科学计数法 近似数教案

合集下载

七年级数学上册《科学记数法与近似数》教案、教学设计

七年级数学上册《科学记数法与近似数》教案、教学设计
2.自主探究,合作交流:鼓励学生通过自主探究和小组合作的方式,发现科学记数法的规律,并在交流中互相学习,共同解决问题。
-教学活动:分组讨论,让学生在小组内共同探讨科学记数法的转换方法,并互相检查答案的正确性。
3.实践操作,加深理解:设计一些实践操作活动,如科学记数法转换游戏、近似数计算练习,让学生在实践中掌握知识。
3.教学策略:采用讲解与示范相结合的方式,让学生在理解概念的基础上,学会具体操作。
(三)学生小组讨论
1.教学内容:让学生在小组内讨论如何将一些具体的数转换为科学记数法,以及如何进行近似数的计算。
2.教学活动:教师给出若干示例,学生分组讨论并完成转换和计算,最后展示各组的答案,共同分析正确与否。
3.教学策略:通过小组合作,培养学生的交流、协作能力,提高学生的动手操作能力。
七年级数学上册《科学记数法与近似数》教案、教学设计
一、教学目标
(一)知识与技能
1.了解科学记数法的定义,学会将一个数表示成a×10^n的形式,其中1≤a<10,n为整数。
2.掌握科学记数法的转换方法,能熟练地进行科学记数法与常规表示法之间的转换。
3.理解近似数的概念,掌握四舍五入、截断等近似数的计算方法。
2.引导学生回顾已学的乘法法则,为新课的学习做好铺垫。
3.教学策略:通过生活实例,激发学生的好奇心和求知欲,使学生主动参与到新课的学习中。
(二)讲授新知
1.教学内容:介绍科学记数法的概念、表示方法及其特点;讲解将一个数转换为科学记数法的方法,以及如何确定指数n的值。
2.教学活动:通过示例,逐步引导学生掌握科学记数法的转换方法,解释指数n的含义。
(四)课堂练习
1.教学内容:设计一系列有关科学记数法和近似数的练习题,包括转换、计算和应用等,以巩固所学知识。

科学计数法和近似数

科学计数法和近似数

科学记数法、近似数和有效数字【学习目标】1.通过自学,了解科学计数法的概念。

2.通过学习,我会用科学计数法表示较大的数。

3.通过自学,我能了解近似数的概念。

4. 通过学习,我能按指定的精确度要求,用四舍五入的方法求近似数。

【重点】1. 用科学记数法表示大于10的数。

2.近似数的准确求法及有效数字的理解。

【难点】1. 掌握用科学记数法表示一个数时,10的指数与原数整数位数之间的关系。

2. 近似数在实际情况下的取值。

【预习指导】◆5—10分钟阅读课本基础知识,独立完成“预习指导”的问题,5分钟对学讨论独学中的问题。

同学们要细心,细节决定成败! 一.已学知识回顾 1.填空。

________102= __________103= ____________104=2.按要求记数。

①1.5046(精确到0.01) ②9.23456(精确到0.0001)③0.2146(精确到千分位) ④3.3652(精确到0.01)二.教材辅读。

1.根据你的理解,什么是科学记数法?2.你能用科学计数法便是光的速度300000000米/秒?3.如何用四舍五入法求近似数?4.有效数字的定义是什么?【课内探究】◆1.独立完成下列问题,时间15分钟。

2.同小组的同学对学,解决自学中遇到的困难,时间5分钟。

3.小组交流讨论对学中仍存在的问题,时间5分钟。

探究一:科学记数法____________010********⨯= _____________1800000⨯= _______________321000⨯= _______________5060000⨯= 总结:科学记数法把一个大于10的数记成________________形式,其中__________<≤a ,n 是_______数。

像这样的记数法叫科学记数法。

★跟踪训练(1)地球上的海洋面积为36100000千米2,用科学记数法表示为__________. (2)光速约3×108米/秒,用科学记数法表示的数的原数是__________. (3)用科学记数法表示下列各数:(1)465000= ;(2)123456789= ; (3)1000.001= ;(4)-789= ; (5)308×106= ;(6)0.7805×1010= ; (7)6千万= ;(8)18亿= ; 探究二:近似数和有效数字1.近似数45.0080有_______个有效数字2一根竹竿长3.649米,精确到十分位是_______,有________个有效数字。

