2017北京四中高二(下)期中数学(理)含答案

合集下载

北京市第四中学2017届高三上学期期中考试数学(理)试题(有答案)[精品]

北京市第四中学2017届高三上学期期中考试数学(理)试题(有答案)[精品]

北京四中2016~2017学年度第一学期期中测试高三数学 期中试卷(理)(试卷满分:150分 考试时间:120分钟)一、选择题(共8小题,每小题5分,共40分.) 1.已知全集{}1,2,3,4U =,集合{1,2}A =,则U A =ðA .{4}B .{3,4}C .{3}D .{1,3,4}2.设命题2:,2n p n n ∃∈>N ,则p ⌝为A .2,2n n n ∀∈>NB .2,2n n n ∃∈N ≤C .2,2n n n ∀∈N ≤D .2,2n n n ∃∈<N 3.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点 A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度4.若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为A .0B .1C .32D .25.等比数列{}n a 满足11353,21,a a a a =++=则357a a a ++=A .21B .42C .63D .846.已知x ∈R ,则“απ=”是“sin()sin x x α+=-”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.定义在R 上的偶函数)(x f 满足)()1(x f x f -=+,且在区间[1,0]-上单调递增,设)3(f a =, )2(f b =,)2(f c =,则c b a ,,大小关系是A .a >b >cB .a >c >bC .b >c >aD .c >b >a8.已知函数22,0()ln(1),0x x x f x x x ⎧-+=⎨+>⎩≤,若()f x ax ≥,则实数a 的取值范围是A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-二、填空题(共6小题,每小题5分,共30分.) 9.设i 是虚数单位,则1i1i-=+ .10.执行如图所示的框图,输出值x = .11.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时,{}n a 的前n 项和最大.12.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式()0x f x >的解集为______.13.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米200元,侧面造价是每平方米100元,则该容器的最低总造价是________元.14.已知函数()y f x =,任取t ∈R ,定义集合{|t A y =()y f x =,点(,())P t f t ,(,())Q x f x 满足||PQ .设,M m t t 分别表示集合A t 中元素的最大值和最小值,记()h t M m t t =-.则 (1) 若函数()f x x =,则(1)h =______;(2)若函数π()sin 2f x x ⎛⎫= ⎪⎝⎭,则()h t 的最小正周期为______.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.) 15.(本题满分13分)集合2{|320}A x x x =-+<,11{|28}2x B x -=<<,{|(2)()0}C x x x m =+-<, 其中m ∈R . (Ⅰ)求A B ;(Ⅱ)若()A B C ⊆,求实数m 的取值范围.16.(本题满分13分)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和n S .17.(本题满分13分)已知函数()4sin cos 6f x x x π⎛⎫=+⎪⎝⎭,x ∈R . (Ⅰ)求函数()f x 的单调减区间;(Ⅱ)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值与最小值.18.(本题满分13分)已知函数()1()ln(1)01xf x ax x x-=+++≥,其中0a >. (Ⅰ)若1a =,求()f x 的单调区间; (Ⅱ)若()f x 的最小值为1,求a 的取值范围.19.(本题满分14分)设函数()ln e x b f x a x x ⎛⎫=+ ⎪⎝⎭,曲线()y f x =在点()()1,1P f 处的切线方程为e(1)2y x =-+. (Ⅰ)求,a b ; (Ⅱ)设()2()e 0ex g x x x -=->,求()g x 的最大值; (Ⅲ)证明函数()f x 的图象与直线1y =没有公共点.20.(本题满分14分)对于集合M ,定义函数1,,().1,M x M f x x M -∈⎧=⎨∉⎩对于两个集合,M N ,定义集合{()()1}M N M N x f x f x ∆=⋅=-. 已知{2,4,6,8,10}A =,{1,2,4,8,16}B =. (Ⅰ)写出(1)A f 和(1)B f 的值,并用列举法写出集合A B ∆;(Ⅱ)用()Card M 表示有限集合M 所含元素的个数,求()()Card X A Card X B ∆+∆的最小值;(Ⅲ)有多少个集合对(),P Q ,满足,P Q A B ⊆,且()()P A Q B A B ∆∆∆=∆?参考答案一.选择题(每小题5分,共40分)()4,+∞215. 解:(Ⅰ)()2{|320}1,2A x x x =-+<=;()1{|28}0,42x B x -=<<=; 所以()1,2A B =; (Ⅱ)()0,4A B =,若2m >-,则()2,C m =-,若()0,4A B C =⊆,则4m ≥; 若2m =-,则C =∅,不满足()0,4A B C =⊆,舍; 若2m <-,则(),2C m =-,不满足()0,4A B C =⊆,舍; 综上[)4,m ∈+∞.16. 解:(Ⅰ)设等差数列{}n a 的公差为d ,由题意得41123333a a d --===. 所以1(1)3,n a a n d n n *=+-=∈N . 设等比数列{}n n b a -的公比为q ,由题意得344112012843b a q b a --===--,解得2q =.所以()11112n n n n b a b a q ---=-=. 从而11232,n n n n b a n n --*=+=+∈N . (Ⅱ)由(Ⅰ)知132,n n b n n -*=+∈N .123n n S b b b b =++++01211(32)(62)(92)(32)2n n n --=++++++++0121(3693)(2222)n n -=+++++++++(33)12212n n n +-=+-2332122n n n =++- 所以,数列{}n b 的前n 项和为2332122n n n ++-.17. 解:()4sin cos 6f x x x π⎛⎫=+ ⎪⎝⎭14sin sin 2x x x ⎫=-⎪⎪⎝⎭2cos 2sin x x x =-2cos21x x =+-12cos2)12x x =+-π2sin(2)16x =+-. (Ⅰ)令3222,262k x k k πππππ+≤+≤+∈Z ,解得263k x k ππππ+≤≤+, 所以函数()f x 的单调减区间为2[+,],63k k k ππππ+∈Z . (Ⅱ)因为02x π≤≤,所以72666x πππ≤+≤,所以1sin(2)126x π-≤+≤ , 于是 12sin(2)26x π-≤+≤ ,所以2()1f x -≤≤.当且仅当2x π=时 ()f x 取最小值min ()()22f x f π==-; 当且仅当262x ππ+=,即6x π=时最大值max ()()16f x f π==.18. 解定义域为[)0,+∞.22222()1(1)(1)(1)a ax a f x ax x ax x +-'=-=++++.(Ⅰ)若1a =,则221()(1)(1)x f x x x -'=++,令()0f x '=,得1x =(舍1-).所以1a =(0,1).(Ⅱ)222()(1)(1)ax a fx ax x +-'=++,∵0,0,x a ≥> ∴10.ax +>①当2a ≥时,在区间(0,)'()0,f x +∞>上,∴()f x 在[)1,+∞单调递增,所以()(0)1;f x f =的最小值为②当02a <<时,由'()0'()0f x x f x x >><<解得由解得 ∴()f x +∞的单调减区间为(0).所以()f x 在x =处取得最小值,注意到(0)1,f f <=,所以不满足 综上可知,若()f x 得最小值为1,则a 的取值范围是[2,).+∞ 19. 解:()f x ∞(I )函数的定义域为(0,+),()2()ln ln ln .x x x b b a bb f x a x e a x e a x e x x x x x '⎛⎫⎛⎫⎛⎫''=+++=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1)2,(1).f f e '==由题意可得 21,.a b e==故 (Ⅱ)2(),'()(1)x x g x xe g x e x e--=-=-则.(0,1)()0;(1,)()0.()1()(0,)(1).x g x x g x g x g x g e''∈>∈+∞<∞∞=-所以当时当时,故在(0,1)单调递增,在(1,+)单调递减,从而在的最大值为 (Ⅲ)12()ln ,x x f x e x e x -=+由(I )知又0(1)ln12=21,f e e =+>于是函数()f x 的图象与直线1y =没有公共点等价于()1f x >。

