时间序列王燕第二版第三章习题答案分析

合集下载

人大(王燕)时间序列课后习题答案)

人大(王燕)时间序列课后习题答案)
. *|.|

0.034
-0.077
44.572
0.000
.*|.|
. *|.|

-0.074
-0.077
44.771
0.000
. *|.|
.*| .|

-0.170
-0.075
45.921
0.000
.**|.|
.*| . |
10
-0.252
-0.072
48.713
0.000
.**|.|
.*|.|
11
-0.319
-0.067
53.693
0.000
***| .|
.*|.|
12
-0.370
-0.060
61.220
0.000
该图的自相关系数衰减为0的速度缓慢,可认为非平稳。
4、
LB(6)=1.6747LB(12)=4.9895
(6)=12.59 (12)=21.0
显然,LB统计量小于对应的临界值,该序列为纯随机序列。
注:括号内的结果为近似公式所计算。
(3)样本自相关图:
Autocorrelation
PartialCorrelation
AC
PAC
Q-Stat
Prob
. |*******|
.|*******|
1
0.850
0.850
16.732
0.000
. |*****|
. *|. |
2
0.702
-0.076
28.761
不论c取何值,都会有一特征根等于1,因此模型非平稳。
6、解:(1)错, 。
(2)错, 。

人大王燕时间序列课后习题答案

人大王燕时间序列课后习题答案

人大时间序列课后习题答案第二章P341、(1)因为序列具有明显的趋势,所以序列非平稳。

(2)样本自相关系数:=-=∑=2201)(201)0(x x t t γ35 =--=+=∑))((191)1(1191x x x x t t t γ29.75 =--=+=∑))((181)2(2181x x x x t t t γ25.9167 =--=+=∑))((171)3(3171x x x x t t t γ21.75 γ(4)=17.25 γ(5)=12.4167 γ(6)=7.251ρ=0.85(0.85) 2ρ=0.7405(0.702) 3ρ=0.6214(0.556) 4ρ=0.4929(0.415) 5ρ=0.3548(0.280) 6ρ=0.2071(0.153)注:括号内的结果为近似公式所计算。

(3)样本自相关图: . |*******|. |*******| 1 0.850 0.850 16.732 0.000 . |***** |. *| . | 2 0.702 -0.076 28.761 0.000 . |**** |. *| . | 3 0.556 -0.076 36.762 0.000 . |*** |. *| . | 4 0.415 -0.077 41.500 0.000 . |**. |. *| . | 5 0.280 -0.077 43.800 0.000 . |* . |. *| . | 6 0.153 -0.078 44.533 0.000 . | . |. *| . | 7 0.034 -0.077 44.572 0.000 . *| . |. *| . | 8 -0.074 -0.077 44.771 0.000 . *| . |. *| . | 9 -0.170 -0.075 45.921 0.000 .**| . |. *| . | 10 -0.252 -0.072 48.713 0.000 .**| . |. *| . | 11 -0.319 -0.067 53.693 0.000 ***| . | . *| . | 12 -0.370 -0.060 61.220 0.0004、∑=⎪⎪⎭⎫ ⎝⎛-+=mk k k n n n LB 12ˆ)2(ρLB(6)=1.6747 LB(12)=4.9895205.0χ(6)=12.59 205.0χ(12)=21.0显然,LB 统计量小于对应的临界值,该序列为纯随机序列。

人大(王燕)时间序列课后习题解答)2 5(含上机的)

人大(王燕)时间序列课后习题解答)2 5(含上机的)

第二章P34 1、(1)因为序列具有明显的趋势,所以序列非平稳。

(2)样本自相关系数:∑∑=-=+---≅=nt tkn t k t tk x xx x x xk 121)())(()0()(ˆγγρ5.10)2021(20111=+++==∑= n t t x n x =-=∑=2201)(201)0(x x t t γ35 =--=+=∑))((191)1(1191x x x x t t t γ29.75=--=+=∑))((181)2(2181x x x x t t t γ25.9167=--=+=∑))((171)3(3171x x x x t t t γ21.75γ(4)=17.25 γ(5)=12.4167 γ(6)=7.251ρ=0.85(0.85) 2ρ=0.7405(0.702) 3ρ=0.6214(0.556) 4ρ=0.4929(0.415) 5ρ=0.3548(0.280) 6ρ=0.2071(0.153) 注:括号内的结果为近似公式所计算。