科学计数法-近似数教案全

科学计数法-近似数教案全

可编辑修改精选全文完整版科学记数法教学目标:1、借助身边熟悉的事物体会大数,并会用科学记数法表示大数2、通过用科学记数法表示大数的学习,让学生从多种角度感受大数,促使学生重视大数的现实意义,以发展学生的数感。

重点:正确使用科学记数法表示大于10的数难点:正确掌握10n 的特征以及科学记数法中n 与数位的关系【情景引入】1、 数据,如:太阳的半径约696 000千米;全世界人口数大约是6 100 000 000;光速约300 000 000米/秒地球上的陆地面积约为149 000 000平方公里2、提出问题:这样的大数,读、写都不方便,这些大数怎样表示才好?我们可以用一种简单的方法来表示这些读和写都比较困难的大数,那就是科学记数法.【教学过程】1、观察10的乘方的特点:210=100,310=1000,410=10000,……猜想:10n 在1的后面有多少个0?得出结论:一般地,10的n 次幂,在1的后面有n 个0.练习:(1) 把下面各数写成10的幂的形式:1000,100000000,100000000000.(2) 指出下列各数是几位数:103,105,1012,101002、刚才出示的图片中的大数能这样表示吗?怎样表示?有什么规律?696 000=6.96×100 000=6.96×1056 100 000 000=6.1×1 000 000 000=6.1×109149 000 000=1.49×100 000 000=1.49×108根据上面例子,我们把大于10的数记成a ×10n 的形式(其中a 是整数数位只有一位的数,n 是正整数),这种记数法叫做科学记数法.说明:与10的幂相乘的数a ,必须是大于等于1且小于10,这是科学记数法的规定。

3、例题分析:例1 用科学记数法表示下列各数:(1)1 000 000;(2)57 000 000;(3)123 000 000 000解:(1)1000 000=610 (2)57 000 000=5.7×710(3) 123 000 000 000=1.23×1110小组讨论:这些式子中,等号左边整数的位数与右边10的指数有什么关系?归纳结论:一个数的科学记数法中,10的指数比原数的整数位数少1,如57 000 000有8位整数,10的指数就是7.△ 填空:7101.6 =______________,它有____个整数位;81096.6⨯=_____________,它有_____个整数位;所以,用科学记数法表示的数,一个突出的特点,就是这个数的整数位数一目了然,这对于判断数的大小是非常方便的。

科学记数法与近似数-青岛版七年级数学上册教案

科学记数法与近似数-青岛版七年级数学上册教案

科学记数法与近似数-青岛版七年级数学上册教案一、教学目标1.了解科学记数法的定义、特点、应用场合,能够熟练掌握科学记数法的写法;2.能够掌握近似数的意义、计算方法以及正确使用;3.能够运用科学记数法及近似数解决实际问题。

二、教学重难点1.熟练掌握科学记数法的写法;2.能够正确理解近似数的概念及应用;3.运用科学记数法及近似数解决实际问题。

三、课堂教学1. 引入通过展示一些大数字,引导学生思考如何快速读出这些数字,引出科学计数法的概念。

2. 讲解2.1 科学计数法1.定义:科学计数法是一种表示大数或小数的方法;2.特点:由一个数字与10的幂相乘得到,幂的指数可以为正负整数;3.应用:用于数值极大或极小的情况。

例:50000000可写作5×10的7次方,0.000032可写作3.2×10的-5次方。

2.2 近似数1.意义:指用适当的数来代替一个实数,使得代替后的误差不超过事先规定的误差范围;2.计算方法:取舍原则主要有四舍五入和截断;3.应用:用于简化计算,表示数值的精度。

例:用3位近似数表示3.1415926,当取舍误差不超过1/1000时,结果为3.14。

3. 练习与讨论1.做几道科学计数法的练习题,检验学生对科学计数法的掌握情况;2.带领学生练习近似法的计算方法和应用场合,讨论在实际生活中使用近似数的问题。

4. 总结回顾本节课的重难点,分类总结学生错误的地方,并让学生理解如何避免常见问题。

口头强调本节课的实用性,激发学生学习兴趣。

四、课后作业1.完成教师布置的科学计数法的作业;2.自行寻找三处使用科学计数法或近似数的实际例子,写出数值并说明使用的原因和意义。

五、教学反思本节课强调了科学计数法和近似数的实际应用,使学生能够在实际解决问题时灵活运用这两种方法。

同时,对近似法的误差限制也进行了详细讨论,希望能在学生的数学认知上打下深厚的基础。

第十二讲科学计数法 近似数

第十二讲科学计数法 近似数

第十二讲科学计数法、近似数第一部分、教学目标:1、借助身边熟悉的事物体会大数,并会用科学记数法表示大数2、通过用科学记数法表示大数的学习,让学生从多种角度感受大数,促使学生重视大数的现实意义,以发展学生的数感。