2017-2018年北京四中高二(下)期中数学试卷(理科)和解析PDF

2017-2018年北京四中高二(下)期中数学试卷(理科)和解析PDF

18. (5 分)对于函数 f(x)=(2x﹣x2)ex (1) (2) 是 f(x)的单调递减区间; 是 f(x)的极小值, 是 f(x)的极大值;
(3)f(x)有最大值,没有最小值; (4)f(x)没有最大值,也没有最小值. 其中判断正确的是 .
三、解答题:本大题共 4 小题,每小题 15 分,共 60 分. 19. (15 分)已知函数 f(x)=ax3+x2(a∈R)在 (1)确定 a 的值; (2)若 g(x)=f(x)ex,讨论 g(x)的单调性. 20. (15 分)设 f(x)=a(x﹣5)2+6ln x,其中 a∈R,曲线 y=f(x)在点(1, f(1) )处的切线与 y 轴相交于点(0,6) . (1)确定 a 的值; (2)求函数 f(x)的单调区间与极值. 21. (15 分)已知函数 f(x)=ex+ . 处取得极值.
11. (5 分)设函数 f′(x)是奇函数 f(x) (x∈R)的导函数,f(﹣1)=0,当 x>0 时, xf′ (x) ﹣f (x) <0, 则使得 f (x) >0 成立的 x 的取值范围是 ( A. (﹣∞,﹣1)∪(0,1) C. (﹣∞,﹣1)∪(﹣1,0) B. (﹣1,0)∪(1,+∞) D. (0,1)∪(1,+∞) )
14. (5 分)如图,函数 y=f(x)的图象在点 P 处的切线方程是 y=﹣x+8,则 f (2018)+f'(2018)= .
15. (5 分)已知函数 f(x)=ex﹣2x+a 有零点,则 a 的取值范围是 16. (5 分) 已知函数 ( f x) =x3+ax2+bx+a2 在 x=l 处有极值 10, 则 (a, b) =

北京四中高二第二学期数学期中模拟考试(理科卷)

北京四中高二第二学期数学期中模拟考试(理科卷)

北京四中高二第二学期数学期中模拟考试(理科卷)2018年度(满分:150分,时间:120分钟)说明:试卷分第I 卷和第II 卷两部分,请将答案写在答题纸上,考试结束后只交答题纸.第I 卷一.选择题:(本题共12小题,每小题5分,共60分)1.物体运动方程为4134S t =-,则2t =时瞬时速度为( )A .2B .4C . 6D .82.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以0x =是函数3()f x x =的极值点.以上推理中( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确3.用反证法证明命题“三角形的内角中至少有一个不大于60度”时,反设正确的是( ) A .假设三个内角都不大于60度 B .假设三个内角都大于60度 C .假设三个内角至多有一个大于60度 D .假设三个内角至多有两个大于60度 4.曲线13sin 3+-=x x y 在点(0,1)P 处的切线的倾斜角为 ( )A .30B .60C .120D .1505.如图,由曲线12-=x y ,直线0=x ,2=x 和x 轴围成的封闭图形的面积是( )A .1B .32C .34 D .26.平面几何中,有边长为a ,类比上述命题,棱长为a 的正四面体内任一点到四个面的距离之和为( )A .3a B C D7.函数x xe x f -=)(的( )A .极大值为1e - B .极小值为1e - C .极大值为e - D .极小值为e -8.用数学归纳法证明2321242n n n +=++++,当n=k+1时左端应在n=k 的基础上添加的式子为( )A.222)1()2()1(++++++k k k B.2(1)k + C.42(1)(1)2k k +++ D. 21k +9.若1,,a xdx b c ===⎰⎰⎰,则a ,b ,c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c b a << 10.观察按下列顺序排列的等式:9011⨯+=,91211⨯+=,92321⨯+=,93431⨯+=,…,猜想第*()n n ∈N 个等式应为( ) A .9(1)109n n n ++=+ B .9(1)109n n n -+=- C .9(1)101n n n +-=-D .9(1)(1)1010n n n -+-=-11.下列不等式对任意的(0,)x ∈+∞恒成立的是( )A .xe ex > B . 20x x -> C . sin 1x x >-+ D . ln(1)x x >+12.已知可导函数()f x )(R x ∈满足)()('x f x f >,则当0a >时,()f a 和e (0)a f 大小关系为( )A. ()<e (0)a f a fB. ()=e (0)a f a fC. ()>e (0)a f a fD. ()e (0)a f a f ≤第II 卷二.填空题:(本题共4小题,每小题5分,满分20分)13.若3()log (1)(1)f x x x =->,则(2)f '=.14.=-++-⎰dx x x x)12(1123.15.仔细观察下面图形:图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数是 .16. 如果a b b a b b a a +>+,则实数b a ,应满足的条件是________ .三.解答题:(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)若0,0a b >>,求证:11()()4a b a b++≥.18.(12分)已知函数321()22f x x x x c =--+,若对于[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围.19.(12分)一质点从时刻)(0s t =开始以速度)/(342s m t t v +-=沿直线运动,求该质点:(1)在)(4s t =时的位置;(2)在)](4,0[s t ∈时间段内运动的路程.20.(12分)如图,已知PA ⊥矩形ABCD 所在平面,M N ,分别是AB PC ,的中点.求证:(1)MN ∥平面PAD ;(2)MN CD ⊥.21.(12分)数列{}n a 的前n 项和为n S ,已知.,2,1),1(,2121 =--==n n n a n S a n n (1)写出n S 与1-n S 的递推关系式)2(≥n ,并求n S 关于n 的表达式; (2)设))((,)('1R p p f b x nS x f n n n n n ∈==+,求数列{}n b 的前n 项和.n T22.(12分)设函数()f x 定义在(0,)+∞上,(1)0f =,导函数1(),()()().f x g x f x f x x''==+ (1)求()g x 的单调区间和最小值; (2)讨论()g x 与1()g x的大小关系. (3)是否存在00>x ,使得xx g x g 1)()(0<-对任意0>x 成立?若存在,求出0x 的取值范围;若不存在,请说明理由.19.(本题12分)22.(本题12分)解 (Ⅰ)由题设易知()ln f x x =,1()ln g x x x=+, ∴21'()x g x x -=,令'()0g x =得1x =, 当(0,1)x ∈时,'()0g x <,故(0,1)是()g x 的单调减区间, 当(1,)x ∈+∞时,'()0g x >,故(1,)+∞是()g x 的单调增区间,因此,1x =是()g x 的唯一极值点,且为极小值点,从而是最小值点,所以最小值为(1)1g =. (Ⅱ)1()ln g x x x=-+,设11()()()2ln h x g x g x x x x =-=-+,则22(1)'()x h x x-=-, 当1x =时,(1)0h =,即1()()g x g x=, 当(0,1)(1,)x ∈⋃+∞时'()0h x <,'(1)0h =, 因此,()h x 在(0,)+∞内单调递减,当01x <<时,()(1)0h x h >=,即1()()g x g x>, 当1x >时,()(1)0h x h <=,即1()()g x g x<. (Ⅲ)满足条件的0x 不存在. 证明如下:证法一 假设存在00x > ,使01|()()|g x g x x-< 对任意0x > 成立, 即对任意0x >,有 02()Inx g x Inx x<<+ ,(*) 但对上述0x ,取0()1g x x e=时,有 10()Inx g x =,这与(*)左边不等式矛盾,因此,不存在00x > ,使01|()()|g x g x x-<对任意0x >成立。