(3)样本自相关图:Autocorrelation Partial Correlation AC PACProb . |*******| . |*******| 1 0.850 0.850 16.732 0.000 . |***** | . *| . | 2 0.702 -0.07628.7610.000 . |**** | . *| . | 3 0.556 -0.07636.7620.000 . |*** | . *| . | 4 0.415 -0.07741.5000.000 . |**. | . *| . | 5 0.280 -0.07743.8000.000 . |* . | . *| . | 6 0.153 -0.07844.5330.000 . | . | . *| . | 7 0.034 -0.07744.5720.000 . *| . |. *| . |8 -0.074 -0.07744.7710.000. *| . | . *| . |9 -0.17-0.07545.9210.000 .**| . | . *| . | 10 -0.252-0.07248.7130.000 .**| . | . *| . | 11 -0.319-0.06753.6930.000 ***| . |. *| . | 12 -0.37-0.0661.2200.000该图的自相关系数衰减为0的速度缓慢,可认为非平稳。

《时间序列分析——基于R》王燕,读书笔记

《时间序列分析——基于R》王燕,读书笔记

《时间序列分析——基于R》王燕,读书笔记笔记:⼀、检验:1、平稳性检验:图检验⽅法:时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列⾃相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的⾃相关系数ρ会很快地衰减向0(指数级指数级衰减),反之⾮平稳序列衰减速度会⽐较慢衰减构造检验统计量进⾏假设检验:单位根检验adfTest()——fUnitRoots包2、纯随机性检验、⽩噪声检验(Box.test(data,type,lag=n)——lag表⽰输出滞后n阶的⽩噪声检验统计量,默认为滞后1阶的检验统计量结果)1、Q统计量:type=“Box-Pierce”2、LB统计量:type=“Ljung-Box”⼆、模型1、ARMA平稳序列模型1.1平稳性检验1.2ARMA的p、q定阶——acf(),pacf(),auto.arima()⾃动定阶1.3建模arima()1.4模型显著性检验:残差的⽩噪声检验Box.test();参数显著性检验t分布2、⾮平稳确定性分析2.1趋势拟合:直线、曲线(⼀般是多项式,还有其它函数)2.2平滑法移动平均法:SMA()——TTR包指数平滑法:HoltWinters()3、⾮平稳随机性分析3.1ARIMA1平稳性检验,差分运算2拟合ARMA3⽩噪声检验3.2疏系数模型arima(p,d,f)3.3季节模型可以叠加的模型4、残差⾃回归模型:4.1建⽴线性模型4.2对滞后的因变量间拟合线性模型,对模型做残差⾃相关DW检验。

dwtest()——lmtest包,增加选项order.by指定延迟因变量4.3对残差建⽴ARIMA模型5、条件异⽅差模型:异⽅差检验:LM检验ArchTest()——FinTS包,⽤ARCH、GARCH模型建模第⼀章简介统计时序分析⽅法:1、频域分析⽅法2、时域分析⽅法步骤:1、观察序列特征2、根据序列特征选择模型3、确定模型的⼝径4、检验模型,优化模型5、推断序列其它统计性质或预测序列将来的发展时域分析研究的发展⽅向:1、AR,MA,ARMA,ARIMA(Box-Jenkins模型)2、异⽅差场合:ARCH,GARCH等(计量经济学)3、多变量场合:“变量是平稳”不再是必需条件,协整理论3、⾮线性场合:门限⾃回归模型,马尔科夫转移模型第⼆章时间序列的预处理预处理内容:对它的平稳性和纯随机性进⾏检验,最好是平稳⾮⽩噪声的序列1、特征统计量1.1概率分布分布函数或密度函数能够完整地描述⼀个随机变量的统计特征,同样⼀个随机变量族{Xt}的统计特性也完全由它们的联合分布函数或联合密度函数决定。

