摄像头模组知识介绍
摄像头模组基础讲解

手机摄像头常用的结构如下图1所示,主要包括镜头,基座,传感器以及PCB部分。
图1CCM(compact camera module)种类1.FF(fixed focus)定焦摄像头目前使用最多的摄像头,主要是应用在30万和130万像素的手机产品。
2.MF(micro focus)两档变焦摄像头主要用于130万和200万像素的手机产品,主要用于远景和近景,远景拍摄风景,近景拍摄名片等带有磁条码的物体。
3.AF(auto focus)自动变焦摄像头主要用于高像素手机,具有MF功能,用于200万和300万像素手机产品。
4.ZOOM 自动数码变焦摄像头主要用于更高像素的要求,300万以上的像素品质。
Lens部分对于lens来说,其作用就是滤去不可见光,让可见光进入,并投射到传感器上,所以lens相当于一个带通滤波器。
CMOS Sensor部分对于现在来说,sensor主要分为两类,一类是CMOS,一类是CCD,而且现在CMOS是一个趋势。
对于镜头来讲,一个镜头只能适用于一种传感器,且一般镜头的尺寸应该和sensor的尺寸一致。
对于sensor来说,现在仍然延续着Bayer阵列的使用,如下图2所示,图3展示了工作流程,光照à电荷à弱电流àRGB信号àYUV信号。
图2图3图4图4展示了sensor的工作原理,这和OV7670以及OV7725完全相同。
像素部分那么对于像素部分,我们常常听到30万像素,120万像素等等,这些代表着什么意思呢?图5解释了这些名词。
图5那么由上面的介绍,可以得出,我们以30万像素为例, 30万像素~= 640 * 480 = 30_7200;可见所谓的像素数也就是一帧图像所具有的像素点数,我们可以联想图像处理的相关知识,这里的像素点数的值,也就是我们常说的灰度值。
像素数越高,当然显示的图像的质量越好,图像越清晰,但相应的对存储也提出了一定的要求,在图像处理中,我们也会听到一个概念,叫做分辨率,其实这个概念应该具体化,叫做图像的空间分辨率,例如72ppi,也就是每英寸具有72个像素点,比较好的相机,能达到490ppi。
摄像模组常识

图像质量:sensor、LENS、图像信号处理器(电子信号图像数据压缩为JPEG) OV2630 S/N小 图像出现了很多的麻点,需降噪处理(DSP)
VDD VAA AGND DGND
DOVDD DGND
1)sensor的工作:VDD(1.8V)、D0VDD(2.5~3.3V)、 DGND、CLKIN(24~48MHz)、RESET、PWDN 2)与外部的通讯:I2C(SIO_C、SIO_D) ;SCCB (Serial camera control bus) 3)采集图像:VAA(2.45~2.8V)、AGND 3)图像输出: PXCLK:
LENS 的结构及重要技术参数:
IR:波长780nm~2.5um~50um~ 300um
LENS 检测的胶片pitch值、视场角、几何失真
f=EFL=5.31mm o=600mm 1 1 1 = o + f i i = o * f = 600 * 5.31 o-f 600 - 5.31
o
i
= 4.48 mm
像素(pixel):构成图片的最小单位,每个像素都拥有亮度(Y),色度(U/V) 就是二极管数量,像素增加,LENS必须增大。 如果一味增加像素,由于1个像素的面积变小,所受的光量变少,sensor 感光度变低,S/N(signal与noise)比也将变低。 解像度:dpi(dot per inch) 制造工艺决定,一般LCD显示器(96*96) 同象素的sensor :Micron(4.6*3.7mm 3.8um) <OV(4.13*3.28mm 3.18um) 1/3” ¼”
摄像头模组知识

系统组-揭应平20150914摄像头模组相关知识模组基本结构AF Type FF Type模组主要器件AF Type模组主要器件:1.Sensor (传感器)2.LENS(镜头)3.VCM(音圈马达)4.IR & BG(滤光片)5.Bracket (底座)6.PCB (基板)FF Type模组主要器件:1.Sensor (传感器)2.LENS(镜头)3.Holder(底座)4.IR & BG(滤光片)5.PCB (基板)CSP Sensor模组相关工艺注:每个厂家的生产流程都各不同,基本的流程都是差不多;CSP 的工艺就相对COB 简单很多;COB Sensor模组相关工艺注:上面是基本的COB 工艺流程,各个工艺会每个厂家都有一定的区别;当然某些客户对测试会有一些特殊要求;例如在调焦前及检测后做一次震动,用来确认Particle 的问题;一般Sensor分类按制造工艺来分为CSP & COBCSP: Chip scale package(Sensor底部锡球通过锡膏与FPC开窗PAD接触连接)COB: Chip On Board (通过胶使Sensor与FPC相接触)1.Sensor的分类1.Sensor的分类CSP & COB优缺点对比CSP:优点:模组工艺简单,Particle容易控制;生产良率高;缺点:在成像区表面有Cover Glass层,增加了Sensor本身成本,成本高; COB: Chip On Board优点:1.产品光透性相对较好;2.模组厚度相对较低,对LENS后要求小;缺点:1.模组厂商设备投入大;2.制程复杂,良率较难控制(尤其是POD & POG);2.LENS 相关参数2.LENS 相关参数EFL介紹EFL為Effective Focal Length的縮寫,意思是有效焦距。
有效焦距就是透鏡系統中心到成像焦點的距離(即光學系統中心到成像面的距離)。
摄像头模组基础知识

