --的值等於( )A 、6B 、2±C 、2-D 、25.使)23(243x x ---有意義的x的取值範圍是( )A.R B.1≠x 且3≠x C.-3<X<1 D.X<-3或x>1課後練習與提高1.已知a>0,b>0,且b aab=,b=9a,則a等於( )A.43 B.9 C.91D.39 2.2222=+-x x且x>1,則x x 22--的值( )A.2或-2 B.-2 C.6 D.23.=⨯⨯61125.1323 . 4.已知N n +∈則)1](1[812)1(---n n = .5.已知⎪⎪⎭⎫ ⎝⎛-=>-n n a a x a 1121,0,求()nx x 21++的值.。

高中数学分数指数幂教案1

高中数学分数指数幂教案1

分数指数幂3三维目标一、知识与技能1.理解无理数指数幂的含义.2.掌握无理数指数幂的运算性质,灵活地运用乘法公式进行实数指数幂的运算和化简.二、过程与方法1.教学时不仅要关注幂运算的基本知识的学习,同时还要关注学生思维迁移能力的培养.2.通过指数幂概念及其运算性质的拓展,引导学生认真体会数学知识发展的逻辑合理性、严谨性.3.通过学习根式、分数指数幂、有理数指数幂与无理数指数幂之间的内在联系,培养学生辩证地分析问题、认识问题的能力.三、情感态度与价值观1.通过无理数指数幂概念的学习,使学生认清基本概念的来龙去脉,加深对人类对事物的一般规律的理解和认识,体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣.2.教学过程中,通过教师与学生、学生与学生之间的相互交流,加深理解无理数指数幂的意义.3.通过研究指数由“整数指数幂→根式→分数指数幂→有理数指数幂→实数指数幂”这一不断扩充、不断完善的过程,使学生认同科学是在不断的观察、实验、探索和完善中前进的.教学重点1.无理数指数幂的含义的理解.2.无理数指数幂的运算性质的掌握.教学难点1.无理数指数幂概念的理解.2.实数指数幂的运算和化简.教具准备多媒体课件、投影仪、打印好的作业.教学过程一、回顾旧知,探索规律,引入新课师:我们所学习的数的进化过程是怎样的?生:自然数——整数——分数(有理数)——实数.师:从有理数到实数有什么补充?生:无理数.师:上节课学习了分数指数幂的概念及有理数指数幂的运算性质,指数的取值范围由整数推广到了有理数.那么,当指数是无理数时,我们又应当如何来处理呢?(众生思考,议论纷纷,但无结果)师:这就是我们本节课要学习的无理数指数幂.二、讲解新课(一)无理数指数幂的意义师:不妨看这样一个例子:52这个数的结果是一个什么数?为什么?生:无理数.因为指数是无理数,所以它也是无理数.师:我们从具体的数据来看一下是否成立呢?(多媒体操作显示如下图片)师:你发现上面的两表具有什么样的规律?生:第一张表是从大于2的方向逼近2,52就从51.5,51.42,51.415,51.4143,…,即大于52的方向逼近52;第二张表是从小于2的方向逼近2,52就从51.4,51.41,51.414,51.4142,…,即小于52的方向逼近52.师:因此,我们可以得出这样一个结论:52肯定是一个什么数?生:实数.一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.师:细心的同学可能已经发现了,我们这里讨论无理数指数幂的意义时,对底数a也有大于0这个规定的,为什么要作这个规定呢?如果去掉这个规定会产生怎样的局面?合作探究:在规定无理数指数幂的意义时,为什么底数必须是正数?(组织学生讨论,通过具体例子说明规定底数a>0的合理性)若无此条件会引起混乱,如若a=-1,那么aα是+1还是-1就不确定了.(二)指数幂的运算法则师:有理数的运算性质能否适用于无理数呢?生:因为无理数指数幂也是一个确定的实数,所以能进行指数的运算,也能进行幂的运算.有理数指数幂的运算性质同样适用于无理数指数幂.有理数指数幂的运算性质依然可以进行推广,请回顾一下它们共同的运算性质.(生口答,师板书)对于任意的实数r 、s ,均有下面的运算性质: ①a r a s =a r +s(a >0,r 、s ∈R ); ②(a r )s =a r s(a >0,r 、s ∈R );③(ab )r =a r b r(a >0,b >0,r 、s ∈R ). (三)例题讲解【例1】 使用计算器计算下列各式的值:(保留到小数点后第四位)(1)0.21.52;(2)3.14-2;(3)3.132;(4)52. 