管理运筹学课程设计报告

合集下载

运筹学课程设计报告(附代码)范文

运筹学课程设计报告(附代码)范文

《运筹学》课程设计报告姓名:班级:学号:一、问题描述1、机型指派问题机型指派优化设计是航空公司制定航班计划的重要内容,它要求在满足航班频率和时刻安排以及各机型飞机总数约束的条件下,将各机型飞机指派给相应的航班,使运行成本最小化。

本课程设计要求建立机型指派问题的数学模型,应用优化软件Lindo/Lingo进行建模求解,给出决策建议,包括各机型执行的航班子集和相应的运行成本。

2、问题描述已知某航空公司航班频率和时刻安排如《运筹学课程设计指导书》中表1所示,航班需求数据和运输距离如表2所示,其中,OrignA/P表示起飞机场,Dep.T.表示起飞时间,Dest.A/P表示目标机场,Dist表示轮挡距离,Demand表示航班需求量,Std Dev.表示需求的标准差。

该航空公司的机队有两种机型:9架B737-800,座位数162;6架B757-200,座位数200。

飞八个机场:A,B,I,J,L,M,O,S。

B737-800的CASM(座英里成本)是0.34元,B757-200是0.36元。

两种机型的 RASM(座英里收益)都是 1.2元。

以成本最小为目标进行机型指派,在成本方面不仅考虑运行成本,还必须考虑旅客溢出成本,否则将偏向于选取小飞机,使航空公司损失许多旅客。

旅客溢出成本是指旅客需求大于航班可提供座位数时,旅客流失到其他航空公司造成的损失。

旅客需求服从N(μ,σ)的正态分布。

如果机票推销工作做得好,溢出旅客并不全部损失,有部分溢出旅客将该成本航空公司其他航班,这种现象叫做“再获得”(Recapture)。

设有15%的溢出旅客被再获得。

将飞机指派到航班上去,并使飞机总成本最小。

二、分析建模1.确定决策变量经过对问题描述的分析得出,要解决飞机机型指派问题,我设定了两类变量:(1)针对各条航线的机型,令B737-800和B757-200分别为机型1和机型2,设变量Xi,j.其中101≤i≤142,j=1或2。

管理运筹学课程设计报告

管理运筹学课程设计报告

《管理运筹学》课程设计报告学院:管理学院专业:工商管理班级: 1201学号: 201207040118 学生姓名:张汝佳导师姓名:黄毅完成日期:2014年12月15日至2014年12月19日目录题目一:线性规划问题建模与求解 (1)题目二:运输问题建模与求解 (7)题目三:网络优化问题建模与求解 (11)题目四:储存问题建模与求解 (14)题目五:住房还贷问题EXCEL运用(决策分析) (17)参考文献 (18)致谢 (19)题目一:线性规划问题建模与求解一、设计资料与要求1、某工厂要生产两种新产品:门和窗, 经测算,每生产一扇门需要在车间1加工4小时、在车间3加工3小时;每生产一扇窗需要在车间2和车间3各加工2小时。