时间序列第2-3章习题解答

时间序列第2-3章习题解答
解 模型改写为:
则模型的传递形式为:

,确定该模型的 Green 函数,使该
故该模型的 Green 函数为: 该模型可以等价表示为无穷阶 MA 模型形式为:
13. 某 ARMR(2,2)模型为: .
解因
所以
,求 . 其中
, .
14. 证明 ARMR(1,1)序列 解 方法一 因为 所以
的自相关系数为:
第 3 章 习题(王燕)
1. 已知 AR(1)模型为 解由 . 由
。求 ,
,和 。


(常均值性),有
, ,(由平稳序列的方差常性)


,故

所以 =

根据 Yule–Walker 方程,有

即 ,
故 =
本题也可不要推导,由相关公式和性质直接给出结果。
2. 已知某 AR(2)模型为: 求 , 的值。
1.5
样本自相关系数图
1
0.5
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
-0.5
自相关系数如下:
延迟
1
2
3
4
5
6
7
8
自相关系数 0.5060 0.5385 0.3736 0.2907 0.2578 0.1475 0.2696 0.1862
延迟
9
10
11
12
13
14
15
16
自相关系数 0.1776 0.2584 0.2070 0.2263 0.1375 -0.0268 -0.0532 -0.1124
延迟

时间序列分析课后习题答案1

时间序列分析课后习题答案1

时间序列分析课后习题答案(上机第二章 2、328330332334336338340342(1时序图如上:序列具有明显的趋势和周期性,该序列非平稳。

(2样本自相关系数:(3该样本自相关图上,自相关系数衰减为 0的速度缓慢,且有正弦波状,显示序列具有趋势和周期,非平稳。

3、 (1样本自相关系数:(2序列平稳。

(3因 Q 统计量对应的概率均大于 0.05,故接受该序列为白噪声的假设,即序列为村随机序列。

5、 (1时序图和样本自相关图:50100150200250300350(2序列具有明显的周期性,非平稳。

(3序列的 Q 统计量对应的概率均小于 0.05,该序列是非白噪声的。

6、 (1根据样本相关图可知:该序列是非平稳,非白噪声的。

(2对该序列进行差分运算:1--=t t t x x y {t y }的样本相关图:该序列平稳,非白噪声。

第三章:17、 (1结论:序列平稳,非白噪声。

(2 拟合 MA(2 model:VariableCoefficient Std. Error t-Statistic Prob. C 80.40568 4.630308 17.36508 0.0000 MA(1 0.336783 0.114610 2.938519 0.0047 R-squared0.171979 Mean dependent var 80.29524 Adjusted R-squared 0.144379 S.D. dependent var 23.71981 S.E. of regression 21.94078 Akaike info criterion 9.061019 Sum squared resid 28883.87 Schwarz criterion 9.163073 Log likelihood -282.4221 F-statistic 6.230976 Durbin-Watson stat 2.072640 Prob(F-statistic 0.003477Residual tests(3拟合 AR(2model:C 79.71956 5.442613 14.64729 0.0000 AR(10.2586240.1288102.0077940.0493R-squared0.154672 Mean dependent var 79.50492 Adjusted R-squared 0.125522 S.D. dependent var 23.35053 S.E. of regression 21.83590 Akaike info criterion 9.052918 Sum squared resid 27654.79 Schwarz criterion 9.156731 Log likelihood -273.1140 F-statistic 5.306195 Durbin-Watson stat 1.939572 Prob(F-statistic 0.007651Inverted AR Roots.62-.36Residual tests:(4 拟合 ARMA (2, 1 model :Variable Coefficient Std. Error t-Statistic Prob. C 79.17503 4.082908 19.39183 0.0000 AR(1 -0.586834 0.118000 -4.973170 0.0000 AR(2 0.376120 0.082091 4.581756 0.0000 MA(11.1139990.09712211.470120.0000R-squared0.338419 Mean dependent var 79.50492 Adjusted R-squared 0.303599 S.D. dependent var 23.35053 S.E. of regression 19.48617 Akaike info criterion 8.840611 Sum squared resid 21643.51 Schwarz criterion 8.979029 Log likelihood-265.6386 F-statistic9.719104Inverted AR Roots .39-.97 Inverted MA Roots-1.11Estimated MA process is noninvertible残差检验:(5拟合 ARMA (1, (2 model:Variable Coefficient Std. Error t-Statistic Prob. C 79.52100 4.621910 17.205230.0000 AR(1 0.270506 0.125606 2.153603 0.0354 R-squared0.157273 Mean dependent var 79.55161 Adjusted R-squared 0.128706 S.D. dependent var 23.16126 S.E. of regression 21.61946 Akaike info criterion 9.032242 Sum squared resid 27576.65 Schwarz criterion 9.135167 Log likelihood -276.9995 F-statistic 5.505386 Durbin-Watson stat 1.981887 Prob(F-statistic 0.006423Inverted AR Roots.27残差检验:(6优化根据 SC 准则,最优模型为 ARMA(2,1模型。

