渣油加氢工艺流程

渣油加氢工艺流程
渣油加氢工艺流程

2 P R O C -2-b

第一节

工艺技术路线及特点

一、工艺技术路线

300×104t/a 渣油加氢脱硫装置采用CLG 公司的固定床渣油加氢脱硫工艺技术,该工艺技术满足操作周期8000h 、柴油产品硫含量不大于500ppm 、加氢常渣产品硫含量不大于0.35w%、残炭不大于5.5w%、Ni+V 不大于15ppm 的要求。

二、工艺技术特点

1、反应部分设置两个系列,每个系列可以单开单停(单开单停是指装置内二个系列分别进行正常生产和停工更换催化剂)。由于渣油加氢脱

硫装置的设计操作周期与其它主要生产装置不一致,从全厂生产安排的角度,单开单停可以有效解决原料储存、催化裂化装置进料量等问题,并使全厂油品调配更灵活。

2、反应部分采用热高分工艺流程,减少反应流出物冷却负荷;优化换热流程,充分回收热量,降低能耗。

3、反应部分高压换热器采用双壳、双弓型式,强化传热效果,提高传热效率。

4、反应器为单床层设置,易于催化剂装卸,尤其是便于卸催化剂。

5、采用原料油自动反冲洗过滤器系统,滤除大于25μm 以上杂质,减缓反应器压降增大速度,延长装置操作周期。

6、原料油换热系统设置注阻垢剂设施,延长操作周期,降低能耗,而且在停工换剂期间可减少换热器和其它设备的检修工作。

7、原料油缓冲罐采用氮气覆盖措施,以防止原料油与空气接触从而减轻高温部位的结焦程度。

8、采用炉前混氢流程,避免进料加热炉炉管结焦。

9、第一台反应器入口温度通过调节加热炉燃料和高压换热器旁路量来控制,其他反应器入口温度通过调节急冷氢量来控制。 10、在热高分气空冷器入口处设注水设施,避免铵盐在低温部位的沉积。

11、循环氢脱硫塔前设高压离心式分离器除去携带的液体烃类,减少循环氢脱硫塔的起泡倾向,有利于循环氢脱硫的正常操作。 12、设置高压膜分离系统,保证反应氢分压。

13、冷低压闪蒸罐的富氢气体去加氢裂化装置脱硫后去PSA 回收氢气。

14、新氢压缩机采用二开一备,每台50%负荷,单机负荷较小,方便制造,且装置有备机。

15、分馏部分采用主汽提塔+分馏塔流程,在汽提塔除去轻烃和硫化氢,降低分馏塔材质要求。

分馏塔设侧线柴油汽提塔及中段回流加热原料油,降低塔顶冷却负荷,提高能量利用率,减小分馏塔塔径。

16、利用常渣产品发生部分低压蒸汽。通过对装置换热流程的优化,把富裕热量集中在温位较高的常渣产品,发生低压蒸汽。

17、考虑到全厂能量综合利用,正常生产时常渣在150℃送至催化裂化装置。在催化裂化装置事故状态下,将常渣冷却至90℃送至工厂罐区。 18、催化剂预硫化按液相预硫化方式设置。

三、工艺流程说明 (一)工艺流程简述

1、反应部分

原料油自进装置后至冷低压分离器(V-1812)前的流程分为两个系列,以下是一个系列的流程叙述:

原料油在液位和流量的串级控制下进入滤前原料油缓冲罐(V-1801)。原料从V-1801底部出来由原料油增压泵(P1801/S )升压,经中段回流

油/原料油换热器(E-1801AB )、常渣/原料油换热器(E-1802AB 、E-1803AB )分别与中段回流油和常渣换热,然后进入原料油过滤器(S-1801)以除去原料油中大于25μm 的杂质。过滤后的原料油进入滤后原料油缓冲罐(V-1802),原料油从V-1802底部出来后由加氢进料泵(P1802/S )升压,升压后的原料油在流量控制下进入反应系统。

原料油和经热高分气/混合氢换热器(E-1805AB )预热后的混合氢混合,混合进料经反应流出物/反应进料换热器(E-1804)预热后进入反应进

料加热炉(F-1801)加热至反应所需温度进入第一台加氢反应器(R-1801),R-1801的入口温度通过调节F-1801的燃料量和E-1804的副线量来控制,R-1801底部物流依次通过其它三台反应器(R-1802、R-1803、R-1804),各反应器的入口温度通过调节反应器入口管线上注入的冷氢量来控制。从R-1804出来的反应产物经过E-1804换热后进入热高压分离器(V-1803)进行气液分离, V-1803底部出来的热高分液分别在液位控制下减压后,进入热低压分离器(V-1804)进行气液分离,V-1803顶部出来的热高分气分别经热高分气/混合氢换热器、热高分气蒸汽发生器(E-1806)换热后进入热高分气空冷器(E-1807),冷却到52℃进入冷高压分离器(V-1806)进行气、油、水三相分离。

为了防止铵盐在低温位析出堵塞管路,在热高分气空冷器前注入经注水泵(P-1803/S )升压后的脱硫净化水等以溶解铵盐。

从V-1806顶部出来的冷高分气体(循环氢)进入高压离心分离器(V-1807)除去携带的液体烃类,减少循环氢脱硫塔(C-1801)的起泡倾向。

自V-1807顶部出来的气体进入C-1801底部,与贫胺液在塔内逆向接触,脱除H 2S ,脱硫溶剂采用甲基二乙醇胺(MDEA ),贫胺液从贫胺液缓冲罐(V-1809)抽出经贫溶剂泵(P-1804/S )升压后进入C-1801顶部,从塔底部出来的富胺液降压后进入富胺液闪蒸罐(V-1810)脱气。富液脱气后出装置去溶剂再生,气体去硫磺回收。

自C-1801顶不出来的循环氢进入循环氢压缩机入口分液罐(V-1808)除去携带的胺液,V-1808顶部出来的循环氢分成两路,一路去氢提浓

(ME-1801)部分,提浓后的氢气经提浓氢压缩机(K-1804)升压后与新氢压缩机(K-1802A.B.C )出口新氢汇合,释放气去轻烃回收装置;另一路进入循环氢压缩机(K-1801)升压,升压后的循环氢分为三部分,第一部分与新氢压缩机来的新氢混合,混合氢去反应部分;第二部分作为急冷氢去控制反应器入口温度;第三部分至E-1807前作为备用冷氢和K-1801反飞动用。循环氢压缩机选用背压蒸汽透平驱动的离心式压缩机。

从两个反应系列的冷高压分离器底部出来的冷高分液分别在液位控制下减压混合后,进入冷低压分离器(V-1812)进行气液分离,冷低分液体

在液位控制下从罐底排出并进入热低分气/冷低分液换热器(E-1809)、柴油/冷低分油换热器(E-1811)、常渣/冷低分油换热器(E-1812)换热后进入汽提塔(C-1803)。V-1812顶部出来的冷低分气去轻烃回收装置脱硫。

冷高压分离器底部的含H 2S 、NH 3的酸性水进入酸性水脱气罐(V-1823)集中脱气后送出装置。 两个反应系列的热低分油在液位控制下从V-1803底部排出去分馏部分。热低分气体经E-1809换热后进入热低分气空冷器(E-1810)冷却到54℃,

然后进入冷低压闪蒸罐(V-1811)进行气液分离,为了防止在低温位的地方有铵盐析出堵塞管路,在E-1810前注水以溶解铵盐。V-1811顶部出来的富氢气体直接送至加氢裂化装置进行脱硫,然后去PSA 装置回收氢气;从下部出来的冷低压闪蒸液进入到冷低压分离器。

新氢从全厂氢网送入,进入新氢压缩机经三段压缩升压后分两路分别与两个系列循环氢压缩机出口的循环氢混合,混合氢气分别返回到各自的

反应部分。新氢压缩机设三台,二开一备,每一台均为三级压缩,每台的一级入口设入口分液罐,级间设冷却器和分液罐。

3 P R O C -2-b

塔顶回流泵(P-1805/S )升压后分成两部分,一部分作为回流返回到塔顶部,另一部分去石脑油加氢。V-1814底部分水包排出的酸性水进入V-1823脱气后出装置。为减轻塔顶管道和设备的腐蚀,在汽提塔的顶部管道注入缓蚀剂。

汽提塔底油经分馏塔进料加热炉(F-1802)加热至合适温度进入分馏塔(C-1804),分馏塔设一个柴油抽出侧线和一个中段回流,塔底采用水蒸汽汽提,塔顶气相经分馏塔顶空冷器(E-1815)冷凝冷却后进入分馏塔顶回流罐(V-1815)

进行气液分离;V-1815底部出来的液体经分馏塔顶回流泵(P-1806/S )升压后分成两部分,一部分作为塔顶回流返回到塔顶部,另一部分在V-1815液位控制下与C-1803塔顶油一道送出装置。V-1815底部分水包排出的含油污水经含油污水泵(P-1807/S )升压后送注水罐回用。