而车间1每周可用于生产这两种新产品的时间为8小时、车间2为12小时、车间3为15小时。

已知每扇门的利润为300元,每扇窗的利润为450元根据经市场调查得到的该两种新产品的市场需求状况可以确定,按当前的定价可确保所有新产品均能销售出去。

问该工厂如何安排这两种新产品的生产计划,可使总利润最大? 要求:(1)建立线性规划模型(2)运用EXCEL 软件求出结果,并进行灵敏度分析。

(3)运用LINGO 软件求出结果,并进行灵敏度分析。

(4)运用管理运筹学软件2.0版求出结果,并进行灵敏度分析。

二、建立数学模型具体步骤:1.1可用表1-1表示。

表1.1(1)决策变量本问题的决策变量是每周门和窗的产量。

可设:1x 为每周门的产量(扇); 2x 为每周窗的产量(扇)。

(2)目标函数本问题的目标是总利润最大。

由于门和窗的单位利润分别为300元和450元每周产量分别为1x 和2x ,所以每周总利润z 为:21450300m ax x x Z +=,则线性模型为:三、数学模型的计算机求解分析表1.2用excel 软件求出的结果⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤+=0,1523122)(84..450300max 21212121x x x x x x t s x x Z (车间三)(车间二)车间一图1.1excel软件灵敏度分析图1.2线性规划问题模型图1.3线性规划问题的计算结果灵敏度分析图1.4运用管理运筹学软件2.0版求出结果图1.5运用管理运筹学软件并进行灵敏度分析从上述求解过程来看,三种软件的求解结果相同,所以我们可以从中分析得x的系数取值范围[0,675]之间,假如系数的取值超过了该取值范围则最优解出1将有所改变。

管理运筹学课程设计总结

管理运筹学课程设计总结

管理运筹学课程设计总结在完成管理运筹学课程设计的过程中,我经历了从理论到实践的转变,不仅深入理解了运筹学的核心概念和应用,更在实际操作中培养了解决问题的能力。

本篇总结将回顾我在课程设计中所学的知识、所遇挑战、所获成果,以及对未来的影响。

一、理论知识与实践管理运筹学作为一门应用数学学科,旨在为决策者提供科学的决策依据。

在课程设计中,我深入学习了线性规划、整数规划、动态规划等核心理论,并通过案例分析、软件操作等方式,将这些理论知识应用于实际问题中。

在理论知识的学习中,我了解到运筹学在资源分配、路径选择、时间安排等方面的应用。

例如,线性规划可以帮助企业优化生产计划,降低成本;整数规划可应用于项目调度,确保资源的高效利用。

此外,我还了解到不同规划问题的特点及求解方法,如单纯形法、分枝定界法等。

在实践环节,我通过软件操作,如Microsoft Office的Excel 和优化软件Gurobi,亲身体验了运筹学在解决实际问题中的应用。

我尝试解决了一系列具有实际背景的问题,如物流配送、机组排班等。

这些实践经验使我深刻体会到理论与实践的结合,也培养了我解决实际问题的能力。

二、面临的挑战与解决方案在课程设计中,我遇到了一些挑战。

首先,对于复杂问题的建模能力有限,难以将现实问题转化为数学模型。

为了解决这一问题,我积极学习建模技巧,参考了大量文献和案例,逐渐提高了建模能力。

其次,在求解大规模优化问题时,我发现现有的软件工具在某些情况下效率较低。

为了应对这一挑战,我尝试采用启发式算法来提高求解速度,并在多次实践中不断调整和优化。

三、收获与成果通过本次课程设计,我不仅掌握了运筹学的基本理论和算法,还培养了解决实际问题的能力。

在团队合作中,我学会了如何与他人有效沟通、协作解决问题。

此外,我在项目报告的撰写方面也得到了锻炼和提高。

我的设计报告获得了老师的好评,并成功发表在学术期刊上。

四、反思与展望回顾整个课程设计过程,我认为自己在理论知识与实践结合方面还有待提高。

运筹学课程设计报告

运筹学课程设计报告

关于生产计划的线性规划模型摘 要本文利用问题中的数据信息,建立了线性规划模型,并运用LINGO 软件求解,得出了让工厂赢利最大的生产计划,并讨论了增加设备、投产新产品、改进产品工艺等各种情况对生产计划的影响。