解:(1)0.21.52≈0.0866;(2)3.14-2≈0.1014; (3)3.132≈2.1261; (4)52≈9.7385. 【例2】 化简下列各式: (1)113132++-x x x +1131++x x -13131--x x x ;(2)625-+347--246-;(3)22222222-------+b a b a b a b a +1111))((----+--ba ab b b a a . (生板演,师组织学生总结解决此类问题的一般方法和步骤)解:(1)113132++-x x x +1131++x x -13131--x x x =11)(3132331++-x x x +11)(31331++x x -1)1(313231--x x x =1)1)(1(3132313231++++-x x x x x +1)1)(1(31313231++-+x x x x -1)1)(1(31313131-+-x x x x =(x 31-1)+(x32-x 31+1)-x 31(x 31+1)=x 31-1+x 32-x 31+1-x 32-x 31=-x 31.(2)625-+347--246-=2)23(-+3)32(--2)22(-=(3-2)+(2-3)-(2-2)=3-2+2-3-2+2=0.(3)22222222-------+b a b a b a b a +1111))((----+--b a ab b b a a =1)(44222222---+b a b a b a b a +)())((1111----+--b a ab ab b b a a ab = )1)(1()1)((22222222+--+b a b a b a b a +1)(221111+--+----b a ab b a b a ab ab =12222++b a b a +11222222+--+b a a b b a =112222++b a b a =1. 方法引导:化简(1)这类式子,要考虑运算公式;化简(2)这类式子,要考虑根号里面可能是一个平方数;化简(3)这类式子,一般有两个方法,一是首先用负指数幂的定义把负指数化为正指数,另一个方法是采用分式的基本性质把负指数化为正指数.【例3】 写出使下列等式成立的x 的取值范围: (1)(331-x )3=31-x ; (2))25)(5(2--x x =(5-x )5+x .解:(1)只需31-x 有意义,即x ≠3,∴x 的取值范围是(-∞,3)∪(3,+∞). (2)∵)25)(5(2--x x =)5()5(2+-x x =|x -5|5+x ,∴|x -5|5+x =(5-x )5+x 成立的充要条件是x +5=0或⎩⎨⎧-=->+,5|5|,05x x x 即x =-5或⎩⎨⎧≤-->.05,5x x∴x 的取值范围是[-5,5]. 三、巩固练习 课本P 63练习:4(生完成后,同桌之间互相交流解答过程)4.(1)1.3346;(2)0.0737;(3)0.9330;(4)0.0885. 四、课堂小结师:本节课你有哪些收获,能和你的同桌互相交流一下你们各自的收获吗?请把你们的交流过程作简单记录.(生交流,师投影显示如下知识要点) 1.无理数指数幂的意义一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数.2.指数幂的运算法则①a r a s=a r +s(a >0,r 、s ∈R ); ②(a r)s=a rs(a >0,r 、s ∈R );③(ab )r=a r b r(a >0,b >0,r 、s ∈R ). 五、布置作业板书设计2.1.1 指数与指数幂的运算(3)1.无理数指数幂的意义2.指数幂的运算法则3.例题讲解与学生训练4.课堂小结5.布置作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§ 12.7 分数指数幂(1)
教学目标:
1. 理解分数指数幂的意义.
3
5
5
4
4)
2
1
33 通过
3
2 2
3 ,
4 33 34, 33 3 2的转