摄像头模组基础知识摄像头模组啊,这可是个挺有趣的东西呢。
你看啊,摄像头模组就像是手机或者电脑的小眼睛,它可重要啦。
传感器就是这个小团队的中场核心啦。
光线被镜头收集之后,就来到传感器这里。
传感器就像是一块特别敏感的小田地,光线就像是种子一样洒在上面。
不同强度和颜色的光线会在传感器上留下不同的“痕迹”,就像不同的种子在田地里会长出不同的作物一样。
这时候啊,传感器就得把这些光线的信息转化成电信号,这可是个技术活呢。
要是传感器不好,就像中场核心不会传球一样,后面的图像质量肯定好不了。
摄像头模组的分辨率也是个很关键的东西。
分辨率高就像你用放大镜看东西一样,能看到更多的细节。
比如说你拍一朵花,高分辨率的摄像头模组能让你看到花瓣上的小绒毛,就像你凑近了仔细看一样清楚。
而低分辨率呢,就像你有点近视没戴眼镜看东西,模模糊糊的,很多细节都看不到了。
那摄像头模组的对焦功能呢?这就像是射箭的时候瞄准一样。
如果对焦不准,拍出来的照片就会像箭射偏了一样,你想拍的东西是模糊的,背景反而清楚了,或者整个画面都是虚的。
自动对焦功能就很方便啦,就像有个小助手一直在帮你调整瞄准的方向,让你总能拍到清晰的画面。
再说说摄像头模组的视野吧。
有的摄像头模组视野很宽广,就像你站在山顶上看风景,一大片景色都能收进眼里。
这种摄像头模组适合拍风景照或者大合影。
而有的视野比较窄,就像你从门缝里看东西,只能看到一小部分,但这对于特写拍摄很有用,能把一个小物件拍得很大很清楚,就像把小蚂蚁拍成大怪兽一样有趣。
在不同的设备上,摄像头模组也有不同的特点。
手机上的摄像头模组就得小巧玲珑,还得功能强大。
因为手机就那么点地方,还得满足大家各种各样的拍照需求,什么自拍啊,拍美食啊,拍风景啊。
这就像在一个小厨房里要做出满汉全席一样不容易。
而相机上的摄像头模组呢,往往更专业,就像专业的厨师在大厨房里做菜,可以用各种高级的工具和食材,能拍出更专业的照片。
现在啊,摄像头模组的发展也特别快。
摄像头模组原理

摄像头模组原理
摄像头模组利用光学传感器、图像处理器、数据接口等技术实现图像的捕捉和传输。
其原理如下:
1. 光学传感器:摄像头模组通常采用CMOS或CCD传感器来捕捉光线,将光信号转化为电信号。
CMOS和CCD传感器在结构和工作原理上略有差异,但都能够将光线的强度和颜色信息转化为电压信号。
2. 图像处理器:摄像头模组中的图像处理器负责将原始的电信号转化为可显示和存储的图像。
它使用算法和技术来对电信号进行放大、滤波、去噪、增强等处理,以获得更清晰、更准确的图像。
3. 数据接口:摄像头模组通过数据接口将处理后的图像传输给其他设备,如计算机、手机等。
常见的数据接口包括USB、HDMI、MIPI等。
数据接口的选择取决于摄像头模组的应用场景和设备的兼容性要求。
摄像头模组的工作原理是通过光学传感器捕捉图像的电信号,经过图像处理器的加工处理,最后通过数据接口传输到其他设备。
这一过程中,各个组件协同工作,实现对图像的采集、处理和传输。
摄像头模组知识范文