未汽提柴油从分馏塔抽出进入柴油汽提塔(C-1805),柴油汽提塔底设重沸器,以分馏塔底油为热源,C-1805顶气体返回到分馏塔。柴油从塔

底部抽出经柴油泵(P-1811/S )升压后再经柴油/低分油换热器、柴油空冷器(E-1816)冷却到50℃出装置。

中段回流油从分馏塔集油箱用分馏塔中段回流泵(P-1809/S )抽出,进入E-1801A.B 换热后返回分馏塔。 分馏塔底油(加氢常渣)经分馏塔底泵(P-1810/S )加压后依次经柴油汽提塔重沸器(E-1818)、常渣/原料油换热器、常渣蒸汽发生器(E-1817)

等换热至168℃作为热供料去催化裂化装置,或再经常渣空冷器(E-1819)冷却至90℃出装置至罐区。

3、催化剂预硫化

为了使催化剂具有活性,新鲜的或再生后的催化剂在使用前均必须进行预硫化,设计采用液相硫化法,硫化剂为二甲基二硫化物(DMDS )。 两个系列催化剂可以分别独立进行预硫化,以下是一个系列硫化的流程叙述:

硫化时,系统内氢气经循环氢压缩机按正常操作路线进行循环,冷高压分离器压力为正常操作压力。DMDS 自硫化剂罐(V-1831)来,至加氢进

料泵入口管线,硫化油采用蜡油。

自R-1804来的流出物经E-1804、V-1803、E-1805A.B 、E-1806、E-1807冷却后进入冷高压分离器V1806进行分离,冷高分气体经循环氢压缩机K-1801

循环,催化剂预硫化过程中产生的水从V4004底部间断排出。

(二)主要操作条件如下:

1 反应部分

反应器液时空速,h-1 0.20

总气油比,SOR/EOR 1132/1232 反应器入口压力,SOR/EOR MPa (g ) 19.45/19.88 平均反应温度,SOR/ EOR ℃ 391/402 2 热高压分离器

温度 ℃ SOR/EOR 371/374 压力MPa(G) 17.8 3 冷高压分离器 温度℃ 52 压力MPa(G) 17.5 4 反应进料加热炉

入口/出口温度℃ 337/365(SOR ) 350/378(EOR )

压力MPa(G) 20.6 5 循环氢压缩机 入口温度℃ 61

入口/出口压力MPa(G) 17.46/21.43 循环氢压缩机设计能力m3n/h 224315(单台) 6 新氢压缩机 入口温度℃ 40

入口/出口压力MPa(G) 2.4/21.2

新氢压缩机设计能力m3n/h 51400(单台) 7 提浓氢压缩机 入口温度℃ 60

入口/出口压力MPa(G) 4.18/21.37 提浓氢压缩机设计能力m3n/h 31800 8 循环氢脱硫塔 塔顶温度℃ 61 塔顶压力MPa(G) 17.5 9 汽提塔

进料温度℃ 364/366(SOR/EOR ) 塔顶温度℃ 189/172(SOR/EOR ) 塔顶压力MPa(G) 1.1

塔底温度℃ 350/344(SOR/EOR ) 10 分馏塔 进料温度℃ 371

塔顶温度℃ 124/129(SOR/EOR ) 塔顶压力MPa(G) 0.14

塔底温度℃ 354/322(SOR/EOR ) 10 柴油汽提塔

4

P R O C -2-b

塔底温度℃

293

第二节 副产品的回收、利用及“三废”处理方案

一、副产品的回收和利用

该装置副产品富氢气体和含硫燃料气。

富氢气体约为2422Kg/h (EOR ),其中H 2含量为83.02%(V ), H 2S 含量为2.99%(V ),C 1含量为7.13%(V ),C 2含量为3.34%(V ),富氢气体送

至加氢裂化装置进行脱硫,然后去PSA 装置回收氢气。

含硫燃料气由低分气、汽提塔顶气、氢提浓单元尾气、酸性水罐闪蒸气及富胺液闪蒸气总量约为7969Kg/h (EOR ),其中H 2含量为32.67%(V ),

H 2S 含量为10.32%(V ),C 1含量为6.63%(V ),C 2含量为11.94%(V ),含硫燃料气送轻烃回收装置脱硫。 二、“三废”处理方案 (一)废水处理

废水按其性质主要可分为四类

含硫污水:主要由冷高压分离器、冷低压分离器、汽提塔顶回流罐等排出,含有较高浓度的H 2S 和NH 3,送酸性水处理装置进行处理。 含油污水:分馏塔顶回流罐产生的含油污水经含油污水升压后送注水罐作为装置注水回收利用。

机泵和地面冲洗等产生的含油污水,送至污水处理场。装置界区内的初期雨水并入含油污水,后期雨水排入清净废水系统,以减轻工厂污水处

理的负荷。

生活污水:装置间断排出职工生活污水,排入生活污水系统。

废水见表2-1。

表2-

(二)废气处理 1 废气

燃烧废气:反应进料加热炉、分馏塔进料加热炉排出的燃烧烟气,充分回收能量后,经烟囱高空排放。 放空气体:安全阀及放空系统(包括紧急放空)排放的含烃气体排入密闭的火炬系统。 废气排放情况见表2-2

表2-

(三)固(液)体废物

正常生产时无固(液)体废物排放,仅在停工检修时,排出废保护剂、废催化剂和废碱液等。 废保护剂、催化剂:由加氢反应器排出,约1年一次,送废催化剂回收工厂或桶装深埋。 废碱液:反应部分中和清洗排放的废碱液由工厂系统统一处理。 固体废弃物列于表2-3。

表 2-(四)噪声源及处理

1 空冷器选用低转速、低噪声风机,单台噪声控制在85分贝以下。

2 机泵选用低噪声增安型电机。

3 蒸汽放空装有消音器。

4 加热炉采用低噪声燃烧器,风道部分采用保温隔音材料。

5

P R O C -2-b

第三节 安全卫生

一、装置危险、危害性分析

1 火灾、爆炸危害因素分析

所用原料、中间产品、产品的火灾理化特性见表3-1。 表3-1

2 危害因素较大设备及场所

主要危险设备包括: 加氢反应器、循环氢脱硫塔、新氢压缩机、循环氢压缩机、高压换热器等。主要危险岗位见表3-2:

表3-

3 生产中使用、产生的部分物料为有毒物质,对人体有一定程度的危害作用,其危害及危害程度见表3-3。 表3-

4 危险等级

所用原料、中间产品、产品各物料在加工过程中处于高温、高压、含氢环境中,当环境温度超过其自燃点时,发生泄漏就可能引发火灾。火灾

危险性属于甲类。

二 安全卫生措施 1 安全卫生设施依托情况

该装置所需的劳动安全卫生措施,按现行有关劳动安全卫生标准、规范的要求,在依托现有系统劳动安全卫生设施的基础上补充完善,以确保

该装置的劳动安全卫生达到标准和规范的要求。

2 主要安全卫生防范措施 ⑴ 工艺设计

① 采用先进可靠的工艺技术和合理的工艺流程,设计考虑必要的裕度及操作弹性,以适应加工负荷上下波动的需要。

② 装置内设有1.05/2.1MPa/min 紧急泄压系统。当出现反应器床层温度过高或发生严重火灾时,使用紧急泄压系统(手动启动),使反应系统

6 P R O C -2-b

当燃料气压力过低,反应器入口温度过高,反应进料加热炉流率过低时,反应进料加热炉停炉。 当燃料油压力过低,加热炉出口温度过高,加热炉流率过低时,分馏塔进料加热炉停运。 当循环氢压缩机入口分液罐高高液位时,循环氢压缩机停机。 ④ 所有带压设备及管道均设安全阀,所有安全阀均设备阀。

⑤ 各部分设置的安全阀泄压时,其排放物分别由火炬线或液体放空线排至密闭的放空罐,然后气体去工厂火炬,液体去工厂污油罐。 ⑥ 关健转动设备,均设有备机,以确保安全生产。 ⑵ 平面布置设计

① 平面布置在满足有关防火、防爆及安全卫生标准和规范要求的前提下,尽量采用露天化、集中化和流程式布置,并考虑同类设备相对集中,以达到减少占地、节约投资、降低能耗、便于安全生产操作和检修管理,实现本质安全的目的。

② 四周设绿化带和环形消防通道,并确保与周围装置的防火间距满足有关规范的要求。设置检修及消防通道,保证消防车和急救车能顺利通往可能出现事故的地方。

③ 加热炉布置在全年最小风频的下风向。

④ 所有框架、管架均按GB50160-92(1999版)的有关规定设有防火层。界区内设有消火栓、水炮、蒸汽灭火设施、软管站及灭火器等消防设施用于火灾扑救。

⑤ 对于表面温度高于60℃管线,在操作人员可触摸到的部位均采用隔热层防烫保护。在管带区、框架区、塔区等地方均设蒸汽灭火系统。 ⑥ 设计中选用优质垫片,加强管道、设备密封,防止介质泄漏。