化, 讨论方根与幂的形式如何互化?(学生讨论) 二、学习新课 1.分数指数幂概念 师:把指数的取值范围扩大到分数,我们规定 m n a m a n
(a 0) (其中 m 、 n 为整数, n 1). m
1n
a n (a 0) nm a 1 【说明】在说明 a p 1p 同样适用后,导出后 a p
一个负分数指数幂 .
mm
上面规定中的 a n 和a n 叫做分数指数幂 ,a 是 底数. 揭示课题: 12.7 分数指数幂 [ 说明] 指数的取值范围扩大到有理数后, 方根就 可以表示为幂的形式, 开方运算可以转化为乘方 形式的运算 . 2. 有理数指数幂 整数指数幂和分数指数幂统称
有理数指数幂 . 3.例题分析 例1 把下列方根化为幂的形式: 1) 3
5; 2) 3) 4) 每一题问: 如何转化?谁做分数指数幂中指数的 分母?
预设回答:被开方数中 的底数转化为了幂的底 数,被开方数中的指数 转化为幂的指数中的分 子,根指数转化为幂的 指数中的分母 . 预设:
解:(1) 3 5
1
53
3)
453
1
2
53
3
1
4
9 94
通过观察得出 方根与幂的形 式的转化, 从而 得出分数指数 幂的意义 .
对比分析方根 与幂的互化过 程,体会两者间 的联系. 体 会 从特殊到一般 的研究方法 .
帮助学生理解 分数指数幂的 概
念,学生能够 直接应用概念 .
1 若
学生写 9 4 也 行.
师:刚才将方根转化为分数指数幂,反过来分数指数幂可以转化为方根进行开方运算.
例2 计算:
1 1 1 1 1 (1)49 2;(2)(1)3;(3)16 4;(4)4
2 273.
8
1
解:(1)49249 7 ;
1 13 31 1
(2)()33 ;
8 8 2
1 1 1 1
(3)16 4 11 1 1;
1
4
416 2
16
4
11
(4)42 273 4 3 27 2 3 6 . 小结:可将分数指数幂转化为方根的形式再求值,最后写成分数指数幂的形式.例3 将幂的形式转化为方根形式:
1 2 1 3 (1)63;(2)93;(3)6.4 4;(4)
()4
1
解:(1)63 3 6 ;
2
(2)93=3 92;
1
4 1 1
(3)6.4 4 114 4 61.4;
6.44 6.4
(4)(75)4 4(75)3.
小结:分数指数幂中指数的分母是方根中的根指数.
三、巩固练习
1. 把下列方根化为幂的形式:
(1)3 4 ;(2)4 23;(3)1;师生共同完成.
师生共同完成.
学生独立练习.
1.解:
1
(1)3 4 43;
(2)42324;
利用分数指数幂的
意义求幂的值,帮
助学生进一步体会
分数指数幂与方
根的联系.
书上例3 是用计
算器运算,现在
这样设计目的是让
学生将分数指数幂
和方根进行熟练转
化.
培养学生自主解题
及评价能力. 通过
练习掌握方根向幂
的形式的转化,
体会两者的联系,
4)5 13
*2. 把下列幂化为方根的形式:
1
1

363;
-3
2

12
2;
3
)8
15
-2
4

-10 5
1
*3.把下列方根化为幂的形式:
1

46;
2
)57 3;
3

1
4
3
3
4

352.
4.计算(口答):
1
(1)92;(2)
1
1
121 2;(3)
1
1
1442

1
4)643;(5)1253;(6)2564.
(3)1
8
1
82;
(4) 5 13
1
35.
3
2.
解:
(1)
1
3633 36 ;
-3
2)12 2
13
12
1
3)8 44 8 ;15 15
4)
3.解:
(1)
(2)
(3)
(4)
4.解:
1
(1)929 3;
(2 )
1
1212121 11 ;
(3 )
1
1442144 12 ;
1
(4)643 3 64 4;
(5 )
1
1253 3 125 5 ;
正确理解分数指
数幂的概念.
通过练习掌握幂
向方根形式的转
化,体会方根与
幂之间相互转化
的关系,体现转
化的数学思想.
利用分数指数幂
的意义求幂的
值,帮助学生进
一步体会分数指
数幂与方根的联
系. 同时提醒学
生,当分数指数
幂转化为方根形
式时,如果根指
数是偶数时,对
应的是正的偶次
方根;如果根指
数是奇数时,则

(6)。

相关文档
最新文档