对于问题(1):按照题目给出的数据,可以得到一个每月生产赢利最大为目标的线性规划模型。

然后利用LINGO 软件求解出模型的全局最优解,最优值为134.5,最优解为52424321===x x x ,,。

即每月安排生产24件产品Ⅰ,24件产品Ⅱ,5件产品Ⅲ,能使工厂获得最大赢利为134.5千元。

对于问题(2):因为设备B 每台时的租金为0.3千元,高于它的对偶价格,所以得出结论:借用设备B 是不合算的。

我们又建立了线性规划模型来验证结论。

模型计算结果显示借用设备B ,工厂最大赢利为127千元,比原生产计划下的赢利134.5千元少,证明了借用设备B 确实是不合算的。

对于问题(3):为了更好的讨论新产品Ⅳ、Ⅴ投产是否合算,我们分三种情况建立模型:同时投产Ⅳ和Ⅴ、只投产Ⅳ、只投产Ⅴ。

结合三个模型的结果可知:若单独投产Ⅳ或Ⅴ,工厂赢利的增量分别是0.1千元和1.36千元。

只投产Ⅳ则利润增长是很小的,同时投产Ⅳ和Ⅴ的收益增量是最大的,为1.46千元。

所以在计划新产品的投产时,不能单独投产新产品Ⅳ,最好是同时投产新产品Ⅳ和Ⅴ。

对于问题(4):根据新数据,可以得到线性规划模型,模型的最优解为22422321===x x x ,,。

改进工艺结构后最大赢利为152.8千元,给工厂增加了18.3千元的赢利。

关键词:工厂赢利,生产计划,线性规划,LINGO 软件,对偶价格一、问题重述已知某工厂计划生产Ⅰ,Ⅱ,Ⅲ三种产品,各产品需要在C B A ,,设备上加工,有关数据见下表。

试回答:(1)如何充分发挥设备能力,使生产赢利最大?(2)若为了增加产量,可借用其他工厂的设备B ,每月可借用60台时,租金为8.1万元,问借用B 设备是否合算?(3)若另有两种新产品Ⅳ,Ⅴ,其中Ⅳ需用设备A 为12台时,B 为5台时;C 为10台时,单位产品赢利1.2千元;新产品Ⅴ需用设备A 为4台时,B 为4台设备代号 ⅠⅡ Ⅲ 设备有效台时/月 A 82 10 300 B 105 8 400 C 213 10 420 单位产品利润/千元3 2 2.9时;C 为12台时,单位产品赢利87.1千元。

管理运筹学实验报告(三次实验)

管理运筹学实验报告(三次实验)

湖北科技学院管理运筹学实验报告年级 10级专业工商管理学生姓名学号指导教师吴睿经济与管理学院工商管理系2012年3月《管理运筹学》实验报告(一)实验时间:实验地点:经管院实验室专业班级:10工管姓名:学号:成绩:【实验内容】线性规划问题的计算机求解【实验目的】1、掌握线性规划问题的计算机求解方法;2、通过“管理运筹学”软件(2.5版)等教学软件的应用,深化和拓展学生对线性规划理论知识的认识,提高学生的科学素养,培养学生利用计算机技术解决实际问题的能力。

【实验要求】1、记录实验结果、填写实验结论、保存实验输出结果,课后打印上交;2、填写实验报告按时保质保量上交。

【实验过程】(一)安装并了解“管理运筹学”2.0版软件(参阅教材P434的附录说明);(二)实验分组及内容安排A组(学号为单号者用):1、第二章例1中(P10、28)若单位产品Ⅰ可获利80元,单位产品Ⅱ可获利20元,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= 。

2、第二章例2中(P16、32)若A,B两种原料至少为450吨,而公司共有650个加工工时,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= ;约束条件1、2、3的对偶价格分别为、、。

3、第二章习题第8题(1)中(参见P26、35)若某公司准备把160万元投资到基金A和B,而其他条件不变,则用计算机软件求得此时总的投资风险指数为,购买基金A和B的数量分别为和。

4、请用计算机软件求解第四章习题6(P59)中的问题。

可求得应该每天安排生产雏鸡饲料、蛋鸡饲料、肉鸡饲料各吨、吨、吨,所获最大利润为百元。

B组(学号为双号者用):1、第二章例1中(P10、28)若原料A的资源限制为500kg,原料B的资源限制为200kg,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= 。

2、第二章例2中(P16、32)若每吨原料A的价格为1万元,每吨原料B的价格为4万元,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= ;约束条件1、2、3的对偶价格分别为、、。