⑦ 设置移动式小型灭火设备。包括推车式泡沫灭火器,手提式干粉灭火器以及手提式泡沫灭火器。 ⑶ 自控设计

① 装置的仪表自动控制采用DCS ,由控制室进行统一管理,并根据工艺特点和安全要求,对关键部位,设置必要的报警、自动控制及自动联锁等控制措施。

② 为保证装置停电时仪表用电,设置UPS 不间断电源。

③ 对有可能泄露可燃气体和H 2S 等有毒气体的地方,设置固定式的可燃气体报警仪和H 2S 气体报警仪。可能有H 2S 气体泄漏和聚积岗位上的操作人员配备便携式H 2S 气体报警器。

④ 为了保护设备和生产安全,在设计中选用风开、风关调节阀,以便停风时,调节阀能处于安全位置。同时为防止仪表管道的冻凝和阻塞,在必要部位设置仪表蒸汽伴热系统和冲洗油系统。

⑤ 监测、控制仪表除按工艺生产要求选型时,还考虑了仪表安装地点的防爆等级,并按《爆炸和火灾危险环境电力装置设计规范》GB50058-92进行选型。

⑥ 生产仪表及其它电气设备按所处区域的防爆等级选用防爆型号。在中控室、变配电室内设置可燃气体报警仪、火灾检测报警器。并设置事故通风设施。

⑷ 电气设计

① 装置内爆炸危险区域内的电力设备设置严格按照《爆炸和火灾危险环境电力装置设计规范》GB50058-92的要求进行设计。 ② 在爆炸危险场所的电器设备均选用相应等级的防爆电器,如防爆电钮、防爆照明灯、防爆电机等。 ③ 电力配电电缆均选用阻燃铠装电缆。

④ 设防爆检修动力箱,供停工时检修用电。

⑤ 平台、过道及其它需要的地方均设置照明设施,照明亮度符合规范要求。为了便于事故抢救,局部重要的操作通道及操作点配备事故照明设施。

⑥ 为确保人身安全,在有关建构筑物、工艺设备及管道上均设置防雷防静电的可靠接地装置,并依照《工业与民用电力装置接地设计规范》GBJ65-83的要求,接地电阻<4Ω,接地线均采用镀锌扁钢。

⑦ 设防爆对讲电话以及火灾报警装置,以便发生火灾时及时报警。

⑸ 工艺配管工程设计

① 各部分均设有固定的消防蒸汽管线和足够的软管站,使可能出现的泄漏点均在消防蒸汽软管范围之内。 ② 按标准、规范规定选用管道、管件、法兰、垫片、阀门。 ③ 对安装管道采取必要的保温、保冷措施: a 工艺过程的需要。

b 减少散热或冷量散失的需要

c 保证操作人员安全、改善劳动条件的需要。 ④ 工艺管道安全的措施 a 热补偿安全

b 适应高温、高压及腐蚀介质的管道材质。

c 防泄漏措施。 ⑹ 土建设计

① 各建筑物、构筑物的抗震性能均按《建筑抗震设计规范》GB50011-2001的规定进行设计。建筑物的耐火性能满足2级耐火等级的要求。 ② 钢结构框架、管带及其它梁柱均满足设计规范所要求的强度、耐火、防爆等性能,并加设厚型无机外防火层,以防止火灾伤害及火势蔓延。 ③ 抗震、防雷措施: 建构筑物及大型框架设备采取相应的抗震、防雷措施。 ⑺ 设备机械工业炉设计

① 根据有关规定,设备设计中充分考虑当地的风压、地震烈度及场地等因素,对反应器等主要设备基础按7度(近震)地震烈度设计。 ② 主要设备的裙座均设置防火层,对高温设备和管道均进行隔热保温。

③ 根据设备内介质操作温度、压力和腐蚀情况,分别选用相适应的材质,以减少腐蚀,延长设备寿命。加热炉设置长明灯,以防瞬间熄火而引起炉内瓦斯爆炸,同时在炉体安装防爆门,并设置灭火蒸汽管。

④ 对必须在高空操作的设备, 根据规范要求在必要的位置均设置平台、梯子、扶手、围栏等,以保证操作人员的人身安全。

7

P R O C -2-b

仪外,还配备防毒面具和空气呼吸器,以便在事故时进行自救、抢救,防止硫化氢中毒。

2 、据国内外炼油厂调查资料表明,在同类装置工作的操作人员及管理人员至今尚未发现患有国家规定的职业病及其他特殊病症。但为确保操作人员的身体健康,对该装置的操作人员应定期进行体检,以防患于未然。 四 设置安全色、安全标志

1、按GB2894规定,凡容易发生事故的场所和设备设置安全警示标志,并在生产场所、作业场所的紧急通道和出入口,设置醒目的标志和指示箭头。

2、按GB2893规定,对需要迅速发现并引起注意,以防发生事故的场所、部位涂有安全色;对阀门布置比较集中,易因误操作而引发事故的地方,在阀门的附近设标明输送介质的名称、符号等标志。

五 消防措施的设置

1 压缩机、反应器、加热炉等需要重点保护的设备附近,设置箱式消火栓,其保护半径为30m 。

2 反应器附近设置固定式消防水炮保护。

3 按照《石油化工企业设计防火规范》GB50160—92(1999年局部修订)的要求在装置危险设备区设置蒸汽灭火软管。

4 框架、平台上每层设置半固定式蒸汽接头。

5 在高于15米的框架处,沿梯子平台敷设半固定式消防竖管。

6 装置内设置的固定式露天消防设施如箱式消火栓、消防水炮等采取防冻措施。

7 装置内按照《石油化工企业设计防火规范》GB50160—92(1999年版)设置手提式灭火器。 8 装置内报警采用电话报警,报警报至厂消防站。

六 劳动保护措施

1、设置密闭式采样器,以减少可燃有害介质的扩散。

2、有毒有害物质的装卸人员应配戴防毒面具。

采取以上防范措施后,该装置的职业安全卫生设计可以满足有关标准规范的要求。

VRDS渣油加氢装置开停工设备安全技术规定

VRDS渣油加氢装置开停工设备安全技术规定 UFR/VRDS装置是在高温、高压、临氢状态下运转,计算机控制、工艺复杂、联系紧密、要求严格,为了保证安全和保护设备的催化剂,在操作的几个阶段中为保证周期安全运行,制订以下规定: 1.1 反应器升压 反应器第一次升压,在反应器(包括管嘴)所有部件的金属温度达93℃以前,压力应不超过反应器加设计压力的四分之一(4.6MPa);一旦反应器在高于357℃的温度下操作过,对于以后的所有开工在反应器各部件的金属温度没有达到93℃以前,反应器压力严禁超过反应器入口压力的四分之一,因为反应器尤其是焊缝金属可能已回火脆化,所有一定要保证这一限制。 1.2 反应器降压 与压力有关的另一现象是氢在钢里的溶解度,在反应器操作压力和温度下,钢材里的氢浓度可达几个μg。当反应器被冷却和降压时,溶解度降低,导致氢浓度过饱和,当反应器脱气时(特别是停工时)必须小心防止因为过饱和的氢浓度引起钢的氢脆变。 停工时,在任一表面降到93℃或更低温度前,反应器应降压到4.6MPa或以下。 降压时最后一个要考虑的问题是由于高流速产生高压

降而增加的反应器内部构件的应力,降压速度应控制到任何一个反应器的压降不超过0.74MPa。 1.3 反应器升温 在反应器升温期间,升温速度应保持在下列限度以内。 表11-11 反应器升温限制规定 1.4 反应器冷却 在反应器冷却期间,降温的速率应保持在下列温度以内: 表11-12 反应器冷却限制规定 1.5 反应系统吹扫 下述程序给出了反应器和反应系统吹扫的步骤,不管

吹扫的顺序有什么变化,下列重要问题应给予重视: 1. 不管含氧气体还是含氢或烃气体都是用惰性气体(氮气)来吹扫。 2. 绝不能将含氢或含烃的系统抽真空。 3. 当抽空一个系统时,要切断循环压缩机,对压缩机抽空会损坏密封,压缩机应该用氮气单独吹扫。 1.6 反应器系统允许的压力降 表11-13 反应器的压力降 上表中列出了各反应器最大允许压力降,操作时一定要注意各反应器压降,尤其是当事故状态下,紧急泄压时,一定要严格控制卸压压降,以防内构件损坏。 1.7 连多硫酸腐蚀 为防止奥氏体不锈钢受连多硫酸腐蚀,必须按以下方式