2017北京师大附中高二(下)期中数学(理)

2017北京师大附中高二(下)期中数学(理)

2017北京师大附中高二(下)期中数 学(理)一、 选择题:本大题共8道小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填写在答题纸上.1.复数2z i =-+所对应的点在复平面的( ).A .第一象限B .第二象限C .第三象限D .第四象限2.在极坐标系中,圆2sin ρθ=的圆心的极坐标是( ).A .()π1,2B .()π1,2-C .()0,1D .()1,03.定积分π2(sin cos )π2x x dx +-⎰的值为( ). A .0 B .π4 C .2 D .44.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a =( ).A .0B .1C .2D .35.若函数()f x 在R 上可导,()2()ln f x xf e x '=+,则()f e '=( ).A .1B .1-C .1e -D .e -6.若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ).A .sin y x =B .ln y x =C .x y e =D .3y x =7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ).A .O y x B .x yOC .x y O D .x yO8.设函数()f x 在R 上的导函数为()f x ',且22()()f x xf x x '+>.下面的不等式在R 上恒成立的是( ).A .()0f x >B .()0f x <C .()f x x >D .()f x x <二、填空题:本大题共6道小题,每小题5分,共30分,请将答案填写在答题纸上.9.若43z i =+,则z z =__________. 10.参数方程34cos 24sin x y θθ=+⎧⎨=-+⎩(θ为参数),化为普通方程为__________. 11.直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为__________.12.函数()ln f x x ax =+(0)a <的单调增区间为__________.13.已知函数()(0)b f x ax b x=+>的图象在点(1,(1))P f 处的切线与直线210x y +-=垂直,且函数()f x 在区间)1,2⎡+∞⎢⎣上是单调递增,则b 的最大值等于__________. 14.对于函数()f x ,若存在区间[],M a b =,使得{}(),y y f x x M M =∈=,则称函数()f x 具有性质P ,给出下列3个函数:①()sin f x x =;②3()3f x x x =-;③()lg 3f x x =+;其中具有性质P 的函数是__________(填入所有满足条件函数的序号).三、解答题:本大题共6道题,共80分.写出必要的文字说明、证明过程或演算步骤.15.计算题(1)1234i i -+(2)设复数z 满足(4)32i z i -=+(i 是虚数单位),求z .16.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立直角坐标系,圆C 的极坐标方程为()π22cos 4ρθ=+,直线l 的参数方程为122x t y t =⎧⎪⎨=-+⎪⎩(t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点.(1)求圆心的极坐标;(2)求PAB △面积的最大值.17.已知函数()11()ln f x m x x m x =++-,(其中常数0m >) (1)当2m =时,求()f x 的极大值;(2)试讨论()f x 在区间(0,1)上的单调性.18.若函数32()(,)f x ax x bx a b R =-+∈.当3x =时,()f x 有极小值9-.(1)求()f x 的解析式;(2)若函数()()(68)4g x f x m x '=+-+,()h x mx =,当0m >时,对于任意x ,()g x 和()h x 的值至少有一个是正数,求实数m 的取值范围.19.已知函数()1x f x e ex =--,其中e 为自然对数的底数.函数()(2)g x e x =-.(1)求函数()()()h x f x g x =-的单调区间;(2)若函数(),,()(),f x x m F x g x x m ⎧=⎨>⎩≤的值域为R ,求实数m 的取值范围.20.已知函数()x f x e ax =+,()a R ∈,其图象与x 轴交于1(,0)A x ,2(,0)B x 两点,且12x x <.(1)证明:a e <-;(2)证明:1202x x f +⎛⎫'< ⎪⎝⎭;(其中()f x '为()f x 的导函数). (3)设点C 在函数()f x 的图象上,且ABC △t =,求(1)(t a -+的值.。