3、了解近似数和有效数字的概念;4、会按精确度要求取近似数;5、给一个近似数,会说出它精确到哪一位,有几个有效数字。

第二部分、教学重点、难点重点:1、正确使用科学记数法表示大于10的数2、近似数、精确度、有效数字概念难点:1、正确掌握10的特征以及科学记数法中n与数位的关系2、由给出的近似数求其精确度及有效数字第三部分、教学过程例题讲解:例1、求n个相同因数的积的运算叫做乘方。

乘方的结果n a叫做幂。

在n a中,a 叫做底数,n叫做指数,n a读作a的n次幂(或a的n次方)。

210= 10×10 =100310=10×10×10 =1 00010 000=10×10 ×10×10=410300=3×100=3×2108 000=8 ×1000=8 ×3 10仿照上面的例子填空100 000=__________________400 000= _________________ 1 000 000=_________________10 000 000=_______________________【分析】科学记数法的表示形式为n a 10⨯的形式,其中1≤a <10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数。

【解答】解:100 000=510 400 000=4×100000=4×5101 000 000=61010 000 000=710练1.1、把65000用科学计数法表示。

《科学计数法及近似数》教案

《科学计数法及近似数》教案

《科学计数法及近似数》教案章节一:科学计数法的概念与表示方法1. 引入:通过展示一个较大的数字,如地球到太阳的平均距离(约1.496×10^8公里),引导学生思考如何简便地表示这样大的数字。

2. 讲解科学计数法的定义:科学计数法是一种表示非常大或非常小数字的方法,形式为a×10^n,其中1≤|a|<10,n为整数。

3. 示例:将一些较大的数字,如1000000、0.000001转换为科学计数法表示。

4. 练习:让学生尝试将一些较大的数字和较小的数字转换为科学计数法表示,并互相检查。

章节二:科学计数法的运算规则1. 引入:通过展示一些例子,如2.5×10^3 + 1.2×10^3,引导学生思考如何进行科学计数法的加法运算。

2. 讲解科学计数法的加法和减法运算规则:同底数相加减,指数不变,系数相加减。

3. 示例:展示一些科学计数法的加法和减法运算,如2.5×10^3 + 1.2×10^3、4.7×10^-2 2.3×10^-2。

4. 练习:让学生尝试进行一些科学计数法的加法和减法运算,并互相检查。

章节三:科学计数法的乘法和除法运算1. 引入:通过展示一些例子,如2.5×10^3 ×3.2×10^2,引导学生思考如何进行科学计数法的乘法运算。

2. 讲解科学计数法的乘法运算规则:同底数相乘,指数相加,系数相乘。

3. 示例:展示一些科学计数法的乘法运算,如2.5×10^3 ×3.2×10^2、7.4×10^-5 ÷2.5×10^-3。

4. 练习:让学生尝试进行一些科学计数法的乘法和除法运算,并互相检查。

章节四:近似数的的概念与表示方法1. 引入:通过展示一些实际问题,如将一辆车的速度从60公里/小时近似为60公里/小时,引导学生思考如何表示近似数。

科学计数法和近似数(法制教育)

科学计数法和近似数(法制教育)
3
二、明确学习目标
展示学习内容、学习目标
齐读学习目标、明确学习目标
2
1、预习交流、展示、评价
1、组织、指导、参与小组交流
2、组织小组展示与评价
三、对展示做出评价、小结
四、渗透《中华人民共和国人口与计划生育法》第一章、第二条我国是人口众多的国家,实行计划生育是国家的国策。《中华人民共和国土地管理法》
1、科代表分配预习成果展示任务。(展示预习案中的内容一、内容二、内容三)等
2、由指定小组开展预习成果展示。其余组做好补充、点评的准备。
4、开展小组交流,完成预习案内容中我的疑问。组内同学依次提出预习中的疑问、组长记录下问题后开展小组交流活动解答疑问,同时组长记录本组不能解决的问题,派代表到黑板上展示小组问题。
5、全班共同解决各小组提出的小组问题。
30
四、学习延伸
教师适当点拨引导。
人教版七年级数学上册
课题
科学记数法和近似数《教学案》
学习
目标
1.学会将绝对值大于10的数用科学记数法表示,并会求近似数的精确度及相应精度近似值。
2.科学记数法是记写数的一种方法,是解决实际问题的一种需要,近似数的取舍也是根据实际需要进行的,通过以上知识的学习,发展我们分析问题,解决问题的能力。
3.在教学中,渗透《中华人民共和国人口与计划生育法》、《中华人民共和国土地管理法》
1、回顾本节课所学知识,开展数学成果展示。
2、对成果展开点评。
5
六立完成,交换检查。
2、科代表公布答案,组长登记分数
5
重点
理解科学计数法的概念,能说出近似数精确到哪一位
难点
会用科学计数法表示绝对值大于10的数,会按照精确到哪一位的要求,四舍五入取近似数。