国内外渣油加氢工艺区别(DOC)

文/李立权中石化洛阳工程有限公司 渣油加氢技术包含固定床渣油加氢处理、切换床渣油加氢处理、移动床渣油加氢处理、沸腾床渣油加氢处理、沸腾床渣油加氢裂化、悬浮床渣油加氢裂化、渣油加氢一体化技术及相应的组合工艺技术。随着原油的重质化及劣质化、分子炼油技术的发展、环境保护要求的日益严格、市场对轻质油品需求、石油产品清洁化和石化企业面临的激烈竞争,各种渣油加氢技术将快速发展。 1国内外渣油加氢工程化技术应用现状 我国渣油加氢工程化技术起步较晚,1999年12月我国开发的首套2.0Mt/a固定床渣油加氢技术实现了工程化;2000年1月世界首套上流式渣油加氢反应器在我国某企业1.5Mt/a渣油加氢装置改造工程中实现工程化;2004年8月我国开发的50kt/a悬浮床渣油加氢技术进行了工业示范;2014年2月我国开发的50kt/a沸腾床渣油加氢工业示范装置建成中交;2014年45kt/a油煤共炼的重油加氢装置建成;目前引进的一套2.5Mt/a沸腾床渣油加氢装置正在建设中。截止到2011年底我国投产的渣油加氢装置处理能力仅13.35Mt/a,而2012—2014年10月投产的渣油加氢装置处理能力就达到了19.3Mt/a;正在规划、设计和建设的渣油加氢装置处理能力超过30Mt/a。 中国石油化工股份有限公司石油化工科学研究院(RIPP)开发的固定床渣油加氢处理重油催化裂化双向组合RICP技术2006年工程化应用,将RFCC装置自身回炼的重循环油(HCO)改为输送到渣油加氢装置作为渣油加氢进料稀释油,和渣油一起加氢处理后再一同回到RFCC装置进行转化,同时有利于渣油加氢和催化裂化装置,工艺流程示意见图1。

渣油加氢工艺标准说明

第一节工艺技术路线及特点 一、工艺技术路线 300×104t/a渣油加氢脱硫装置采用CLG公司的固定床渣油加氢脱硫工艺技术,该工艺技术满足操作周期8000h、柴油产品硫含量不大于500ppm、加氢常渣产品硫含量不大于0.35w%、残炭不大于5.5w%、Ni+V 不大于15ppm的要求。 二、工艺技术特点 1、反应部分设置两个系列,每个系列可以单开单停(单开单停是指装置内二个系列分别进行正常生产和停工更换催化剂)。由于渣油加氢脱硫装置的设计操作周期与其它主要生产装置不一致,从全厂生产安排的角度,单开单停可以有效解决原料储存、催化裂化装置进料量等问题,并使全厂油品调配更灵活。 2、反应部分采用热高分工艺流程,减少反应流出物冷却负荷;优化换热流程,充分回收热量,降低能耗。 3、反应部分高压换热器采用双壳、双弓型式,强化传热效果,提高传热效率。 4、反应器为单床层设置,易于催化剂装卸,尤其是便于卸催化剂。 5、采用原料油自动反冲洗过滤器系统,滤除大于25μm以上杂质,减缓反应器压降增大速度,延长装置操作周期。 6、原料油换热系统设置注阻垢剂设施,延长操作周期,降低能耗,而且在停工换剂期间可减少换热器和其它设备的检修工作。 7、原料油缓冲罐采用氮气覆盖措施,以防止原料油与空气接触从而减轻高温部位的结焦程度。 8、采用炉前混氢流程,避免进料加热炉炉管结焦。 9、第一台反应器入口温度通过调节加热炉燃料和高压换热器旁路量来控制,其他反应器入口温度通过调节急冷氢量来控制。 10、在热高分气空冷器入口处设注水设施,避免铵盐在低温部位的沉积。 11、循环氢脱硫塔前设高压离心式分离器除去携带的液体烃类,减少循环氢脱硫塔的起泡倾向,有利于循环氢脱硫的正常操作。

渣油加氢装置反应部分设备腐蚀分析与防护

渣油加氢装置反应部分设备腐蚀分析与防护 6#炼油张冕 摘要:本文根据中石化上海石化炼油改造项目渣油加氢装置的工艺流程,结合设备选材,对渣油加氢装置反应部分各个设备的腐蚀介质及其存在状况进行了核算,对其可能发生的腐蚀进行了分析,并在此基础上提出了防护措施。 关键词:渣油加氢反应部分腐蚀防护 一、概况: 中石化上海石化渣油加氢装置主要加工减压渣油、常压渣油、减压洗涤油、减压重蜡油以及焦化蜡油共390万吨/年。年开工时间为8400小时,装置设计水力学弹性为,双系列部分为原料总加工量的60%-110%,单系列部分为原料加工量的50%-110%。 二、各设备腐蚀分析与防护 1 加氢反应器的腐蚀分析与防护 渣油加氢装置反应器的主要腐蚀形式多为氢脆、氢腐蚀、高温氢与H2S腐蚀、珞钼钢的回火脆性以及不锈钢堆焊层的剥离。 上海石化渣油加氢装置反应器母材选用 2.25Cr-1Mo-V高强钢。与传统的2.25Cr-1Mo钢相比,该钢种提高了抗氢腐蚀、氢脆、回火脆性和堆焊层剥离性能。渣油加氢反应器的操作条件为高温、高压,并且具有H2+H2S的腐蚀介质,高温的H2+H2S对钢材有强烈的腐蚀性。为了抗H2+H2S的腐蚀,反应器的内壁采用不锈钢堆焊层,本装置反应器内壁采用双层堆焊方案,即309L+TP347. 2 混合氢与热高分气换热器的腐蚀分析与防护 混合氢与热高分气换热器壳程走循环氢,进口温度为157℃,出口温度为223℃管程走热高分气,进口温度为268℃,出口温度为228℃。由于循环氢内不存在液相,腐蚀性较低,这里主要考虑热高分气的腐蚀。 根据工艺介质和和运行参数,腐蚀原因从H2S-NH3-H2O型腐蚀和NH4CL结晶导致的垢下腐蚀两方面分析。 1)渣油加氢装置原料油中含有的硫、氮的化合物经后反应变成H2S和NH3,二者反应生成NH4SH,NH4HS晶体经常在空冷器管束内和下

关于渣油加氢处理催化剂及工艺技术

关于渣油加氢处理催化剂及工艺技术 一、渣油加氢处理技术概况 当今世界,石油资源逐渐变劣、变重,使轻质油品收率下降,而世界经济的快速发展对轻质油品的需求却日益增长。如何合理利用和深度加工劣质或重质原油,是炼油工业面临的一个迫切需要解决的难题。在国内,原油资源满足不了我国国民经济快速发展的需要,进口中东原油以增加我国的能源供给势在必行。 中东原油加工的主要技术难点是高硫原油的合理利用,从当今炼油技术水平来看, 渣油固定床加氢处理是合理利用含硫渣油的最为有效的手段之一 二、渣油加氢处理过程的化学反应及催化剂 1、渣油加氢处理过程的化学反应 在重油加氢处理过程中,主要的化学反应有: 加氢脱金属(HDM); 加氢脱硫(HDS); 加氢脱氮(HDN); 加氢裂化(HC); 不饱和键的加氢(如芳烃饱和—HDA)等。 针对这些反应,渣油加氢处理催化剂主要包括渣油加氢保护剂,脱金属催化剂,脱硫催化剂和脱氮催化剂四大类。 2、减压渣油加氢处理系列催化剂(FZC —XX系列) 该系列催化剂自1986年开始研制以来,现已研究开发成功四大类共十六个牌号的催化剂。研究开发过程中共申请国内外专利六十余项,有效地保护了我国自力更生开发的渣油固定床加氢处理技术(简称S-RHT技术)。

3、常压渣油加氢处理系列催化剂(FZC-XXX系列) 1995年我国开始针对进口高硫原油开展了常压渣油加氢处理系列催化剂的研究开发工作。

本项目包括三大类(加氢脱硫,加氢脱金属和保护)催化剂的开发,1998年底完成全部实验室研制和工业放大工作,先后申请专利12项。试验结果表明,FZC-XXX系列催化剂达到国际先进水平,填补了国内空白。 三、S-RHT渣油固定床加氢处理技术的工业应用 1、减压渣油加氢处理 S-RHT工业装置所用主要催化剂物化性质