北京市第四中学2017届高三上学期期中考试数学(理)试题含答案

北京市第四中学2017届高三上学期期中考试数学(理)试题含答案

北京四中2016~2017学年度第一学期期中测试高三数学 期中试卷(理)(试卷满分:150分 考试时间:120分钟)一、选择题(共8小题,每小题5分,共40分.) 1.已知全集{}1,2,3,4U =,集合{1,2}A =,则U A =ðA .{4}B .{3,4}C .{3}D .{1,3,4}2.设命题2:,2n p n n ∃∈>N ,则p ⌝为A .2,2n n n ∀∈>NB .2,2n n n ∃∈N ≤C .2,2n n n ∀∈N ≤D .2,2n n n ∃∈<N3.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点 A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度4.若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为A .0B .1C .32D .25.等比数列{}n a 满足11353,21,a a a a =++=则357a a a ++=A .21B .42C .63D .846.已知x ∈R ,则“απ=”是“sin()sin x x α+=-”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.定义在R 上的偶函数)(x f 满足)()1(x f x f -=+,且在区间[1,0]-上单调递增,设)3(f a =, )2(f b =,)2(f c =,则c b a ,,大小关系是A .a >b >cB .a >c >bC .b >c >aD .c >b >a8.已知函数22,0()ln(1),0x x x f x x x ⎧-+=⎨+>⎩≤,若()f x ax ≥,则实数a 的取值范围是A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-二、填空题(共6小题,每小题5分,共30分.) 9.设i 是虚数单位,则1i1i-=+ . 10.执行如图所示的框图,输出值x = . 11.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时,{}n a 的前n 项和最大. 12.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式()0x f x >的解集为______. 13.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米200元,侧面造价是每平方米100元,则该容器的最低总造价是________元.14.已知函数()y f x =,任取t ∈R ,定义集合:{|t A y =()y f x =,点(,())P t f t ,(,())Q x f x 满足||PQ .设,M m t t 分别表示集合A t 中元素的最大值和最小值,记()h t M m t t =-.则 (1) 若函数()f x x =,则(1)h =______;(2)若函数π()sin 2f x x ⎛⎫= ⎪⎝⎭,则()h t 的最小正周期为______.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.) 15.(本题满分13分)集合2{|320}A x x x =-+<,11{|28}2x B x -=<<,{|(2)()0}C x x x m =+-<, 其中m ∈R . (Ⅰ)求A B ;(Ⅱ)若()A B C ⊆ ,求实数m 的取值范围.16.(本题满分13分)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和n S .17.(本题满分13分)已知函数()4sin cos 6f x x x π⎛⎫=+ ⎪⎝⎭,x ∈R .(Ⅰ)求函数()f x 的单调减区间;(Ⅱ)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值与最小值.18.(本题满分13分)已知函数()1()ln(1)01xf x ax x x-=+++≥,其中0a >. (Ⅰ)若1a =,求()f x 的单调区间;(Ⅱ)若()f x 的最小值为1,求a 的取值范围.19.(本题满分14分)设函数()ln e x b f x a x x ⎛⎫=+ ⎪⎝⎭,曲线()y f x =在点()()1,1P f 处的切线方程为e(1)2y x =-+.(Ⅰ)求,a b ; (Ⅱ)设()2()e 0ex g x x x -=->,求()g x 的最大值; (Ⅲ)证明函数()f x 的图象与直线1y =没有公共点. 20.(本题满分14分)对于集合M ,定义函数1,,().1,M x M f x x M -∈⎧=⎨∉⎩对于两个集合,M N ,定义集合{()()1}M N M N x f x f x ∆=⋅=-. 已知{2,4,6,8,10}A =,{1,2,4,8,16}B =. (Ⅰ)写出(1)A f 和(1)B f 的值,并用列举法写出集合A B ∆;(Ⅱ)用()Card M 表示有限集合M 所含元素的个数,求()()Card X A Card X B ∆+∆的最小值;(Ⅲ)有多少个集合对(),P Q ,满足,P Q A B ⊆ ,且()()P A Q B A B ∆∆∆=∆?参考答案一.选择题(每小题5分,共40分)15. 解:(Ⅰ)()2{|320}1,2A x x x =-+<=;()1{|28}0,42x B x -=<<=; 所以()1,2A B = ; (Ⅱ)()0,4A B = ,若2m >-,则()2,C m =-,若()0,4A B C =⊆ ,则4m ≥; 若2m =-,则C =∅,不满足()0,4A B C =⊆ ,舍; 若2m <-,则(),2C m =-,不满足()0,4A B C =⊆ ,舍; 综上[)4,m ∈+∞.16. 解:(Ⅰ)设等差数列{}n a 的公差为d ,由题意得41123333a a d --===. 所以1(1)3,n a a n d n n *=+-=∈N . 设等比数列{}n n b a -的公比为q ,由题意得344112012843b a q b a --===--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而11232,n n n n b a n n --*=+=+∈N .(Ⅱ)由(Ⅰ)知132,n n b n n -*=+∈N .123n n S b b b b =++++01211(32)(62)(92)(32)2n n n --=++++++++ 0121(3693)(2222)n n -=+++++++++(33)12212n n n +-=+-2332122n n n =++- 所以,数列{}n b 的前n 项和为2332122n n n ++-.17. 解:()4sin cos 6f x x x π⎛⎫=+⎪⎝⎭14sin sin 2x x x ⎫=-⎪⎪⎝⎭2cos 2sin x x x =-2cos21x x =+-12cos 2)12x x =+-π2sin(2)16x =+-. (Ⅰ)令3222,262k x k k πππππ+≤+≤+∈Z ,解得263k x k ππππ+≤≤+,所以函数()f x 的单调减区间为2[+,],63k k k ππππ+∈Z .(Ⅱ)因为02x π≤≤,所以72666x πππ≤+≤,所以1sin(2)126x π-≤+≤ ,于是 12sin(2)26x π-≤+≤ ,所以2()1f x -≤≤.当且仅当2x π=时 ()f x 取最小值min ()()22f x f π==-;当且仅当262x ππ+=,即6x π=时最大值max ()()16f x f π==.18. 解:定义域为[)0,+∞.22222()1(1)(1)(1)a ax a f x ax x ax x +-'=-=++++. (Ⅰ)若1a =,则221()(1)(1)x f x x x -'=++,令()0f x '=,得1x =(舍1-).所以1a =时,()f x 的单调增区间为(1,)+∞,减区间为(0,1).(Ⅱ)222()(1)(1)ax a f x ax x +-'=++,∵0,0,x a ≥> ∴10.ax +> ①当2a ≥时,在区间(0,)'()0,f x +∞>上,∴()f x 在[)1,+∞单调递增,所以()(0)1;f x f =的最小值为②当02a <<时,由'()0'()0f x x f x x >><<解得由解得∴()f x +∞的单调减区间为(0).所以()f x在x =处取得最小值,注意到(0)1,f f <=,所以不满足 综上可知,若()f x 得最小值为1,则a 的取值范围是[2,).+∞19. 解:()f x ∞(I )函数的定义域为(0,+),()2()ln ln ln .x x x b b a bb f x a x e a x e a x e x x x xx '⎛⎫⎛⎫⎛⎫''=+++=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1)2,(1).f f e '==由题意可得 21,.a b e==故 (Ⅱ)2(),'()(1)x x g x xe g x e x e--=-=-则.(0,1)()0;(1,)()0.()1()(0,)(1).x g x x g x g x g x g e ''∈>∈+∞<∞∞=-所以当时当时,故在(0,1)单调递增,在(1,+)单调递减,从而在的最大值为 (Ⅲ)12()ln ,x x f x e x e x-=+由(I )知又0(1)ln12=21,f e e =+>于是函数()f x 的图象与直线1y =没有公共点等价于()1f x >。