运筹管理部门课程设计

运筹管理部门课程设计

运筹管理部门课程设计一、教学目标本课程的教学目标是使学生掌握运筹管理部门的基本概念、原理和方法,培养学生运用运筹学解决实际问题的能力。

具体分为以下三个部分:1.知识目标:学生能够理解运筹学的基本概念,掌握线性规划、整数规划、动态规划等基本方法,了解运筹学在实际中的应用。

2.技能目标:学生能够运用运筹学方法解决实际问题,具备分析问题、建立模型、求解问题的能力。

3.情感态度价值观目标:培养学生对运筹学的兴趣,使其认识到运筹学在现代社会中的重要性,培养学生运用科学的方法解决实际问题的责任感。

二、教学内容本课程的教学内容主要包括以下几个部分:1.运筹学基本概念:介绍运筹学的定义、发展历程和应用领域。

2.线性规划:讲解线性规划的基本理论、方法和应用,包括图解法、单纯形法、表上作业法等。

3.整数规划:介绍整数规划的基本概念、方法和应用,如0-1规划、整数线性规划等。

4.动态规划:讲解动态规划的基本原理和方法,以及动态规划在实际问题中的应用。

5.运筹学在实际中的应用:分析运筹学在生产、运输、库存、金融等领域的具体应用案例。

三、教学方法为了提高教学效果,本课程将采用以下几种教学方法:1.讲授法:讲解基本概念、原理和方法,引导学生理解运筹学的本质。

2.案例分析法:分析实际案例,让学生了解运筹学在解决实际问题中的应用。

3.讨论法:学生进行分组讨论,培养学生的合作精神和解决问题的能力。

4.实验法:安排上机实验,让学生亲手操作,提高实际运用运筹学方法的能力。

四、教学资源为了支持教学,我们将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的学习材料。

2.参考书:推荐学生阅读相关参考书,丰富学生的知识储备。

3.多媒体资料:制作课件、教学视频等多媒体资料,提高课堂教学的趣味性和效果。

4.实验设备:配置相应的实验设备,为学生提供实践操作的机会。

五、教学评估本课程的教学评估将采用多元化的方式,全面、客观地评价学生的学习成果。

工程管理运筹学课程设计

工程管理运筹学课程设计

工程管理运筹学课程设计一、课程目标知识目标:1. 理解工程管理中运筹学的基本概念、原理及方法;2. 掌握线性规划、整数规划等运筹学模型在工程管理中的应用;3. 了解如何运用运筹学方法解决实际工程管理问题。

技能目标:1. 能够运用运筹学方法建立工程管理问题的数学模型;2. 能够运用线性规划、整数规划等方法求解工程管理问题;3. 能够运用运筹学软件工具进行模型求解和分析。

情感态度价值观目标:1. 培养学生对工程管理运筹学学科的兴趣,激发学习热情;2. 培养学生具备良好的团队合作精神和沟通能力;3. 培养学生运用科学方法解决实际问题的能力,增强社会责任感。

课程性质:本课程为工程管理专业核心课程,旨在通过运筹学的基本理论和方法,培养学生解决实际工程管理问题的能力。

学生特点:学生具备一定的数学基础,对工程管理有一定了解,但可能缺乏实际运用能力。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,提高学生的实际操作能力和解决问题的能力。

通过本课程的学习,使学生能够将所学知识应用于实际工程管理领域,为未来职业生涯奠定基础。

教学过程中,将目标分解为具体的学习成果,以便于后续教学设计和评估。

二、教学内容1. 运筹学基本概念与原理:介绍运筹学的起源、发展及其在工程管理领域的应用,解析线性规划、整数规划等基本模型。

教材章节:第一章 运筹学概述,第二章 线性规划。

2. 运筹学方法与应用:详细讲解线性规划、整数规划、非线性规划等方法的原理及求解过程,并结合实际案例进行分析。

教材章节:第三章 整数规划,第四章 非线性规划。

3. 运筹学软件应用:介绍运筹学常用软件(如LINGO、CPLEX等)的功能、操作及在实际工程管理问题中的应用。

教材章节:第五章 运筹学软件及其应用。

4. 实践案例分析:选取具有代表性的实际工程管理案例,指导学生运用运筹学方法建立模型、求解问题,并进行结果分析。

教材章节:第六章 运筹学在工程管理中的应用案例分析。

管理运筹学实验报告

管理运筹学实验报告

实验报告课程管理运筹学班级学号姓名实验项目数 52013年12月说明:1.实验预习:通过实验预习,明确实验目的要求、实验原理及相关知识点、实验方法、步骤以及操作注意事项等;对设计性实验要事先设计实验方案;根据需要合理设计实验数据记录表格。