石油炼化公司的各个装置工艺的流程图大全及其简介

炼化公司的各个装置工艺的流程图大全及其简介 从油田送往炼油厂的原油往往含盐(主要是氧化物)带水(溶于油或呈乳化状态),

可导致设备的腐蚀,在设备内壁结垢和影响成品油的组成,需在加工前脱除。电脱盐基本原理: 为了脱掉原油中的盐份,要注入一定数量的新鲜水,使原油中的盐充分溶解于水中,形成石油与水的乳化液。 在强弱电场与破乳剂的作用下,破坏了乳化液的保护膜,使水滴由小变大,不断聚合形成较大的水滴,借助于重力与电场的作用沉降下来与油分离,因为盐溶于水,所以脱水的过程也就是脱盐的过程。 CDU装置即常压蒸馏部分 常压蒸馏原理:

精馏又称分馏,它是在精馏塔内同时进行的液体多次部分汽化和汽体多次部分冷凝的过程。 原油之所以能够利用分馏的方法进行分离,其根本原因在于原油内部的各组分的沸点不同。 在原油加工过程中,把原油加热到360~370℃左右进入常压分馏塔,在汽化段进行部分汽化,其中汽油、煤油、轻柴油、重柴油这些较低沸点的馏分优先汽化成为气体,而蜡油、渣油仍为液体。 VDU装置即减压蒸馏部分

减压蒸馏原理: 液体沸腾必要条件是蒸汽压必须等于外界压力。 降低外界压力就等效于降低液体的沸点。压力愈小,沸点降的愈低。如果蒸馏过程的压力低于大气压以下进行,这种过程称为减压蒸馏。 轻烃回收装置是轻烃的回收设备,采用成熟、可靠的工艺技术,将天然气中比甲烷或乙烷更重的组分以液态形式回收。

RDS即渣油加氢装置,渣油加氢技术包含固定床渣油加氢处理、切换床渣油加氢处理、移动床渣油加氢处理、沸腾床渣油加氢处理、沸腾床渣油加氢裂化、悬浮床渣油加氢裂化、渣油加氢一体化技术及相应的组合工艺技术。

渣油加氢工艺说明

2 P R O C -2-b 第一节 工艺技术路线及特点 一、工艺技术路线 300×104t/a 渣油加氢脱硫装置采用CLG 公司的固定床渣油加氢脱硫工艺技术,该工艺技术满足操作周期8000h 、柴油产品硫含量不大于500ppm 、加氢常渣产品硫含量不大于0.35w%、残炭不大于5.5w%、Ni+V 不大于15ppm 的要求。 二、工艺技术特点 1、反应部分设置两个系列,每个系列可以单开单停(单开单停是指装置内二个系列分别进行正常生产和停工更换催化剂)。由于渣油加氢脱硫装置的设计操作周期与其它主要生产装置不一致,从全厂生产安排的角度,单开单停可以有效解决原料储存、催化裂化装置进料量等问题,并使全厂油品调配更灵活。 2、反应部分采用热高分工艺流程,减少反应流出物冷却负荷;优化换热流程,充分回收热量,降低能耗。 3、反应部分高压换热器采用双壳、双弓型式,强化传热效果,提高传热效率。 4、反应器为单床层设置,易于催化剂装卸,尤其是便于卸催化剂。 5、采用原料油自动反冲洗过滤器系统,滤除大于25μm 以上杂质,减缓反应器压降增大速度,延长装置操作周期。 6、原料油换热系统设置注阻垢剂设施,延长操作周期,降低能耗,而且在停工换剂期间可减少换热器和其它设备的检修工作。 7、原料油缓冲罐采用氮气覆盖措施,以防止原料油与空气接触从而减轻高温部位的结焦程度。 8、采用炉前混氢流程,避免进料加热炉炉管结焦。 9、第一台反应器入口温度通过调节加热炉燃料和高压换热器旁路量来控制,其他反应器入口温度通过调节急冷氢量来控制。 10、在热高分气空冷器入口处设注水设施,避免铵盐在低温部位的沉积。

关于渣油加氢处理催化剂及工艺技术

关于渣油加氢处理催化剂及工艺技术

关于渣油加氢处理催化剂及工艺技术 一、渣油加氢处理技术概况 当今世界,石油资源逐渐变劣、变重,使轻质油品收率下降,而世界经济的快速发展对轻质油品的需求却日益增长。如何合理利用和深度加工劣质或重质原油,是炼油工业面临的一个迫切需要解决的难题。在国内,原油资源满足不了我国国民经济快速发展的需要,进口中东原油以增加我国的能源供给势在必行。中东原油加工的主要技术难点是高硫原油的合理利用,从当今炼油技术水平来看,渣油固定床加氢处理是合理利用含硫渣油的最为有效的手段之一 二、渣油加氢处理过程的化学反应及催化剂 1、渣油加氢处理过程的化学反应 在重油加氢处理过程中,主要的化学反应有: 加氢脱金属(HDM); 加氢脱硫(HDS); 加氢脱氮(HDN); 加氢裂化(HC); 不饱和键的加氢(如芳烃饱和-HDA)等。 针对这些反应,渣油加氢处理催化剂主要包括渣油加氢保护剂,脱金属催化剂,脱硫催化剂和脱氮催化剂四大类。 2、减压渣油加氢处理系列催化剂(FZC-XX系列) 该系列催化剂自1986年开始研制以来,现已研究开发成功四大类共十六个牌号的催化剂。研究开发过程中共申请国内外专利六十余项,有效地保护了我国自力更生开发的渣油固定床加氢处理技术(简称S-RHT技术)。

FZC-XX系列催化剂特点和作用 类别第一代第二代特点作用 保护剂FZC-10FZC-10Q大孔容(>1.0ml/g),大孔 径(有400nm以上大孔) 脱金属杂质及垢物,保护下游催化剂,防 止床层压力降快速升高 FZC-11FZC-11Q FZC-12FZC-12Q FZC-13FZC-13Q FZC-14FZC-14Q FZC-15FZC-10U FZC-16FZC-11U FZC-17 FZC-18 脱金属剂FZC-20FZC-23大孔容(≥0.7 ml/g),大 孔径(有100nm以上大孔) 最大限度地脱镍、钒FZC-21FZC-24 FZC-22FZC-25 FZC-26 FZC-27 脱硫剂FZC-30FZC-33较强的酸性,较小的孔径, 较大的比表面积 脱硫、部分脱氮FZC-31FZC-34 FZC-32FZC-35 FZC-36 脱 氮剂FZC-40FZC-41 强酸性,小孔径,大比表面 积,高金属含量 高活性脱氮、转化 3、常压渣油加氢处理系列催化剂(FZC-XXX系列)