北京市第四中学2016-2017学年高二下学期期中考试数学(文)试题

北京市第四中学2016-2017学年高二下学期期中考试数学(文)试题

2016-2017学年北京四中高二(下)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分. 1.复数21i=-( )AB +C .1i -D .1i +【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出. 【解答】解:22(1i)1i 1i (1i)(1i)+==+--+. 故选:D .2.下列求导正确的是( ).A .2(32)3x x -'=B .21(log )ln2x x '=⋅ C .(cos )sin x x '=D .1ln x x '⎛⎫= ⎪⎝⎭【考点】63:导数的运算.【分析】先根据基本导数公式和导数的运算法则求导,再判断 【解答】解:2(32)6x x -'=,21(log )ln2x x '=⋅,(cos )sin x x '=-,211ln ln x x x '⎛⎫=- ⎪⎝⎭, 故选:B .3.曲线e x y x =⋅在1x =处切线的斜率等于( ).A .2eB .eC .2D .1【考点】6H :利用导数研究曲线上某点切线方程. 【分析】求出函数的导数,然后求解切线的斜率即可. 【解答】解:曲线e x y x =⋅,可得e e x x y x '=+,曲线e x y x =⋅在1x =处切线的斜率:e e 2e +=. 故选:A .4.设0a >,0b >,则“a b >”是“ln ln a b >”的( ).A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件【考点】2L :必要条件、充分条件与充要条件的判断. 【分析】利用对数函数的单调性即可得出.【解答】解:0a >,0b >,则“a b >”⇔“ln ln a b >”.因此0a >,0b >,则“a b >”是“ln ln a b >”的充要条件. 故选:D .5.函数:()3ln f x x x =+的单调递增区间是( ).A .10,e ⎛⎫⎪⎝⎭B .(e,)+∞C .1,e ⎛⎫+ ⎪⎝⎭∞D .1,e e ⎛⎫⎪⎝⎭【考点】6B :利用导数研究函数的单调性.【分析】求出()f x 的导函数,令导函数大于0列出关于x 的不等式,求出不等式的解集即可得到x 的范围即为函数的单调递增区间.【解答】解:由函数()3ln f x x x =+得:()ln 1f x x =+,令()ln 10f x x '=+>即1ln 1ln e x >-=,根据e 1>得到此对数函数为增函数,所以得到1ex >,即为函数的单调递增区间. 故选C .6.在复平面内,复数2i1i -+(是虚数单位)的共轭复数对应的点位于( ). A .第四象限B .第三象限C .第二象限D .第一象限【考点】A5:复数代数形式的乘除运算.【分析】由已知利用复数代数形式的乘除运算化简,求得复数2i1i-+的共轭复数对应的点的坐标得答案. 【解答】解:由2i (2i)(1i)13i 13i 1i (1i)(1i)222----===-++-, 得13i 22z =+, ∴在复平面内,复数2i 1i -+的共轭复数对应的点的坐标为13,22⎛⎫⎪⎝⎭,位于第一象限.7.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ).A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-【考点】2J :命题的否定.【分析】根据特称命题的否定是全称命题即可得到结论. 【解答】解:命题的否定是:(0,)x ∀∈+∞,ln 1x x ≠-,故选:C .8.已知23()1(1)(1)(1)(1)n f x x x x x =+++++++++L ,则(0)f '=( ).A .nB .1n -C .(1)2n n -D .1(1)2n n +【考点】63:导数的运算.【分析】根据题意,对函数()f x 求导,计算可得()f x ',将0x =代入计算可得答案. 【解答】解:根据题意,23()1(1)(1)(1)(1)n f x x x x x =+++++++++L ,则其导数231()12(1)3(1)4(1)(1)n f x x x x n x -'=+++++++++L , 则(1)(0)12342n n f n +'=+++++=L ; 故选:D .9.已知32()(6)1f x x ax a x =++++有极大值和极小值,则a 的取值范围为( ).A .[]3,6-B .(3,6)-C .]([,36,)-∞-+∞UD .(,3)(6,)-∞-+∞U【考点】6C :函数在某点取得极值的条件.【分析】先求出导数()f x ',由()f x 有极大值、极小值可知()0f x '=有两个不等实根. 【解答】解:函数32()(6)1f x x ax a x =++++,所以2()32(6)f x x ax a '=+++,因为函数有极大值和极小值,所以方程()0f x '=有两个不相等的实数根, 即232(6)0x ax a +++=有两个不相等的实数根,∴0∆>,∴2(2)43(6)0a a +-⨯⨯>,解得:3a <-或6a >.10.方程2sin cos x x x x =+的实数解个数是( ).A .3B .0C .2D .1【考点】54:根的存在性及根的个数判断.【分析】令2()sin cos f x x x x x =--,判断()f x 的单调性,计算极值,从而得出()f x 的零点个数.【解答】解:令2()sin cos f x x x x x =--,则()2sin cos sin (2cos )f x x x x x x x x '=--+=-, ∵2cos 0x ->,∴当0x <时,()0f x '<,当0x >时,()0f x '>, ∴()f x 在(0)-∞,上单调递减,在(0,)+∞上单调递增, ∴当0x =时,()f x 取得最小值1-,又x →-∞时,()f x →+∞,x →+∞时,()f x →+∞, ∴()f x 有2个零点,即发出2sin cos x x x x =+有2解. 故选C .二、填空题:本大题共6小题,每小题5分,共30分. 11.复数(2i)i +⋅的模为__________. 【考点】A8:复数求模.【分析】利用复数代数形式的乘法运算化简,再由复数模的计算公式求解. 【解答】解:∵(2i)i 12i +⋅=-+,∴复数(2i)i +⋅12.命题 “若0a b -=,则()()0a b a b -+=”的逆否命题为__________. 【考点】25:四种命题间的逆否关系. 【分析】根据逆否命题的定义进行求解即可.【解答】解:根据逆否命题的定义得命题的逆否命题为:若()()0a b a b -+≠则0a b -≠, 故答案为:()()0a b a b -+≠则0a b -≠.13.曲线3()2f x x x =+-在点0P 处的切线平行于直线41y x =-,则0P 点坐标为__________. 【考点】6H :利用导数研究曲线上某点切线方程.【分析】先设切点坐标,然后对()f x 进行求导,根据曲线在0P 点处的切线平行于直线4y x=建立等式,从而求出切点的横坐标,代入到()f x 即可得到答案. 【解答】解:设0P 点的坐标为(())a f a ,,由3()2f x x x =+-,得到2()31f x x '=+,由曲线在0P 点处的切线平行于直线4y x =,得到切线方程的斜率为4, 即2()314f a a '=+=,解得1a =或1a =-, 当1a =时,(1)0f =;当1a =-时,(1)4f -=-, 则0P 点的坐标为(1,0)或(1,4)--. 