2.实验过程:实际采用的实验方法、步骤、操作过程或实验设计方案(设计型实验)的描述。

对于实验结果的表述一般有以下两种方法,在撰写实验报告时,可任选其中一种或两种方法并用,以获得最佳效果。

(1)文字表述: 根据实验目的将原始资料系统化、条理化,用准确的专业语言客观地描述实验现象和结果,要体现时间顺序以及各项指标在时间上的关系。

(2)图表或图形表示: 利用表格、坐标图、绘画或利用记录仪器描绘出的曲线图,使实验结果突出、清晰、形象、直观。

3.数据分析、实验结论(1)根据相关的理论知识对所得到的实验结果进行解释和分析,包括实验成功或失败的原因。

(2)不能因实验结果与预期的结果或理论不符而随意取舍甚至修改实验原始数据和伪造实验结果。

如果实验失败,应找出原因及今后应注意的事项。

4. 任课老师可结合学科和专业课程特点,对实验报告容作科学合理的调整。

5.学生在课程结束后将本门课程所有实验报告装订成册,任课教师负责收齐交实验室存档. . .. . .实验1 (实验项目序号)运筹学课程实验报告实验地点:二教501实验线性规划问题指导教师实验时间名称姓名学号成绩一、实验、训练目的1.通过“管理运筹学软件”建模及求解的方法应用。

2.通过实验进一步掌握运筹学有关方法原理、求解过程,提高学生分析问题和解决问题的能力。

二、实验预习(含实验原理及设计过程等)第三章线性规划问题的计算机求解三、实验、训练容某工厂在有限的资源情况下,怎样生产I、II两种产品才能获利最多。

四、实验、训练过程(含实验步骤、测试数据、实验结果等)1.安装“运筹学”软件。

2.打开“运筹学”软件,点击线性规划,然后根据要求输入数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《管理运筹学》课程设计报告学院:管理学院专业:工商管理班级:1201学号:201207040118 学生姓名:张汝佳导师姓名:黄毅完成日期:2014年12月15日至2014年12月19日目录题目一:线性规划问题建模与求解 (1)题目二:运输问题建模与求解 (7)题目三:网络优化问题建模与求解 (11)题目四:储存问题建模与求解 (14)题目五:住房还贷问题EXCEL运用(决策分析) (17)参考文献 (18)致谢 (19)题目一:线性规划问题建模与求解一、设计资料与要求1、某工厂要生产两种新产品:门和窗, 经测算,每生产一扇门需要在车间1加工4小时、在车间3加工3小时;每生产一扇窗需要在车间2和车间3各加工2小时。