七年级数学上册《数的近似和科学计数法》教案、教学设计

七年级数学上册《数的近似和科学计数法》教案、教学设计
七年级数学上册《数的近似和科学计数法》教案、教学设计
一、教学目标
(一)知识与技能
1.理解近似数的概念,掌握四舍五入法、截断法等常用的数值修约方法。
2.学会使用科学计数法表示较大或较小的数,并能在实际问题中灵活运用。
3.能够运用数的近似和科学计数法进行简单的计算和估算,提高数据处理能力。
4.掌握பைடு நூலகம்效数字的概念,了解其在数值计算中的应用。
1.请同学们结合本节课所学的数值修约方法,对以下数据进行修约:
a. 3.1415926(保留两位小数)
b. 1234567.89(保留三位有效数字)
c. 0.00004236(保留四个有效数字)
2.将以下数转换为科学计数法:
a. 56000000
b. 0.000000048
c. 120000
3.请同学们测量自己所在教室的长度、宽度和高度,将结果记录下来,并用科学计数法表示。
2.强调数的近似和科学计数法在日常生活中的重要性,激发学生学习数学的兴趣。
3.提醒学生课后复习所学知识,为下一节课的学习做好准备。
4.针对本节课的学习,教师进行反思,总结教学过程中的优点和不足,不断优化教学方法,提高教学质量。
五、作业布置
为了巩固学生对数的近似和科学计数法的理解,提高他们在实际情境中运用数学知识的能力,特布置以下作业:
(二)过程与方法
1.通过实例引入数的近似和科学计数法的概念,激发学生的探究兴趣。
2.采用小组合作、讨论交流等形式,引导学生自主探究数值修约方法及其适用场合。
3.设计丰富的例题和练习题,让学生在解决问题的过程中,掌握科学计数法的应用。
4.组织课堂实践活动,如测量、估算等,培养学生运用数学知识解决实际问题的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科学记数法教学目标:1、借助身边熟悉的事物体会大数,并会用科学记数法表示大数2、通过用科学记数法表示大数的学习,让学生从多种角度感受大数,促使学生重视大数的现实意义,以发展学生的数感。

重点:正确使用科学记数法表示大于10的数难点:正确掌握10n 的特征以及科学记数法中n 与数位的关系【情景引入】1、 数据,如:太阳的半径约696 000千米;全世界人口数大约是6 100 000 000;光速约300 000 000米/秒地球上的陆地面积约为149 000 000平方公里2、提出问题:这样的大数,读、写都不方便,这些大数怎样表示才好?我们可以用一种简单的方法来表示这些读和写都比较困难的大数,那就是科学记数法.【教学过程】1、观察10的乘方的特点:210=100,310=1000,410=10000,……猜想:10n 在1的后面有多少个0?得出结论:一般地,10的n 次幂,在1的后面有n 个0.练习:(1) 把下面各数写成10的幂的形式:1000,100000000,1.(2) 指出下列各数是几位数:103,105,1012,101002、刚才出示的图片中的大数能这样表示吗?怎样表示?有什么规律?696 000=6.96×100 000=6.96×1056 100 000 000=6.1×1 000 000 000=6.1×109149 000 000=1.49×100 000 000=1.49×108根据上面例子,我们把大于10的数记成a ×10n 的形式(其中a 是整数数位只有一位的数,n 是正整数),这种记数法叫做科学记数法.说明:与10的幂相乘的数a ,必须是大于等于1且小于10,这是科学记数法的规定。