故答案为:(1,0)或(1,4)--.14.函数26()1xf x x=+在区间[]0,3的最大值为__________. 【考点】7F :基本不等式.【分析】对x 分类讨论,利用基本不等式的性质即可得出. 【解答】解:0x =时,(0)0f =.3](0,x ∈时,6()31f x x x==+,当且仅当1x =时取等号.∴函数26()1xf x x =+在区间[]0,3的最大值为3. 故答案为:3.15.若命题“{}250|4x x x x -∈+>”是假命题,则x 的取值范围是__________. 【考点】2K :命题的真假判断与应用.【分析】由题意可得对于任意x ,不等式2540x x +>-不成立,即2540x x +-≤成立.求解不等式得答案.【解答】解:命题“{}250|4x x x x -∈+>”是假命题,说明对于任意x ,不等式2540x x +>-不成立, 即2540x x +-≤成立. 解得14x ≤≤.∴x 的取值范围是14x ≤≤.故答案为:14x ≤≤.16.对于函数()y f x =,x D ∈,若对于任意1x D ∈,存在唯一的2x D ∈,M ,则称函数()f x 在D 上的几何平均数为M .那么函数32()1f x x x -=+,在[]1,2x ∈上的几何平均数M =__________. 【考点】34:函数的值域.【分析】根据已知中对于函数()y f x =,x D ∈,若存在常数C ,对任意1x D ∈,存在唯一的2x D ∈M ,则称函数()f x 在D 上的几何平均数为M .我们易得若函数在区间D 上单调递增,则M 应该等于函数在区间D 上最大值与最小值的几何平均数,由32()1f x x x -=+,[]1,2D =,代入即可得到答案.【解答】解:根据已知中关于函数()f x 在D 上的几何平均数为M 的定义,由于()f x 的导数为2()32f x x x '=-,在[]1,2内()0f x '>, 则32()1f x x x -=+在区间[]1,2单调递增, 则11x =时,存在唯一的22x =与之对应,且1x =时,()f x 取得最小值1,2x =时,取得最大值5,故M .三、解答题:本大题共2小题,共20分. 17.设函数2()ln f x x x x =-+. (I )求()f x 的单调区间.(II )求()f x 在区间1,e 2⎡⎤⎢⎥⎣⎦上的最大值.【考点】6B :利用导数研究函数的单调性;6E :利用导数求闭区间上函数的最值. 【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; (Ⅱ)求出函数的单调区间,得到函数的最大值和最小值即可. 【解答】解:(I )因为2()ln f x x x x =-+其中0x >,所以1(1)(21)()21x x f x x x x-+'=-+=, 令()0f x '>,解得:1x >,令()0f x '<,解得:01x <<, 所以()f x 的增区间为(0,1),减区间为(1,)+∞.(II )由(I )()f x 在1,12⎡⎤⎢⎥⎣⎦单调递增,在[]1,e 上单调递减,∴max ()(1)0f x f ==.18.已知函数2221()1ax a f x x +-=+,其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程. (Ⅱ)求()f x 的单调区间.【考点】6B :利用导数研究函数的单调性;6H :利用导数研究曲线上某点切线方程. 【分析】(Ⅰ)当1a =时,求导函数,确定切点坐标与切线的斜率,即可得到曲线()y f x =在原点处的切线方程;(Ⅱ)求导函数可得,分类讨论,利用导数的正负,可得函数的单调区间. 【解答】解:(Ⅰ)当1a =时,22()1x f x x =+,222(1)(1)()(1)x x f x x +-'=-+. ∴(0)2f '=, ∵(0)0f =,∴曲线()y f x =在原点处的切线方程是20x y -=. (Ⅱ)求导函数可得,222()(1)()(1)x a ax f x x +-'=-+.当0a =时,222()(1)xf x x '=+,所以()f x 在(0,)+∞单调递增,在(,0)-∞单调递减.当0a ≠,221()()2(1)x a x a f x ax ⎛⎫+- ⎪⎝⎭'=-+. ①当0a >时,令()0f x '=,得1x a =-,21x a=,()f x 与()f x '的情况如下:故()f x 的单调减区间是(,)a -∞-,,a ⎛⎫+ ⎪⎝⎭∞;单调增区间是,a a ⎛⎫- ⎪⎝⎭.②当0a <时,()f x 与()f x '的情况如下:所以()f x 的单调增区间是,a ⎛⎫- ⎪⎝⎭∞,(,)a -+∞;单调减区间是,a a ⎛⎫- ⎪⎝⎭,(,)a -+∞.综上,0a >时,()f x 在(,)a -∞-,1,a ⎛⎫+ ⎪⎝⎭∞单调递减;在1,a a ⎛⎫- ⎪⎝⎭单调递增.0a =时,()f x 在(0,)+∞单调递增,在(,0)-∞单调递减;0a <时,()f x 在1,a ⎛⎫- ⎪⎝⎭∞,(,)a -+∞单调递增;在1,a a ⎛⎫- ⎪⎝⎭单调递减.一、卷(II )选择题:本大题共3小题,每小题5分,共15分.19.若函数3211()(1)132f x x ax a x =-+-+在区间(1,)+∞上为增函数,则实数a 的取值范围是( ).A .[2,)+∞B .(2,)+∞C .(2],-∞D .(,2)-∞【考点】6B :利用导数研究函数的单调性.【分析】求函数的导数,利用函数单调性和导数之间的关系进行求解即可.【解答】解:3211()(1)132f x x ax a x =-+-+,[]2()(1()(1)1)f x x ax a x a x '=+-=----,11a -≤时,符合题意,11a ->时,令()0f x '≥,解得:1x a -≥或1x ≤,若()f x 在区间(1,)+∞上为增函数, 则11a -≤,解得:2a ≤, 故选:C .20.观察211x x '⎛⎫=- ⎪⎝⎭,323)(x x '=,(sin )cos x x '=,由归纳推理可得:若函数()f x 在其定义域上满足()()f x f x -=-,记()g x 为()f x 的导函数,则()g x -=( ).A .()f x -B .()f xC .()g xD .()g x -【考点】F1:归纳推理.【分析】由已知中211x x '⎛⎫=- ⎪⎝⎭,323)(x x '=,(sin )cos x x '=,L 分析其规律,我们可以归纳推断出,奇函数的导数是偶函数,即可得到答案.【解答】解:由给出的例子可以归纳推理得出“奇函数的导数是偶函数”,∵若函数()f x 在其定义域上满足()()f x f x -=-, ∴()f x 为奇函数, ∵()g x 为()f x 的导函数, ∴()()g x g x -=. 故选:C .21.若i 为虚数单位,设复数z 满足1z =,则1i z -+的最大值为( ).A1B.2C1D.2【考点】A8:复数求模.【分析】由题意画出图形,再由1i 1i)z z --=+-(的几何意义,即动点Z 到定点(1,1)P -的距离求解.【解答】解:1i 1i)z z --=+-(,其几何意义为动点Z 到定点(1,1)P -的距离, 又1z =,如图:则1i z -+1. 故选:C .二、填空题:本大题共3小题,每小题5分,共15分. 22.曲线n y x =在2x =处的导数为12,则n =__________. 【考点】63:导数的运算.【分析】求出函数线n y x =的导函数,把2x =代入导函数解析式可求n 的值. 【解答】解:由n y x =,得1n y nx -'=,又曲线n y x =在2x =处的导数为12, 所以1212n n -⋅=,3n =. 故答案为3.23.