而车间1每周可用于生产这两种新产品的时间为8小时、车间2为12小时、车间3为15小时。

已知每扇门的利润为300元,每扇窗的利润为450元根据经市场调查得到的该两种新产品的市场需求状况可以确定,按当前的定价可确保所有新产品均能销售出去。

问该工厂如何安排这两种新产品的生产计划,可使总利润最大? 要求:(1)建立线性规划模型(2)运用EXCEL 软件求出结果,并进行灵敏度分析。

(3)运用LINGO 软件求出结果,并进行灵敏度分析。

(4)运用管理运筹学软件2.0版求出结果,并进行灵敏度分析。

二、建立数学模型具体步骤:1.1可用表1-1表示。

(1)决策变量本问题的决策变量是每周门和窗的产量。

可设:1x 为每周门的产量(扇); 2x 为每周窗的产量(扇)。

(2)目标函数本问题的目标是总利润最大。

由于门和窗的单位利润分别为300元和450元每周产量分别为1x 和2x ,所以每周总利润z 为:21450300m ax x x Z +=,则线性模型为:三、数学模型的计算机求解分析表1.2用excel 软件求出的结果图1.1excel 软件灵敏度分析⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤+=0,1523122)(84..450300max 21212121x x x x x x t s x x Z (车间三)(车间二)车间一图1.2线性规划问题模型图1.3线性规划问题的计算结果灵敏度分析图1.4运用管理运筹学软件2.0版求出结果图1.5运用管理运筹学软件并进行灵敏度分析从上述求解过程来看,三种软件的求解结果相同,所以我们可以从中分析得出x的系数取值范围[0,675]之间,假如系数的取值超过了该取值范围则最优解1将有所改变。

第二个约束条件(车间2的工时约束)的影子价格是125,说明在允许的范围[9,15](即[12-3,12+3])内,再增加(或减少)一个单位的可用工时,总利润将增加(或减少)125。

题目二:运输问题建模与求解一、设计资料与要求某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如下表所示,问:应如何调运可使总运输费用最小?要求:(1)建立运输问题的数学模型(2)运用EXCEL 软件求出结果。

(3)运用LINGO 软件求出结果二、建立数学模型(1)决策变量: 设ij x 为从产地i A 运往销地j B 的运输量(i =1,2,3;j=1,2,3,4)(2)目标函数:本问题的目标是使得总运输费最小。

则建立线性模型如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=++=+++++++=200150150300200..556646min 231322122111232221131211232221131211x x x x x x x x x x x x t s x x x x x x z三、数学模型的计算机求解分析表2.2运用EXCEL软件求出结果图2.1规划求解参数图2.2运用lindo软件求解运输问题图2.2lindo软件运输模型求解结果从计算结果我们可以得出:产地A1运往B1,B2,B3的运量为50,150,0个单位,余量为0。

产地A2运往B1,B2,B3的运量为100,0,200个单位,余量为0个单位,总运费为2500个单位。

题目三:网络优化问题建模与求解一、设计资料与要求某公司要从起始点vs(发点)运送货物到目的地vt(收点),其网络图如下图所示。

图中每条弧(节点i->节点j)旁边的权cij表示这段运输线路的最大通过能力(容量)。

要求制定一个运输方案,使得从vs到vt的运货量达到最大。

图3.1要求:(1)建立网络优化问题的数学模型(2)运用EXCEL软件求出结果。

二、建立数学模型最大流问题的线性规划数学模型:(1)决策变量:设f为通过弧(节点i->节点j)的流量。

ij(2)目标函数:本问题的目标是从vs流出的总流量最大。

(3)约束条件(转运点的净流量为0、弧的容量限制、非负)则求得其数学模型为:三、数学模型的计算机求解分析图3.2网络优化问题的线性规划求解⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤=+-=+-=+=-+=-++=→→→→→→→→→→→→→→→→ij ij v v v v vt v v v v v vt v v vs v v v vs v v v v v vs v v v vs v vs v vs c f f f f f f f f f f f ff f f f f F 00)(0)(00)(0max 535254241435325242141321表3.1运用EXCEL软件求出结果题目四:储存问题建模与求解一、设计资料与要求某公司需采购某零件,全年需求量为15000件,每次订货成本为500元,单件零件的年储存成本为30元,当订货量为900件时。

要求:(1)计算年订货成本、年储存成本、年订储成本。

(2)依据基本的经济订货量模型,计算经济订货量及经济订货量时的年订储成本。

二、建立数学模型单位时间内的总费用:求极值得使总费用最小的订购批量为:三、数学模型的计算机求解分析(1)计算年订货成本、年储存成本、年订储成本:(2)依据基本的经济订货量模型,计算经济订货量及经济订货量时的年订储成本:(3) 在本工作表中生成一个运算表,计算当该零件的年订货成本、年储存成本、年订储成本随订货量从200~1400(按行分布)变化的值。