第三章习题(时间序列分析)

第三章习题(时间序列分析)

第三章《时间序列分析》作业
又知该厂7月初的工人数为1270人,前年12月份工业总产值为235万元。

要求计算该厂去年上半年的:
(1)月平均工业总产值;
(2)工业总产值的月平均增长量(以前年12月份为基期);
(3)平均工人人数;
(4)月平均工人劳动生产率。

要求:计算该产品的平均单位成本。

试计算该企业这一时期总增加值平均计划完成程度。

试计算2001年该乡平均拥有的彩电台数。

5.[习题集P52第5题]某种产品的单位成本水平在“八五”计划期内,计划规定每年比上年的降低率分别为:5.2%、4.8%、3.8%、3.5%和2.4%。

试计算其平均每年的降低率。

6.[习题集P53第6题]某地区1985年粮食产量为25万吨。

(1)假定“七五”期间(1986~1990)每年平均增长4%,以后每年平均增长4.5%,问2000年将达到什么水平?
(2)假定2000年粮食产量是1985年的3倍,“七五”期间每年平均增长4%,问以后10年每年平均增长速度为多少?
试计算:如该厂每年产量平均比上年增加28%,则2000年产量能达到多少万辆?其五年内总产量将为多少?
要求:(1)分别计算两厂的平均发展速度;
(2)按现在甲厂平均发展速度,要几年才能达到乙厂1999年的水平?
(3)如要求甲厂从1999年起,在五年内达到乙厂1999年的水平,则甲厂的平均发展速度必须达到多少?
根据该资料:
(1)用最小平方法的简捷式配合直线趋势方程;
(2)根据直线趋势方程预测2002年的财政收入。

10.已知某市年末人口数变化如下,试为其拟合合适的趋势方程,并预测2003年的年。

时间序列分析第二章王燕第一到第三题习题解答

时间序列分析第二章王燕第一到第三题习题解答

时间序列分析习题解答第二章 P.33 2.3 习 题2.1 考虑序列{1,2,3,4,5,…,20}: (1) 判断该序列是否平稳;(2) 计算该序列的样本自相关系数k ^ρ(k=1,2,…,6); (3) 绘制该样本自相关图,并解释该图形。

解:(1) 由于不存在常数μ,使,t EX t T μ=∀∈,所以该序列不是平稳序列。

显然,该序列是按等步长1单调增加的序列。

(2) 1^ρ=0.85000 2^ρ=0.70150 3^ρ=0.556024^ρ=0.41504 5^ρ=0.28008 6^ρ=0.15263 (3) 样本自相关图该图横轴表示自相关系数,纵轴表示延迟时期数。