渣油加氢工艺流程

2 P R O C -2-b 第一节 工艺技术路线及特点 一、工艺技术路线 300×104t/a 渣油加氢脱硫装置采用CLG 公司的固定床渣油加氢脱硫工艺技术,该工艺技术满足操作周期8000h 、柴油产品硫含量不大于500ppm 、加氢常渣产品硫含量不大于0.35w%、残炭不大于5.5w%、Ni+V 不大于15ppm 的要求。 二、工艺技术特点 1、反应部分设置两个系列,每个系列可以单开单停(单开单停是指装置内二个系列分别进行正常生产和停工更换催化剂)。由于渣油加氢脱 硫装置的设计操作周期与其它主要生产装置不一致,从全厂生产安排的角度,单开单停可以有效解决原料储存、催化裂化装置进料量等问题,并使全厂油品调配更灵活。 2、反应部分采用热高分工艺流程,减少反应流出物冷却负荷;优化换热流程,充分回收热量,降低能耗。 3、反应部分高压换热器采用双壳、双弓型式,强化传热效果,提高传热效率。 4、反应器为单床层设置,易于催化剂装卸,尤其是便于卸催化剂。 5、采用原料油自动反冲洗过滤器系统,滤除大于25μm 以上杂质,减缓反应器压降增大速度,延长装置操作周期。 6、原料油换热系统设置注阻垢剂设施,延长操作周期,降低能耗,而且在停工换剂期间可减少换热器和其它设备的检修工作。 7、原料油缓冲罐采用氮气覆盖措施,以防止原料油与空气接触从而减轻高温部位的结焦程度。 8、采用炉前混氢流程,避免进料加热炉炉管结焦。 9、第一台反应器入口温度通过调节加热炉燃料和高压换热器旁路量来控制,其他反应器入口温度通过调节急冷氢量来控制。 10、在热高分气空冷器入口处设注水设施,避免铵盐在低温部位的沉积。 11、循环氢脱硫塔前设高压离心式分离器除去携带的液体烃类,减少循环氢脱硫塔的起泡倾向,有利于循环氢脱硫的正常操作。 12、设置高压膜分离系统,保证反应氢分压。 13、冷低压闪蒸罐的富氢气体去加氢裂化装置脱硫后去PSA 回收氢气。 14、新氢压缩机采用二开一备,每台50%负荷,单机负荷较小,方便制造,且装置有备机。 15、分馏部分采用主汽提塔+分馏塔流程,在汽提塔除去轻烃和硫化氢,降低分馏塔材质要求。 分馏塔设侧线柴油汽提塔及中段回流加热原料油,降低塔顶冷却负荷,提高能量利用率,减小分馏塔塔径。 16、利用常渣产品发生部分低压蒸汽。通过对装置换热流程的优化,把富裕热量集中在温位较高的常渣产品,发生低压蒸汽。 17、考虑到全厂能量综合利用,正常生产时常渣在150℃送至催化裂化装置。在催化裂化装置事故状态下,将常渣冷却至90℃送至工厂罐区。 18、催化剂预硫化按液相预硫化方式设置。 三、工艺流程说明 (一)工艺流程简述 1、反应部分 原料油自进装置后至冷低压分离器(V-1812)前的流程分为两个系列,以下是一个系列的流程叙述: 原料油在液位和流量的串级控制下进入滤前原料油缓冲罐(V-1801)。原料从V-1801底部出来由原料油增压泵(P1801/S )升压,经中段回流 油/原料油换热器(E-1801AB )、常渣/原料油换热器(E-1802AB 、E-1803AB )分别与中段回流油和常渣换热,然后进入原料油过滤器(S-1801)以除去原料油中大于25μm 的杂质。过滤后的原料油进入滤后原料油缓冲罐(V-1802),原料油从V-1802底部出来后由加氢进料泵(P1802/S )升压,升压后的原料油在流量控制下进入反应系统。 原料油和经热高分气/混合氢换热器(E-1805AB )预热后的混合氢混合,混合进料经反应流出物/反应进料换热器(E-1804)预热后进入反应进 料加热炉(F-1801)加热至反应所需温度进入第一台加氢反应器(R-1801),R-1801的入口温度通过调节F-1801的燃料量和E-1804的副线量来控制,R-1801底部物流依次通过其它三台反应器(R-1802、R-1803、R-1804),各反应器的入口温度通过调节反应器入口管线上注入的冷氢量来控制。从R-1804出来的反应产物经过E-1804换热后进入热高压分离器(V-1803)进行气液分离, V-1803底部出来的热高分液分别在液位控制下减压后,进入热低压分离器(V-1804)进行气液分离,V-1803顶部出来的热高分气分别经热高分气/混合氢换热器、热高分气蒸汽发生器(E-1806)换热后进入热高分气空冷器(E-1807),冷却到52℃进入冷高压分离器(V-1806)进行气、油、水三相分离。 为了防止铵盐在低温位析出堵塞管路,在热高分气空冷器前注入经注水泵(P-1803/S )升压后的脱硫净化水等以溶解铵盐。 从V-1806顶部出来的冷高分气体(循环氢)进入高压离心分离器(V-1807)除去携带的液体烃类,减少循环氢脱硫塔(C-1801)的起泡倾向。 自V-1807顶部出来的气体进入C-1801底部,与贫胺液在塔内逆向接触,脱除H 2S ,脱硫溶剂采用甲基二乙醇胺(MDEA ),贫胺液从贫胺液缓冲罐(V-1809)抽出经贫溶剂泵(P-1804/S )升压后进入C-1801顶部,从塔底部出来的富胺液降压后进入富胺液闪蒸罐(V-1810)脱气。富液脱气后出装置去溶剂再生,气体去硫磺回收。 自C-1801顶不出来的循环氢进入循环氢压缩机入口分液罐(V-1808)除去携带的胺液,V-1808顶部出来的循环氢分成两路,一路去氢提浓 (ME-1801)部分,提浓后的氢气经提浓氢压缩机(K-1804)升压后与新氢压缩机(K-1802A.B.C )出口新氢汇合,释放气去轻烃回收装置;另一路进入循环氢压缩机(K-1801)升压,升压后的循环氢分为三部分,第一部分与新氢压缩机来的新氢混合,混合氢去反应部分;第二部分作为急冷氢去控制反应器入口温度;第三部分至E-1807前作为备用冷氢和K-1801反飞动用。循环氢压缩机选用背压蒸汽透平驱动的离心式压缩机。 从两个反应系列的冷高压分离器底部出来的冷高分液分别在液位控制下减压混合后,进入冷低压分离器(V-1812)进行气液分离,冷低分液体 在液位控制下从罐底排出并进入热低分气/冷低分液换热器(E-1809)、柴油/冷低分油换热器(E-1811)、常渣/冷低分油换热器(E-1812)换热后进入汽提塔(C-1803)。V-1812顶部出来的冷低分气去轻烃回收装置脱硫。 冷高压分离器底部的含H 2S 、NH 3的酸性水进入酸性水脱气罐(V-1823)集中脱气后送出装置。 两个反应系列的热低分油在液位控制下从V-1803底部排出去分馏部分。热低分气体经E-1809换热后进入热低分气空冷器(E-1810)冷却到54℃, 然后进入冷低压闪蒸罐(V-1811)进行气液分离,为了防止在低温位的地方有铵盐析出堵塞管路,在E-1810前注水以溶解铵盐。V-1811顶部出来的富氢气体直接送至加氢裂化装置进行脱硫,然后去PSA 装置回收氢气;从下部出来的冷低压闪蒸液进入到冷低压分离器。 新氢从全厂氢网送入,进入新氢压缩机经三段压缩升压后分两路分别与两个系列循环氢压缩机出口的循环氢混合,混合氢气分别返回到各自的 反应部分。新氢压缩机设三台,二开一备,每一台均为三级压缩,每台的一级入口设入口分液罐,级间设冷却器和分液罐。

渣油加氢技术应用现状与发展

渣油加氢技术应用现状与发展 摘要:综述了国内外首套不同类型渣油加氢技术的特点及应用现状,介绍了待工程化的渣油加氢技术研发现状及工业示范试验进展。指出我国渣油加氢技术开发要从反应器类型、大型 化、一体化组合技术研究方向发展。 关键词:渣油加氢转化率现状分析 1 前言 渣油加氢技术包含固定床渣油加氢处理、切换床(活动床)渣油加氢处理、移动床渣油加氢处理、沸腾床渣油加氢处理、沸腾床渣油加氢裂化、悬浮床渣油加氢裂化、渣油加氢一体化技术及相应的组合工艺技术。随着原油的重质化及劣质化、分子炼油技术的发展、环境保护要求的日益严格、市场对轻质油品需求、石油产品清洁化和石化企业面临的激烈竞争,各种渣油加氢技术将快速发展。 2 国内外已工程化渣油加氢技术应用现状 我国渣油加氢工程化技术起步较晚。1999年12月我国开发的首套2.0 Mt/a固定床渣油加氢技术实现工程化;2000年1月世界首套上流式渣油加氢反应器在我国某企业1.5 Mt/a 渣油加氢装置改造中实现工程化;2004年8月我国开发的50 kt/a悬浮床渣油加氢技术进行了工业示范;2014年2月我国开发的50 kt/a沸腾床渣油加氢工业示范装置建成中交;2014年45 kt/a油煤共炼的重油加氢装置建成;目前引进的一套2.5 Mt/a沸腾床渣油加氢装置正在建设中。2012~2014年10月投产的渣油加氢装置处理能力达到19.3 Mt/a,正在规划、设计和建设的渣油加氢处理能力超过30 Mt/a。 RIPP开发的固定床渣油加氢处理-重油催化裂化双向组合RICP技术于2006年工程化应用,将RFCC装置自身回炼的重循环油(HCO)改为输送到渣油加氢装置作为渣油加氢进料稀释油,和渣油一起加氢处理后再一同回到RFCC装置进行转化,同时有利于渣油加氢和催化裂化装置。 国外渣油加氢工程化技术起步较早。1963年首套沸腾床渣油加氢技术实现工程化;1967年着套固定床渣油加氢技术实现工程化;1977年首套可自动切换积垢催化剂床层的固定床渣油加氢技术实现工程化;1989年可更换催化剂的料斗式移动床+固定床渣油加氢技术实现工程化;1992年催化剂在线加入和排出的移动床+固定床渣油加氢技术实现工程化;1993年切换反应器的移动床+固定床渣油加氢技术实现工程化;2000年上流式反应器+固定床渣油加氢技术实现工程化。各种技术工业应用后都经过了不断的技术改进及完善,见下表1。 表1 首套渣油加氢技术应用特点及改进

渣油加氢脱硫装置设备试题

生产二部渣油加氢脱硫装置设备试题 一、单项选择题(选择一个正确的答案,将相应的字母填入题内的括号中) 1.加热炉有效利用的热量与燃料燃烧时所放出的总热量之比叫( B )。 A、热强度 B、热效率 C、热负荷 D、热损失 2. 往复式压缩机组中不用冷却水冷却的部件是( C )。 A 、汽缸 B、填料 C、连杆瓦 D、油冷却器 3. 离心泵在启动之前需要( D ),避免轴承卡死,损坏机泵。 A、切泵 B、加润滑油 C、灌泵 D、盘车 4. 设备管理“四懂三会”,其中“四懂三会”是指懂结构、懂原理、懂性能、懂( B )。 A、调节 B、用途 C、应用范围 D、维护方法 5. 机泵振动大时,采取的操作是( B )。 A、只要出口流量、压力正常,可维持运行 B、立即切换备泵 C、记录在机泵运行记录上 D、维持运行,检查振动大原因 6. 云南石化渣油加氢装置阻垢剂泵、缓蚀剂泵、磷酸三钠泵均为( B )。 A 离心泵 B 隔膜式计量泵 C 螺杆泵