如图4.2所示:13*2C DC Q =)(2131DC C QDQC TC ++=75635500*20000*2*==Q 19780450*7562000035*756*21)(2131=+=++=DC C Q D QC TC图4.1图4.2(4)基于上述运算表绘制反映该零件的年订货成本、年储存成本、年订储成本随订货量(从200~1400)变化的图形(无数据点平滑线散点图)。

(5)根据计算得出当前订货量和经济订货量的参考数值表,做出参考数值线(6)在图形中使用微调框与文本框控制当该零件年需求量从10000按增量1000变化到20000时,经济订货量及经济订货量下的年订储成本的值,并在图形上反映出来。

图4.3(7)运用EXCEL做出动态模拟变化图表。

图4.4运用EXCEL做出动态模拟变化图表题目五:住房还贷问题EXCEL运用(决策分析)一、设计资料与要求由于购房是一笔大金额的消费,所以通过贷款来购置房屋已成为越来越多现代人的选择。

一般购房者在选购住房时要考虑诸多因素,例如房价、按揭年限等,在众多方案中选择适合自己的方案。

下面我们通过一个例子来具体说明。

假设某人想通过贷款购房改善自己的居住条件,可供选择的房价有20 万元、30 万元、40 万元、50 万元、60 万元、80 万元和100 万元;可供选择的按揭方案有5 年、10 年、15 年、20 年和30年。

由于收入的限制,其每月还款额(以下称为月供金额)最高不能超过3000 元,但也不要低于2000 元,已知银行贷款利率为6.6%。

要求:运用EXCEL双变量模拟运算表帮助其选择贷款方案。

二、建立数学模型图5.1三、数学模型的计算机求解分析(1)新建一 Excel工作簿,打开一张工作表,在 C3单元格输入房价 600000(此单元格将被设置为行变量),在 C4 单元格建立公式计算月利率:=6.6% /12 (结果为0.55% ),在 C5 单元格建立公式计算 5 年按揭的月份数:=5×12(结果为 60)(此单元格将被设置为列变量)。

(2)在 D6:J6 区域输入不同房价,在B7∶B11 区域输入不同按揭年数的月份数。

(3)在C6单元格建立公式:=PM T(B3,B4,B2),Excel提供了 PM T 函数,PM T 函数是基于固定利率及等额分期付款方式。

回车确认,即可在C6 单元格得到房价60 万元5 年按揭的月供金额。

(①②③后结果如图5.1所示)图5.2(4)选取区域 C7:J11,建立模拟运算表。

选择“数据”→“模拟运算表”命令,打开“模拟运算表”对话框。

(5)分别指定$C$3 为“引用行的单元格”(即行变量),$C$5 为“引用列的单元格”(即列变量),如下图 5.2所示,单击“确定”按钮,随后,在 C 7∶I11 区域便显示不同还款期限、不同房价的房屋月供金额,如表5.1不同还款期限、不同房价的房屋月供所示。

图5.3(6)工作表中有 4 套方案满足月供不超过 3000 元同时也不低于2000 元的条件,可供购房时选择,如中粗线框起的部分。

表5.1不同还款期限、不同房价的房屋月供参考资料[1]韩大卫.管理运筹学(第五版)[M].大连:大连理工大学出版社,2006.[2]韩伯棠.管理运筹学(第二版)[M].北京:高等教育出版社,2012.[3]谢金星.优化建模与lindo/lingo软件[M].北京:清华大学出版社,2010.[4] 韩中庚.数学建模方法及其应用[M].北京:高等教育出版社,2005.致谢本课题在选题及研究过程中得到黄老师的悉心指导。

黄老师多次询问研究进程,并为我指点迷津,帮助我开拓研究思路,精心点拨、热忱鼓励。

黄老师一丝不苟的作风,严谨求实的态度,踏踏实实的精神,感谢各位指导老师细心指导我的学习与研究,在此,我要向诸位老师深深地鞠上一躬。

谨向各位老师表示诚挚的敬意和谢忱!。

相关文档
最新文档