该图的自相关系数递减的速度缓慢,在6期的延迟时期里,自相关系数一直为正,说明该序列是有单调趋势的非平稳序列。

附:SAS 程序如下: data ex2_1; input freq@@; cards;1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ;proc arima data=ex2_1; identify var=freq Nlag=6; run;可得到上图的自相关图等内容, 更多结果被省略。

2.2 1975-1980年夏威夷岛莫那罗亚火山(Mauna Loa )每月释放的CO 2数据如下(单位:ppm )见下表。

330.45 330.97 331.64 332.87 333.61 333.55 331.90 330.05 328.58 328.31 329.41 330.63 331.63 332.46 333.36 334.45 334.82 334.32 333.05 330.87 329.24 328.87 330.18 331.50 332.81 333.23 334.55 335.82 336.44 335.99 334.65 332.41 331.32 330.73 332.05 333.53 334.66 335.07 336.33 337.39 337.65 337.57 336.25 334.39 332.44 332.25 333.59 334.76 335.89 336.44 337.63 338.54 339.06 338.95 337.41 335.71 333.68 333.69 335.05 336.53 337.81 338.16 339.88 340.57 341.19 340.87 339.25 337.19 335.49 336.63 337.74 338.36(1)绘制该序列时序图,并判断该序列是否平稳; (2)计算该序列的样本自相关系数k ^(k=1,2,…,24); (3)绘制该样本自相关图,并解释该图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.(1)判断该序列的平稳性与纯随机性。

首先画出该序列的时序图如图1-1所示:
图1-1
从时序图可以看出,该序列基本上在一个数值上随机波动,故可认为该序列平稳。

再绘制序列自相关图如图1-2所示:
图1-2
从图1-2的序列自相关图可以看出,该序列的自相关系数一直都比较小,始终在2倍标准差范围以内,可以认为该序列自始至终都在零轴附近波动,所以认为该序列平稳。

原假设为延迟期小于或等于m期的序列值之间相互独立;备择假设为序列值之间有相关性。

当延迟期小于等于6时,p值都小于0.05,所以拒绝原假设,认为该序列为非白噪声序列。

故可以利用ARMA模型对该序列建模。

(2)如果序列平稳且非白噪声,选择适当模型拟合该序列的发展。

从图1-2可见,除了延迟1阶的偏自相关系数在2倍标准差范围之外,其他阶数的偏自相关系数都在2倍标准差范围内波动,故可以认为该序列偏自相关系数1阶截尾。

自相关图显示出非截尾的性质。

综合该序列自相关系数和偏自相关系数的性质,为拟合模型定阶为AR(1)模型。

A.A R(1)模型
对于AR(1)模型,AIC=9.434581,SBC=9.468890。

对残差序列进行白噪声检验:
Q统计量的P值没有大于0.05,因此认为残差序列为非白噪声序列,拒绝原假设,说明残差序列中还残留着相关信息,拟合模型不显著。

B.ARMA(1,1)模型
对于ARMA(1,1)模型,AIC=9.083333,SBC=9.151950。

对残差序列进行白噪声检验:
图1-3
列为白噪声序列,模型信息提取比较充分。

C.AR(2)模型
对于AR(2)模型,AIC=9.198930,SBC=9.268139。

对残差序列进行白噪声检验:
图1-4
列为白噪声序列,模型信息提取比较充分。

比较上述三个模型,见下表1:
(3)利用拟合模型,预测该城市未来5年的降雪量。

用ARMA(1,1)模型可预测该城市未来5年的降雪量如下表2所示:
18.(1)判断该序列的平稳性与纯随机性。

首先画出该序列的时序图如图2-1所示:
图2-1
从时序图可以看出,该序列基本上在一个数值上随机波动,故可认为该序列平稳。

再绘制序列自相关图如图2-2所示:
图2-2
从图2-2的序列自相关图可以看出,该序列的自相关系数一直都比较小,始终在2倍标准差范围以内,可以认为该序列自始至终都在零轴附近波动,所以认为该序列平稳。