3、例题分析:例1 用科学记数法表示下列各数:(1)1 000 000;(2)57 000 000;(3)123 000 000 000解:(1)1000 000=610 (2)57 000 000=5.7×710(3) 123 000 000 000=1.23×1110小组讨论:这些式子中,等号左边整数的位数与右边10的指数有什么关系?归纳结论:一个数的科学记数法中,10的指数比原数的整数位数少1,如57 000 000有8位整数,10的指数就是7.△ 填空:7101.6⨯=______________,它有____个整数位;81096.6⨯=_____________,它有_____个整数位;所以,用科学记数法表示的数,一个突出的特点,就是这个数的整数位数一目了然,这对于判断数的大小是非常方便的。

例2:下列科学记数法表示的数原数是什么?(1)3.2×410 (2)-6×310 (3) 7.04×610 (4)-7.80×104。

解:(1) 3.2×410 =32000 (2) -6×310=-6000(3) 7.04×610 =7040000 (4)-7.80×104=-78000【课堂作业】1、用科学记数法记出下列各数.(1)300 600 (2)150 400 000 (3)1 230 000 (4)108000000(5)1230 (6)10000000 (7)696000 (8)1000000(9)58000 (10)127.42、下列用科学记数法记出的数,原来各是什么数?(1)3×510 (2) 4.2×310 (3) -6.5×610 (4)31018.5⨯(5)-61004.7⨯ (6)410002.5⨯ (7)51003.6⨯ (8)6102⨯3、比较大小:(1)水星的半径为2.44×106米,木星的赤道半径约为7.14×107米。

(2)我国的陆地面积约为9.597×106平方千米,俄罗斯的陆地面积约为9.976×106平方千米。

(3)比较8.76×1011与1.03×1012大小。

4.科学记数法表示下列各数:(1)太阳约有一亿五千万千米;(2)地球上煤的储量估计为15万亿吨以上。

(3)一天41064.8⨯秒,一年有365天,一年有多少秒?(用科学记数法表示)(4)一个人每天吸入和呼出大约20000升空气,一年吸入和呼出的空气大约有多少升?5、已知长方形的长为2.5×105mm ,宽为8×104mm ,求长方形的面积随堂演练一、[基础训练]1、用科学记数法记出下列各数:(1)1396290= (2)-1741=(3)5001.03= (4)70 =(5)3870000= (6)30003=2、把下列用科学记数法表示的数写成原来的数:(1)-1.3×104= (2)2.073×106=(3)2.71×104= (4)1.001×102=(5)-3.314×105=13、光速每秒约30万千米,用科学记数法表示是米/秒;又知太阳光到达地球的时间为500秒,太阳距地球千米。

4、地球离太阳约有一亿五千万米,用科学记数法表示:5、地球上煤的储量估计为15万亿吨以上:(用科学记数法表示) 。

6、下列用科学记数法表示的数,正确的是()A、102000=10.2×104B、3100=3.1×103C、2020000=2.02×107D、42300=0.423×105二、[能力测试]1.几年,沙尘暴肆虐我国北方,这与土地沙漠化有直接关系,据测算,我国因土地沙漠化造成的经济损失平均每天为1.5亿人民币,若一年按365天计算,用科学记数法表示我国一年因土地沙漠化造成的经济损失为()A、5.475×1010元B、5.475×1011元C、0.5475×1011元D、5475×108元2.一个正整数,则10n是()A、10个n相乘所得的积B、是一个n位的整数C、10后面有n个零的数D、是一个(n+1)位的整数3.3.76×10100的位数是()A、98B、99C、100D、1014.粒纽扣式电池能够污染60L水,太原市每年报废的电池近10000000粒,如果废电池不回收,一年报废的电池所污染的水为L.(用科学记数法表示)5.天有8.64×104秒,一年按365天计算,用科学记数表示一年有多少秒?6.1:50000000的地图上量得两地的距离是1.3cm,试用科学记数法表示这两地间的实际距离。

7.球的质量为6×1013亿吨,太阳的质量是地球的质量的3.3×105倍,则太阳的质量为多少吨?近似数和有效数字教学目标:1、了解近似数和有效数字的概念;2、会按精确度要求取近似数;3、给一个近似数,会说出它精确到哪一位,有几个有效数字.重点:近似数、精确度、有效数字概念。

难点:由给出的近似数求其精确度及有效数字。

【复习引入】在实际应用中,小数乘法的积往往不需要保留很多的小数位数.在小学算术中我们曾学过__________法根据实际需要保留一定的小数位数,取它的近似数,求下列数的近似数:(1)将2.953保留整数得________。