若0a >,0b >,且函数32()42f x x ax bx --=在1x =处有极值,则ab 的最大值为__________.【考点】6D :利用导数研究函数的极值.【分析】求出导函数,利用函数在极值点处的导数值为0得到a ,b 满足的条件,利用基本不等式求出ab 的最值.【解答】解:由题意,导函数2(_1222f x x ax b -'=-,∵在1x =处有极值,(1)0f '=, ∴6a b +=, ∵0a >,0b >,∴292a b ab +⎛⎫= ⎪⎝⎭≤,当且仅当3a b ==时取等号,∴ab 的最大值等于9. 故答案为:9.24.已知函数1()sin 3f x x x =-,[]0,πx ∈,[]001cos (0,π)3x x =∈,那么下面命题中真命题的序号是__________. ①()f x 的最大值为0()f x ; ②()f x 的最小值为0()f x ; ③()f x 在[]00,x 上是减函数; ④()f x 在[]0,πx 上是减函数.【考点】2K :命题的真假判断与应用;6B :利用导数研究函数的单调性;6E :利用导数求闭区间上函数的最值.【分析】可求出1()sin 3f x x x =-的导数,研究出它的单调性确定出最值,再由这些性质对四个命题进行比较验证,选出正确命题【解答】解:1()sin 3f x x x =-的导数1()cos 3f x '=-, 又[]001cos (0,π)3x x =∈, ∴函数()f x 在[]00,x 上是增函数,()f x 在[]0,πx 上是减函数,∴()f x 的最大值为0()f x ,由此知①④是正确命题,故答案为①④.三、解答题:本大题共2小题,共20分.25.已知函数322()f x x ax bx a =+++.(I )若()f x 在1x =处有极值10,求a ,b 的值.(II )若当1a =-时,()0f x <在[]1,2x ∈恒成立,求b 的取值范围.【考点】6D :利用导数研究函数的极值;6K :导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,得到关于导函数的方程组,求出a ,b 的值即可; (Ⅱ)分离参数,问题转化为321x x b x -+-<在[]1,2x ∈恒成立,令321()x x g x x-+-=,根据函数的单调性求出b 的范围即可.【解答】解:(Ⅰ)2()32f x x ax b '=++,由题设有(1)0f '=,(1)10f =,即2320110a b a b a ++=⎧⎨+++=⎩,解得:33a b =-⎧⎨=⎩或411a b =⎧⎨=-⎩, 经验证,若33a b =-⎧⎨=⎩,则22()3633(1)f x x x x +=--'=, 当1x >或1x <时,均有()0f x '>,可知此时1x =不是()f x 的极值点,故33a b =-⎧⎨=⎩舍去411a b =⎧⎨=-⎩符合题意, 故411a b =⎧⎨=-⎩. (Ⅱ)当1a =-时,32()1f x x x bx -=++,若()0f x <在[]1,2x ∈恒成立,即3210x x bx ++<-在[]1,2x ∈恒成立, 即321x x b x-+-<在[]1,2x ∈恒成立,令321()x x g x x-+-=, 则2323222(32)(1)21()x x x x x x x g x x x -+--+--++'==, 由32322111()x x x x x -++=-+-可知[]1,2x ∈时()0g x '<, 即321()x x g x x-+-=在[]1,2x ∈单调递减, max 5()(2)2g x g ==-, ∴52b <-时,()0f x <在[]1,2x ∈恒成立.26.已知函数3()3e f x x ax -=+,()1ln g x x =-,其中e 为自然对数的底数.(Ⅰ)若曲线()y f x =在点(1,)(1)f 处的切线与直线:20l x y +=垂直,求实数a 的值. (Ⅱ)设函数1()()22F x x g x x ⎡⎤=-+-⎢⎥⎣⎦,若()F x 在区间(,1)()m m m +∈Z 内存在唯一的极值点,求m 的值.(Ⅲ)用{}m a x ,m n 表示m ,n 中的较大者,记函数{}()max (),()(0)h x f x g x x =>.若函数()h x 在(0,)+∞ 上恰有2个零点,求实数a 的取值范围.【考点】6D :利用导数研究函数的极值;6H :利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算(1)f ',求出a 的值即可;(Ⅱ)求出函数()F x 的导数,根据函数的单调性求出函数的极值点,求出对应的m 的值即可;(Ⅲ)通过讨论a 的范围求出函数()f x 的单调区间,结合函数的单调性以及函数的零点个数确定a 的范围即可.【解答】解:(Ⅰ) 易得,2()33f x x a '=-,所以(1)33f a '=-, 依题意,1(33)12a ⎛⎫--=- ⎪⎝⎭,解得13a =; (Ⅱ)因为2111()()2(1ln )2ln 222F x x g x x x x x x x x x ⎡⎤⎡⎤=-+-=--+-=-+⎢⎥⎢⎥⎣⎦⎣⎦, 则()ln 11ln 2F x x x x x '=+-+=-+.设()ln 2t x x x =-+, 则11()1x t x x x-'=-=. 令()0t x '=,得1x =.则由()0t x '>,得01x <<,()F x '为增函数;由()0t x '<,得1x >,()F x '为减函数; 而222111220e e e F ⎛⎫'=--+=-< ⎪⎝⎭,(1)10F '=>. 则()F x '在(0,1)上有且只有一个零点1x ,且在1(0,)x 上()0F x '<,()F x 为减函数;在1(,)1x 上()0F x '>,()F x 为增函数.所以1x 为极值点,此时0m =.又(3)ln310F '=->,(4)2ln220F '=-<,则()F x '在(3,4)上有且只有一个零点2x ,且在2(3,)x 上()0F x '>,()F x 为增函数;在2(),4x 上()0F x '<,()F x 为减函数.所以2x 为极值点,此时3m =.综上0m =或3m =.(Ⅲ)(1)当(0,e)x ∈时,()0g x >,依题意,()(0)0h x g >≥,不满足条件; (2)当e x =时,(e)0g =,3()3f e e ae e -=+,①若3(e)e 3e e 0f a -=+≤,即2e 13a +≥,则e 是()h x 的一个零点; ②若3(e)e 3e e 0f a -=+>,即2e 13a +<,则e 不是()h x 的零点; (3)当(e,)x ∈+∞时,()0g x <,所以此时只需考虑函数()f x 在(e,)+∞上零点的情况.因为22()333e 3f x x a a ->-'=,所以①当2e a ≤时,()0f x '>,()f x 在(e,)+∞上单调递增.又3(e)e 3e e f a -=+,所以(i )当2e 13a +≤时,(e)0f ≥,()f x 在(e,)+∞上无零点; (ii )当22e 1e 3a +<≤时,(e)0f <, 又333(2e)8e 6e e 8e 6e e 0f a =+-+->≥,所以此时()f x 在(e,)+∞上恰有一个零点;②当2e a >时,令()0f x '=,得x =由()0f x '<,得e x <由()0f x '>,得x >所以()f x 在上单调递减,在)+∞上单调递增.因为3(e )e f a -=<+-+<,32222(2)86e 86e 2e 0f a a a a a a =+=->+-+>,所以此时()f x 在(e,)+∞上恰有一个零点; 综上,2e 13a +>.。