原假设为延迟期小于或等于m期的序列值之间相互独立;备择假设为序列值之间有相关性。

p值都小于0.05,所以拒绝原假设,认为该序列为非白噪声序列。

故可以利用ARMA模型对该序列建模。

(2)选择适当模型拟合该序列的发展。

从图2-2可见,除了延迟1阶的偏自相关系数在2倍标准差范围之外,其他阶数的偏自相关系数都在2倍标准差范围内波动,故可以认为该序列偏自相关系数1阶截尾。

自相关图显示出非截尾的性质。

综合该序列自相关系数和偏自相关系数的性质,为拟合模型定阶为AR(1)模型。

A.AR(1)模型
对于AR(1)模型,AIC=0.610126,SBC=0.641502。

对残差序列进行白噪声检验:
Q统计量的P值没有大于0.05,因此认为残差序列为非白噪声序列,拒绝原假设,说明残差序列中还残留着相关信息,拟合模型不显著。

B.AR(2)模型
对于AR(2)模型,AIC=0.417809,SBC=0.481050。

对残差序列进行白噪声检验:
图2-3
从图2-3可以看出,Q统计量的P值都远远大于0.05,因此可以认为残差序列为白噪声序列,模型信息提取比较充分。

比较上述两个模型,见下表3:
(3)利用拟合模型,预测该地区未来5年的谷物产量。

用AR(2)模型可预测该地区未来5年的谷物产量如下表4所示:
19.(1)判断该序列的平稳性与纯随机性。

首先画出该序列的时序图如图3-1所示:
图3-1
从时序图可以看出,该序列基本上在一个数值上随机波动,故可认为该序列平稳。

再绘制序列自相关图如图3-2所示:
图3-2
从图3-2的序列自相关图可以看出,该序列的自相关系数迅速递减为0,自始至终都在零轴附近波动,所以认为该序列平稳。

原假设为延迟期小于或等于m期的序列值之间相互独立;备择假设为序列值之间有相关性。

p值都小于0.05,所以拒绝原假设,认为该序列为非白噪声序列。

故可以利用ARMA模型对该序列建模。

(2)如果序列平稳且非白噪声,选择适当模型拟合该序列的发展。

从图3-2可见,除了延迟1阶的自相关系数在2倍标准差范围之外,其他阶数的自相关系数都在2倍标准差范围内波动,故可以认为该序列自相关系数1阶截尾。

偏自相关图显示出非截尾的性质。

综合该序列自相关系数和偏自相关系数的性质,为拟合模型定阶为MA(1)模型。

A.MA(1)模型
对于MA(1)模型,AIC=10.45567,SBC=10.47210。

对残差序列进行白噪声检验:
Q统计量的P值没有大于0.05,因此认为残差序列为非白噪声序列,拒绝原假设,说明残差序列中还残留着相关信息,拟合模型不显著。

B.ARMA(3,1)模型
对于ARMA(3,1)模型,AIC=4.892222,SBC=4.958652。

对残差序列进行白噪声检验:
Q统计量的P值没有大于0.05,因此认为残差序列为非白噪声序列,拒绝原
假设,说明残差序列中还残留着相关信息,拟合模型不显著。

C.ARMA(3,2)模型
对于ARMA(3,2)模型,AIC=4.892222,SBC=4.958652。

对残差序列进行白噪声检验:
Q统计量的P值没有大于0.05,因此认为残差序列为非白噪声序列,拒绝原假设,说明残差序列中还残留着相关信息,拟合模型不显著。

D.ARMA(4,3)模型
对于ARMA(4,3)模型,AIC=4.854122,SBC=4.970784。

对残差序列进行白噪声检验:
图3-3
从图3-3可以看出,Q统计量的P值都远远大于0.05,因此可以认为残差序列为白噪声序列,模型信息提取比较充分。

比较上述四个模型,见下表5:
(3)利用拟合模型,预测该序列下一时刻95%的置信区间。

根据ARMA(4,3)模型可以预测下一时刻为83.80236。

置信区间为
[83.80236-1.96*3.115828,83.80236+1.96*3.115828]即[77.69533712,89.90938288]。

相关文档
最新文档