7.云南石化渣油加氢脱硫装置哪台泵( C )带有能量回收液力透平。 A 分馏塔底泵 B 加氢进料泵 C 高压贫胺液泵 二、填空题 1. 常见的反应设备主要有管式反应器、固定床反应器、流化床反应器和搅拌反应器。渣油加氢脱硫装置反应器属于(固定床反应器)。 2. 管式加热炉炉体由(辐射室)和对流室两部分组成。 3. 当容器压力超过规定时,能自行开启泄压、防止容器管线破坏的设施称为(安全阀)。 4. 离心式压缩机的"段"是以( 中间冷却器 )作为分段标志。 5. 往复式压缩机活塞往复一次依次进行膨胀、( 吸气 )、压缩、排气四个过程。 三、判断题(正确的填“√”,错误的填“×”) 1. (√)为了防止离心泵发生汽蚀,有效汽蚀余量NPSHa 值必须大于泵必需的汽蚀余量 NPSHr。 2. (√)汽轮机速关阀是蒸汽管网和汽轮机之间的主要关闭机构,在运行中当出现事故时,它能在最短时间内切断进入汽轮机的蒸汽,使汽轮机迅速停机,起到保护汽轮机的目的。 四、简答题 1. 渣油加氢脱硫装置新氢压缩机安装贺尔碧格无级气量调节系统的主要作用有哪些?(5分) 答:1)节能降耗,使经济效益最大化。(2.5分)

渣油加氢工艺流程

格式号:P R O C -2-b 第一节 工艺技术路线及特点 一、工艺技术路线 300×104t/a 渣油加氢脱硫装置采用CLG 公司的固定床渣油加氢脱硫工艺技术,该工艺技术满足操作周期8000h 、柴油产品硫含量不大于500ppm 、加氢常渣产品硫含量不大于0.35w%、残炭不大于5.5w%、Ni+V 不大于15ppm 的要求。 二、工艺技术特点 1、反应部分设置两个系列,每个系列可以单开单停(单开单停是指装置内二个系列分别进行正常生产和停工更换催化剂)。由于渣油加氢脱 硫装置的设计操作周期与其它主要生产装置不一致,从全厂生产安排的角度,单开单停可以有效解决原料储存、催化裂化装置进料量等问题,并使全厂油品调配更灵活。 2、反应部分采用热高分工艺流程,减少反应流出物冷却负荷;优化换热流程,充分回收热量,降低能耗。 3、反应部分高压换热器采用双壳、双弓型式,强化传热效果,提高传热效率。 4、反应器为单床层设置,易于催化剂装卸,尤其是便于卸催化剂。 5、采用原料油自动反冲洗过滤器系统,滤除大于25μm 以上杂质,减缓反应器压降增大速度,延长装置操作周期。 6、原料油换热系统设置注阻垢剂设施,延长操作周期,降低能耗,而且在停工换剂期间可减少换热器和其它设备的检修工作。 7、原料油缓冲罐采用氮气覆盖措施,以防止原料油与空气接触从而减轻高温部位的结焦程度。 8、采用炉前混氢流程,避免进料加热炉炉管结焦。 9、第一台反应器入口温度通过调节加热炉燃料和高压换热器旁路量来控制,其他反应器入口温度通过调节急冷氢量来控制。 10、在热高分气空冷器入口处设注水设施,避免铵盐在低温部位的沉积。 11、循环氢脱硫塔前设高压离心式分离器除去携带的液体烃类,减少循环氢脱硫塔的起泡倾向,有利于循环氢脱硫的正常操作。 12、设置高压膜分离系统,保证反应氢分压。 13、冷低压闪蒸罐的富氢气体去加氢裂化装置脱硫后去PSA 回收氢气。 14、新氢压缩机采用二开一备,每台50%负荷,单机负荷较小,方便制造,且装置有备机。 15、分馏部分采用主汽提塔+分馏塔流程,在汽提塔除去轻烃和硫化氢,降低分馏塔材质要求。 分馏塔设侧线柴油汽提塔及中段回流加热原料油,降低塔顶冷却负荷,提高能量利用率,减小分馏塔塔径。 16、利用常渣产品发生部分低压蒸汽。通过对装置换热流程的优化,把富裕热量集中在温位较高的常渣产品,发生低压蒸汽。 17、考虑到全厂能量综合利用,正常生产时常渣在150℃送至催化裂化装置。在催化裂化装置事故状态下,将常渣冷却至90℃送至工厂罐区。 18、催化剂预硫化按液相预硫化方式设置。 三、工艺流程说明 (一)工艺流程简述 1、反应部分 原料油自进装置后至冷低压分离器(V-1812)前的流程分为两个系列,以下是一个系列的流程叙述: 原料油在液位和流量的串级控制下进入滤前原料油缓冲罐(V-1801)。原料从V-1801底部出来由原料油增压泵(P1801/S )升压,经中段回流 油/原料油换热器(E-1801AB )、常渣/原料油换热器(E-1802AB 、E-1803AB )分别与中段回流油和常渣换热,然后进入原料油过滤器(S-1801)以除去原料油中大于25μm 的杂质。过滤后的原料油进入滤后原料油缓冲罐(V-1802),原料油从V-1802底部出来后由加氢进料泵(P1802/S )升压,升压后的原料油在流量控制下进入反应系统。 原料油和经热高分气/混合氢换热器(E-1805AB )预热后的混合氢混合,混合进料经反应流出物/反应进料换热器(E-1804)预热后进入反应进 料加热炉(F-1801)加热至反应所需温度进入第一台加氢反应器(R-1801),R-1801的入口温度通过调节F-1801的燃料量和E-1804的副线量来控制,

国外渣油加氢技术研究进展_张庆军 (1)

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2015年第34卷第8期 ·2988· 化 工 进 展 国外渣油加氢技术研究进展 张庆军,刘文洁,王鑫,蒋立敬,耿新国 (中国石油化工股份有限公司抚顺石油化工研究院,辽宁 抚顺 113001) 摘要:随着原油劣质化趋势的加剧及环保法规的日益严格,渣油加氢技术已成为炼厂提高轻油收率的关键技术。本文针对目前主要的渣油加氢技术,比较了固定床、沸腾床、悬浮床、移动床四大类型渣油加氢技术的优势和不足,重点分析了国外主要的渣油加氢技术的研究进展,探讨了未来的发展趋势。固定床加氢技术最成熟,在可预见的未来仍将占据渣油加氢的主导地位;沸腾床加氢技术日趋成熟,代表未来渣油加氢的发展方向;移动床加氢技术暂不作为渣油加氢的有效手段;悬浮床加氢技术尚未实现工业化应用,正在建设多套工业装置,具有良好的发展前景。渣油加氢技术与其他重油加工工艺进行优化集成,将会显著提高炼厂的经济效益。 关键词:加氢;固定床;沸腾床;移动床;悬浮床 中图分类号:TE 624.4+3 文献标志码:A 文章编号:1000–6613(2015)08–2988–15 DOI :10.16085/j.issn.1000-6613.2015.08.014 Research progress in hydroprocessing technology for imported residuum ZHANG Qingjun ,LIU Wenjie ,WANG Xin ,JIANG Lijing ,GENG Xinguo (Fushun Research Insitute of Petroleum and Petrochemicals ,SINOPEC ,Fushun 113001,Liaoning ,China ) Abstract :With the use of increasingly heavy crude oil and stricter environmental requirements ,residuum hydroprocessing technologies have become a key upgrading process to improve the yield of light oil in refineries. This paper focuses on the main residuum hydroprocessing technologies at present ,compares four types of processes ,including fixed bed ,ebullated bed ,slurry bed and moving bed ,and analyzes the present status and developing trend of main residuum hydroprocessing technologies abroad in detail. Fixed bed hydrotreating technology is the most mature one ,and it will continue to dominate in the foreseeable future. Ebullated bed hydrocracking technology is becoming mature ,which represents the future of hydrocracking technology. Moving bed hydrogenation technology isn’t an effective means temporarily. Slurry bed hydrocracking technology hasn’t realized its industrial application yet ,but several sets of it are under construction and have a good potential. Optimized and integrated with other heavy oil processing technology will improve economic benefits significantly. Key words :hydrogenation; fixedbed; ebullated bed; moving bed; slurry bed 全球常规石油资源储量为3×1012~4×1012bbl ,而非常规石油资源,包括重油、超重油和油砂沥青的储量接近 8×1012bbl [1]。随着原油重质化、劣质化趋势的加剧,市场对轻质油品需求的不断增加以及环保法规的日益严格,重油尤其是渣油的高效 转化和清洁利用成为世界炼油工业关注的焦点。 渣油加氢是解决重油深加工最合理也最有效的 方法[2-3]。 目前,世界上渣油加氢工艺类型有四大类,即固定床、沸腾床(又称膨胀床)、移动床和悬浮床(又称浆态床)渣油加氢,已工业化的有固定床、沸腾收稿日期:2014-11-02;修改稿日期:2015-01-07。 第一作者及联系人:张庆军(1983—),男,工程师,硕士,研究方向为渣油加氢工艺开发。E-mail zhangqingjun.fshy@https://www.360docs.net/doc/2b12073513.html, 。