(2)将2.953保留一位小数得________。

(3)将2.953保留两位小数得________。

【教学过程】据自己已有的生活经验,观察身边熟悉的事物,收集一些数据(投影演示)(1)统计班上生日在10月份的同学的人数。

______(2)量一量你的语文书的宽度。

____________(3)我班有 名学生, 名男生, 女生.(4)我班教室约为 平方米.(5)我的体重约为 公斤,我的身高约为 厘米(6)中国大约有 亿人口.在这些数据中,哪些数是与实际相接近的?哪些数与实际完合符合的?1.准确数和近似数在日常生活和生产实际中,我们接触到很多这样的数。

例如,如果统计的班上生日在10月份的同学的人数是8,则8这个数是与实际完全符合的准确数,一个也不也不多,一个也不少。

如果量得的语文课本的宽度为13.5cm,由于所用尺的刻度有精确度限制,而且用眼观察是不可能非常细致,因此与实际宽度会有一点偏差,这里的13.5cm 只是一个与实际宽度非常接近的数,这样的数叫近似数。

测量的结果,往往是 近似数 (填“准确数”或“近似数”)除了测量,还常常会遇到或用到近似数,例如,我国的陆地面积约为960万平方千米,王林的年龄,这里的960,12都是 近似数 (填“准确数”或 “近似数”)你还能举出一些日常遇到的近似数吗?练习:指出下列各数是近似数还是准确数。

(1) π取3.14,其中3.14是 近似数(2)一盒香烟20支,其中20是 准确数(3)人一步能走0.8米,其中0.8是 近似数(4)初一(5)班参加数学兴趣小组的同学有13人,其中13是 准确数(5)水星的半径为2440000米,其中2440000是 近似数2、精确度:近似数与准确数的接近程度,可以用精确度来表示.例如,教科书上的约有500人参加会议,500是精确到百位的近似数,它与准确数513的误差为13 .我们都知道: π=3.141592……如果结果只取整数,那么按四舍五入的法则应为 3 ,就叫做精确到 个位 。

如果结果取1位小数,那么应为 3.1 ,就叫做精确到 十分位(或叫精确到0.1)。

如果结果取2位小数,那么应为 3.14 ,就叫精确到 百分位 (或叫精确到 0.01 )。

如果结果取3位小数 ,那么应为3.142,就叫精确到 千分位 (或叫精确到 0.001 )一般的,一个近似数,四舍五入到某一位,就说这个近似数精确到哪一位。

近似数的精确程度的另一种要求:有效数字.从一个数左边第一个非0数字起,到末位数字止,所有的数字都叫做这个数的有效数字(significant digits).例如,小明的身高为1.70米,1.70这个近似数精确到 百分位 ,共有3个有效数字:1,7,0。

又如,313≈3.3(精确到0.1),有 2 个有效数字: 3,3 , 近似数0.0102有 3 个有效数字: 1,0,2 。

3、例题解析例1:下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)132.4; (2)0.0572; (3)2.40万; (4)3000解:(1)132.4精确到十分位(精确到0.1),有4个有效数字:1,3,2,4。

(2)0.0572精确到万分位(精确到0.0001),有3个有效数字:5,7,2(3)2.40万精确到百位,有3个有效数字:2,4,0(4)3000精确到个位,有4个有效数字:3,0,0,0说明:由于2.40万的单位是万,所以不能说它精确到百分位.对于用科学记数法表示的数a ×10n ,规定它的有效数字就是a 中的有效数字.例2:按括号内的要求,用四舍五入法对下列各数取近似值:(1) 0.0158 (精确到0.001) (2) 30435 (保留3个有效数字)(3) 1.804(保留2个有效数字) (4)1.804 (保留3个有效数字)(5)0.34082(精确到千分位) (6)64.8(精确到个位)(7)1.5046(精确到0.001) (8)0.0692 (保留2个有效数字)解: (1) 0.0158 ≈0.016 (2) 30435≈3.04410(3) 1.804≈1.8 (4)1.804≈1.80(5)0.34082≈0.341 (6)64.8≈65(7)1.5046≈1.505 (8)0.0692≈0.069师生共同完成后提问:(2)题中的近似数为什么要用科学记数法表示?(3)(4)题中的1.80和1.8的精确读相同吗?表示近似数时,1.80后的0能去掉吗?【课堂作业】1、下列有四舍五入得到的近似数,各精确到哪一位。

相关文档
最新文档