摄像头模组知识范文
摄像头模组由摄像头本身和模组组成,摄像头本身是指捕捉图像的机
械部件,而模组则是摄像头配件中最重要的一个。
它是摄像头、拍摄图像、把图像传输到电脑等操作的控制器,其包括多个部件,如光学元件、模拟
电路板、图像采集板、处理板、驱动芯片、校准程序、图像处理算法等。
1.捕捉图像:摄像头模组能够捕捉、清晰地显示摄影内容,用户可以
在拍摄时调整摄像头方向或者焦距。
2.图像传输:摄像头模组能够将拍摄的画面实时传输到电脑或者其他
设备,从而实时观看、记录、分享或者处理拍摄的画面。
3.调整参数:摄像头模组能够与设备连接,调整参数,如曝光补偿、
白平衡调整等,从而达到满足拍摄要求的品质。
4.录像:摄像头模组可以实现不断录制视频,从而记录节目和文件,
实现电视录像。
摄像模组光学基本知识

B
Image Plane
IRF
光学总长
C±0.1(at
infinite,air)
5 机械后焦(MBF)和光学后焦
机械后焦是指从镜头机械后端面到像面的距离, 而光学后焦 是指从镜头最后一个镜片的最后一面到像面的距离. 它们 两者的差别随不同光学系统的不同而不同. 同时在光学行 业内对光学后焦也有两种表达, 联合光电目前采用光学后 焦1的描述. (示意图如下页)
B
Image Plane
IRF
E(机械后焦)
光学后焦(2) 光学后焦(1)
6 最佳对焦距离和景深
景深反映了一个光学系统对空间物体成像清晰程度.而最佳 对焦距离是指一个光学系统景深最佳时的调焦距离, 这里 讲的最佳在实际应用时其实是相对而言的. 对焦距离取决 于使用者(客户或消费者)希望光学系统所能拍摄的距离范 围. 理论上的超焦距距离不一定是该镜头的最佳调焦距离. 如果在最佳调焦距离调好焦以后, 再确认远景和近景时, 镜头的解像力理论上都会下降, 故为达到一定的景深范围一定要选择合适的调焦距离.
3 视场角(FOV)
一个光学系统所能成像的角度范围. 角度越大, 则这个光学 系统所能成像的范围越宽, 反之则越窄. 在实际产品当中, 又有光学FOV和机械FOV之分, 光学FOV是指SENSOR或 胶片所能真正成像的有效FOV范围, 机械FOV一般大于光 学FOV, 这是有其他考虑和用途, 比如说需要用机械FOV来 参考设计Module或者手机盖的通光孔直径大小. (示意图 如下页)
枕形畸变
桶形畸变
(B+C)/2-A TV DIST= X100(%) (B+C)/2
8 相对照度(Relative illumination又简写为RI):
摄像头-Camerasensor基本知识

摄像头-Camerasensor基本知识⼀、Camera ⼯作原理介绍1. 结构 .⼀般来说,camera 主要是由 lens 和 sensor IC 两部分组成,其中有的 sensor IC 集成 了 DSP,有的没有集成,但也需要外部 DSP 处理。
细分的来讲,camera 设备由下边⼏部 分构成: b$ w6 [# i& q% p* E1) lens(镜头) ⼀般 camera 的镜头结构是有⼏⽚透镜组成,分有塑胶透镜(Plastic)和玻璃透 镜(Glass) ,通常镜头结构有:1P,2P,1G1P,1G3P,2G2P,4G 等。
2) sensor(图像传感器) Senor 是⼀种半导体芯⽚,有两种类型:CCD 和 CMOS。
Sensor 将从 lens 上传导过来的光线转换为电信号, 再通过内部的 AD 转换为数字信号。
由于 Sensor 的每个 pixel 只能感光 R 光或者 B 光或者 G 光, 因此每个像素此时存贮的是单⾊的, 我们称之为 RAW DATA 数据。
要想将每个像素的 RAW DATA 数据还原成三基⾊,就需要 ISP 来处理。
3)ISP(图像信号处理) 主要完成数字图像的处理⼯作,把 sensor 采集到的原始数据转换为显⽰⽀持 的格式。
2 {4 w# {. R- z% Y4)CAMIF(camera 控制器) 芯⽚上的 camera 接⼝电路,对设备进⾏控制,接收 sensor 采集的数据交给 CPU,并送⼊ LCD 进⾏显⽰。
2. ⼯作原理 . & W* e" B3 D6 O) |4 k外部光线穿过 lens 后, 经过 color filter 滤波后照射到 Sensor ⾯上, Sensor 将从 lens 上传导过来的光线转换为电信号,再通过内部的 AD 转换为数字信号。
如果 Sensor 没有集 成 DSP,则通过 DVP 的⽅式传输到 baseband,此时的数据格式是 RAW DATA。