VRDS渣油加氢装置概况

VRDS渣油加氢装置概况 1.1 装置简介 为适应原油逐年重质化、劣质化的趋势,提高轻油收率和减少环境污染,胜利炼油厂于1989年10月份从美国雪弗隆(Chevron)公司引进了设计能力为84×104t/a的固定床减压渣油加氢脱硫装置(简称VRDS)。该装置由华鲁工程公司设计,中石化十化建承建,1992年5月21日建成投产。 1998年,根据中石化公司整体原油加工方案的安排,胜利炼油厂需要掺炼75%(6.0 Mt/a)的进口中东高硫原油,胜利炼油厂原有以加工胜利原油为主的加工流程难以适应劣质高硫原油的加工,为此,1999年10月份装置进行了扩能改造,增加了Chevron公司的最新专利—上流式反应器(Up Flow Reactor,简称UFR),因此,装置又简称为UFR/VRDS。2000年1月7日完成并投产。装置改造后的设计处理能力150×104t/a(其中包括120×104t/a减压渣油及30×104t/a减压蜡油),主要对中东减压渣油进行脱硫、脱氮、脱金属并部分裂解为石脑油、柴油和蜡油。设计运转初期,349℃产品馏份的MCR为<8.5%,S<0.5%,末期MCR<9.2%、S<0.8%,生产的石脑油可作为乙烯原料,柴油是优质的低硫轻柴油产品,常压渣油是优质的催化裂化原料。 2005年,随着VRDS—FCC组合工艺的投用,常压和

减压渣油混合做为催化原料,催化回炼油改进本装置处理,优化了FCC装置原料性质,提高了FCC装置轻油收率。 2006年10月份,利用第五周期停工检修时机,进行了装置节能改造,主要改造内容是停开减压塔,对原料/产品换热网络进行优化和流程动改,及对加热炉烟气余热回收系统进行改造。2006年11月14日装置开工正常。 目前随着催化剂级配及操作的不断优化,装置运行周期已延长到480天。 图3-1 渣油加氢装置方块流程图

渣油加氢工艺说明

渣油加氢工艺说明(总17页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

一、工艺技术路线 300×104t/a渣油加氢脱硫装置采用CLG公司的固定床渣油加氢脱硫工艺技术,该工艺技术满足操作周期8000h、柴油产品硫含量不大于500ppm、加氢常渣产品硫含量不大于0.35w%、残炭不大于5.5w%、Ni+V不大于15ppm的要求。 二、工艺技术特点 1、反应部分设置两个系列,每个系列可以单开单停(单开单停是指装置内二个系列分别进行正常生产和停工更换催化剂)。由于渣油加氢脱硫装置的设计操作周期与其它主要生产装置不一致,从全厂生产安排的角度,单开单停可以有效解决原料储存、催化裂化装置进料量等问题,并使全厂油品调配更灵活。 2、反应部分采用热高分工艺流程,减少反应流出物冷却负荷;优化换热流程,充分回收热量,降低能耗。 3、反应部分高压换热器采用双壳、双弓型式,强化传热效果,提高传热效率。 4、反应器为单床层设置,易于催化剂装卸,尤其是便于卸催化剂。 5、采用原料油自动反冲洗过滤器系统,滤除大于25μm以上杂质,减缓反应器压降增大速度,延长装置操作周期。 6、原料油换热系统设置注阻垢剂设施,延长操作周期,降低能耗,而且在停工换剂期间可减少换热器和其它设备的检修工作。 7、原料油缓冲罐采用氮气覆盖措施,以防止原料油与空气接触从而减轻高温部位的结焦程度。 8、采用炉前混氢流程,避免进料加热炉炉管结焦。 9、第一台反应器入口温度通过调节加热炉燃料和高压换热器旁路量来控制,其他反应器入口温度通过调节急冷氢量来控制。 10、在热高分气空冷器入口处设注水设施,避免铵盐在低温部位的沉积。 11、循环氢脱硫塔前设高压离心式分离器除去携带的液体烃类,减少循环氢脱硫塔的起泡倾向,有利于循环氢脱硫的正常操作。 12、设置高压膜分离系统,保证反应氢分压。 13、冷低压闪蒸罐的富氢气体去加氢裂化装置脱硫后去PSA回收氢气。

300万吨年渣油加氢巡检静设备标准化检查指导书(一)教程

300万吨/年渣油加氢 巡检静设备标准化检查指导书(一)2012年4月5日发布2012年4月15日实施

第一章 静设备辅件标准化检查指导书 1.1阀门巡检内容及标准(闸阀要求:全开后回一圈或全关) 1.1.1 法兰连接阀门 1.1.1.2 检查标准 序号 巡检点编号 巡检点名称 巡检标准 巡检方法 频次 异常处理 1 ① 法兰 垫片完好处于中位,无泄漏 目测和嗅觉感知,有保温和怀疑泄漏时用测爆仪探入检验 泄漏时对螺栓进行紧固,紧固不住联系注胶;垫片不符合要求进行记录并反馈给设备员 待检修时处理 2 ② 3 ③ 螺栓 两端均匀,紧 固 目测,徒手旋拧 不均匀的进行记录并反馈给设备员待检修时处理 4 ④ 填料函 填料压架剩余 量不小于10mm ,压架端正,压紧螺栓受力均匀,无 泄漏 目测和嗅觉感知,有保温和怀疑泄漏时用测爆仪探入检验 填料压架剩余量不小于10mm 的进行记录并反馈给设备员 待检修时处理,压架不端正,压紧螺栓受力不均匀,泄漏的用扳手调节压架螺栓松紧度 5 ⑤ 6 ⑥ 背帽 不缺失、紧固 目测,徒手旋拧 缺失的联系设备员补齐,松动 的自行紧固 7 ⑦ 铜套 润滑 左右活动阀门有效 开关不大于900,活动后及时归位 不灵活的添加润滑脂,有注油 孔的用加油枪加注,无注油孔的采用涂抹阀杆方式加注 8 ⑧ 注油孔 9 ⑨ 阀盖法兰 无泄漏 目测和嗅觉感知,有 保温和怀疑泄漏时用测爆仪探入检验 泄漏时对螺栓进行紧固,紧固 不住联系注胶 ① ② ⑨ ④ ⑥ ③ 11

10 ⑩ 手轮 不缺失,完好 目测 联系设备员整改 11 阀杆 螺纹有防锈保 护 目测 无防锈保护,需要自行涂抹润 滑脂 1.1.2 焊接连接阀门一(闸阀) 1.1. 2.1 检查点 1.1. 2.2 检查标准 序号 巡检点编号 巡检点名称 巡检标准 巡检方法 频次 异常处理 1 ① 手轮 不缺失,完好 目测 缺失的补齐,不完好的更换 2 ② 阀盖法兰 无泄漏 目测和嗅觉感知,有保温和怀疑泄漏时用测爆仪探入检验 泄漏时对螺栓进行紧固,紧 固不住联系注胶 3 ③ 螺栓 紧固 目测,用力矩扳手检 查 不均匀的进行记录并反馈给设备员待检修时处理 4 ④ 填料函 填料压架剩余量不小于 8mm ,压架端正,压紧螺栓受力均匀,无 泄漏 目测和嗅觉感知,有保温和怀疑泄漏时用测爆仪探入检验 填料压架剩余量不小于8mm 的进行记录并反馈给设备员待检修时处理,压架不端正,压紧螺栓受力不均匀,泄漏的用扳手调节压架 螺栓松紧度 5 ⑤ 管帽 紧固无泄漏 目测和嗅觉感知,徒 手触动 添加四氟带重新旋紧 6 ⑥ 铜套 润滑 左右活动阀门有效 开关不大于900,活动后及时归位 不灵活的添加润滑脂,有注油孔的用加油枪加注,无注油孔的采用涂抹阀杆方式 加注 ① ② ④ ⑤ ③ ⑥ ⑦ ⑧

相关文档
最新文档