2017海淀区高二(下)期中(数学)理含答案

2017海淀区高二(下)期中(数学)理含答案

2017海淀区高二(下)期中数学(理科)一.选择题:本大题共8小题,每小题4分,共32分.1.(4分)复数1﹣i的虚部为()A.i B.1 C.D.﹣2.(4分)xdx=()A.0 B.C.1 D.﹣3.(4分)若复数z1,z2在复平面内的对应点关于虚轴对称,且z1=1+i,则z1•z2=()A.﹣2 B.2 C.﹣2i D.2i4.(4分)若a,b,c均为正实数,则三个数a+,b+,c+这三个数中不小于2的数()A.可以不存在 B.至少有1个C.至少有2个D.至多有2个5.(4分)定义在R上的函数f(x)和g(x),其各自导函数f′(x)f和g′(x)的图象如图所示,则函数F(x)=f(x)﹣g(x)极值点的情况是()A.只有三个极大值点,无极小值点B.有两个极大值点,一个极小值点C.有一个极大值点,两个极小值点D.无极大值点,只有三个极小值点6.(4分)函数f(x)=lnx与函数g(x)=ax2﹣a的图象在点(1,0)的切线相同,则实数a的值为()A.1 B.﹣ C.D.或﹣7.(4分)函数y=e x(2x﹣1)的大致图象是()A.B.C.D.8.(4分)为弘扬中国传统文化,某校在高中三个年级中抽取甲、乙、丙三名同学进行问卷调查.调查结果显示这三名同学来自不同的年级,加入了不同的三个社团:“楹联社”、“书法社”、“汉服社”,还满足如下条件:(1)甲同学没有加入“楹联社”;(2)乙同学没有加入“汉服社”;(3)加入“楹联社”的那名同学不在高二年级;(4)加入“汉服社”的那名同学在高一年级;(5)乙同学不在高三年级.试问:丙同学所在的社团是()A.楹联社 B.书法社C.汉服社D.条件不足无法判断二.填空题:本大题共6小题,每小题4分,共24分.9.(4分)在复平面内,复数对应的点的坐标为.10.(4分)设函数f(x),g(x)在区间(0,5)内导数存在,且有以下数据:x 1 2 3 4f(x) 2 3 4 1f′(x) 3 4 2 1g(x) 3 1 4 2g′(x) 2 4 1 3则曲线f(x)在点(1,f(1))处的切线方程是;函数f(g(x))在x=2处的导数值是.11.(4分)如图,f(x)=1+sinx,则阴影部分面积是.12.(4分)如图,函数f(x)的图象经过(0,0),(4,8),(8,0),(12,8)四个点,试用“>,=,<”填空:(1);(2)f′(6)f′(10).13.(4分)已知平面向量=(x1,y1),=(x2,y2),那么•=x1x2+y1y2;空间向量=(x1,y1,z1),=(x2,y2.z2),那么•=x1x2+y1y2+z1z2.由此推广到n维向量:=(a1,a2,…,a n),=(b1,b2,…,b n),那么•= .14.(4分)函数f(x)=e x﹣alnx(其中a∈R,e为自然常数)①∃a∈R,使得直线y=ex为函数f(x)的一条切线;②对∀a<0,函数f(x)的导函数f′(x)无零点;③对∀a<0,函数f(x)总存在零点;则上述结论正确的是.(写出所有正确的结论的序号)三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(10分)已知函数f(x)=x3﹣3x2﹣9x+2(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数f(x)在区间[﹣2,2]上的最小值.16.(10分)已知数列{a n}满足a1=1,a n+1+a n=﹣,n∈N*.(Ⅰ)求a2,a3,a4;(Ⅱ)猜想数列{a n}的通项公式,并用数学归纳法证明.17.(12分)已知函数f(x)=x﹣(a+1)lnx﹣,其中a∈R.(Ⅰ)求证:当a=1时,函数y=f(x)没有极值点;(Ⅱ)求函数y=f(x)的单调增区间.18.(12分)设f(x)=e t(x﹣1)﹣tlnx,(t>0)(Ⅰ)若t=1,证明x=1是函数f(x)的极小值点;(Ⅱ)求证:f(x)≥0.2017海淀区高二(下)期中数学(理科)参考答案一.选择题:本大题共8小题,每小题4分,共32分.1.【解答】复数1﹣i的虚部为﹣.故选:D.2.【解答】xdx=x2|=,故选:B3.【解答】∵复数z1、z2在复平面内的对应点关于虚轴对称,z1=1+i,∴z2=﹣1+i.∴z1•z2=﹣(1+i)(1﹣i)=﹣2.故选:A4.【解答】假设a+,b+,c+这三个数都小于2,∴a++b++c+<6∵a++b++c+=(a+)+(b+)+(c+)≥2+2+2=6,这与假设矛盾,故至少有一个不小于2故选:B5.【解答】F′(x)=f′(x)﹣g′(x),由图象得f′(x)和g′(x)有3个交点,从左到右分分别令为a,b,c,故x∈(﹣∞,a)时,F′(x)<0,F(x)递减,x∈(a,b)时,F′(x)>0,F(x)递增,x∈(b,c)时,F′(x)<0,F(x)递减,x∈(c,+∞)时,F′(x)>0,F(x)递增,故函数F(x)有一个极大值点,两个极小值点,故选:C.6.【解答】由题意,f′(x)=,g′(x)=2ax,∵函数f(x)=lnx与函数g(x)=ax2﹣a的图象在点(1,0)的切线相同,∴1=2a,∴a=,故选C.7.【解答】y′=e x(2x﹣1)+2e x=e x(2x+1),令y′=0得x=﹣,∴当x<﹣时,y′<0,当x时,y′>0,∴y=e x(2x﹣1)在(﹣∞,﹣)上单调递减,在(﹣,+∞)上单调递增,当x=0时,y=e0(0﹣1)=﹣1,∴函数图象与y轴交于点(0,﹣1);令y=e x(2x﹣1)=0得x=,∴f(x)只有1个零点x=,当x时,y=e x(2x﹣1)<0,当x时,y=e x(2x﹣1)>0,综上,函数图象为A.故选A.8.【解答】假设乙在高一,则加入“汉服社”,与(2)矛盾,所以乙在高二,根据(3),可得乙加入“书法社”,根据(1)甲同学没有加入“楹联社”,可得丙同学所在的社团是楹联社,故选A.二.填空题:本大题共6小题,每小题4分,共24分.9.【解答】复数==﹣1﹣i在复平面内对应的点的坐标(﹣1,﹣1).故答案为:(﹣1,﹣1).10.【解答】f′(1)=3,f(1)=2,∴曲线f(x)在点(1,f(1))处的切线方程是y=3x﹣1,[f(g(x))]′=f′(g(x))g′(x),x=2时,f′(g(2))g′(2)=3×4=12,故答案为y=3x﹣1;1211.【解答】由图象可得S=(1+sinx)dx=(x﹣cosx)|=π﹣cosπ﹣(0﹣cos0)=2+π,故答案为:π+212.【解答】(1)由函数图象可知=,==2,∴.(2)∵f(x)在(4,8)上是减函数,在(8,12)上是增函数,∴f′(6)<0,f′(10)>0,∴f′(6)<f′(10).故答案为(1)>,(2)<.13.【解答】由题意可知•=a1b1+a2b2+a3b3+…+a n b n.故答案为:a1b1+a2b2+a3b3+…+a n b n.14.【解答】对于①,函数f(x)=e x﹣alnx的导数为f′(x)=e x﹣,设切点为(m,f(m)),则e=e m﹣,em=e m﹣alnm,可取m=1,a=0,则∃a∈R,使得直线y=ex为函数f(x)的一条切线,故①正确;对于②,∀a<0,函数f(x)的导函数f′(x)=e x﹣,由x>0,可得f′(x)>0,则导函数无零点,故②正确;对于③,对∀a<0,函数f(x)=e x﹣alnx,由f(x)=0,可得e x=alnx,分别画出y=e x和y=alnx,(a<0)的图象,可得它们存在交点,故f(x)总存在零点,故③正确.故答案为:①②③.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.【解答】(Ⅰ)f′(x)=3x2﹣6x﹣9=3(x+1)(x﹣3),令f′(x)=0,得x=﹣1或x=3,当x变化时,f′(x),f(x)在区间R上的变化状态如下:x (﹣∞﹣﹣1 (﹣1,3) 3 (3,+∞)1)f′(x)+ 0 ﹣0 +f(x)↗极大↘极小↗所以f(x)的单调递增区间是(﹣∞,﹣1),(3,+∞);单调递减区间是(﹣1,3);(Ⅱ)因为f(﹣2)=0,f(2)=﹣20,再结合f(x)的单调性可知,函数f(x)在区间[﹣2,2]上的最小值为﹣20.16.【解答】(Ⅰ)由题意a1=1,a2+a1=,a3+a2=﹣1,a4+a3=2﹣解得:a2=﹣1,a3=﹣,a4=2﹣(Ⅱ)猜想:对任意的n∈N*,a n =﹣,①当n=1时,由a1=1=﹣,猜想成立.②假设当n=k (k∈N*)时,猜想成立,即a k =﹣则由a k+1+a k =﹣,得a k+1=﹣,即当n=k+1时,猜想成立,由①、②可知,对任意的n∈N*,猜想成立,即数列{a n}的通项公式为a n =﹣.17.【解答】(Ⅰ)证明:函数f(x)的定义域是(0,+∞).当a=1时,f(x)=x﹣2lnx ﹣,函数f′(x)=≥0,所以函数f(x)在定义域(0,+∞)上单调递增,所以当a=1时,函数y=f(x)没有极值点;(Ⅱ)f′(x)=1﹣+=,x∈(0,+∞)令f′(x)=0,得x1=1,x2=a,①a≤0时,由f′(x)>0可得x>1,所以函数f(x)的增区间是(1,+∞);②当0<a<1时,由f′(x)>0,可得0<x<a,或x>1,所以函数f(x)的增区间是(0,a),(1,+∞);③当a>1时,由f′(x)>0可得0<x<1,或x>a,所以函数f(x)的增区间是(0,1),(a,+∞);④当a=1时,由(Ⅰ)可知函数f(x)在定义域(0,+∞)上单调递增.综上所述,当a≤0时,函数y=f(x)的增区间是(1,+∞);当0<a<1时,所以函数f(x)的增区间是(0,a),(1,+∞);当a=1时,函数f(x)在定义域(0,+∞)上单调递增;当a>1时,所以函数f(x)的增区间是(0,1),(a,+∞).18.【解答】证明:(Ⅰ)函数f(x)的定义域为(0,+∞),…( 1分)若t=1,则f(x)=e x﹣1﹣lnx,.…(2分)因为f′(1)=0,…(3分)且0<x<1时,,即f′(x)<0,所以f(x)在(0,1)上单调递减;…(4分)x>1时,,即f′(x)>0,所以f(x)在(1,+∞)上单调递增;…(5分)所以x=1是函数f(x)的极小值点;…(6分)(Ⅱ)函数f(x)的定义域为(0,+∞),t>0.;…(7分)令,则,故g(x)单调递增.…(8分)又g(1)=0,…(9分)当x>1时,g(x)>0,因而f′(x)>0,f(x)单增,即f(x)的单调递增区间为(1,+∞);当0<x<1时,g(x)<0,因而f′(x)<0,f(x)单减,即f(x)的单调递减区间为(0,1).…(11分)所以x∈(0,+∞)时,f(x)≥f(1)=1≥0成立.…(12分)。

北京四中2016-2017学年高二下学期期中考试数学(理)试题

北京四中2016-2017学年高二下学期期中考试数学(理)试题

北京四中2016-2017学年下学期高二年级期中考试数学试卷(理科)试卷分为两卷,卷(I )100分,卷(II )50分,共计150分,考试时间120分钟卷(I )一、选择题:本大题共10小题,每小题5分,共50分.1. 复数i-12= A. 2+2i B. 22+22i C. 1-i D. 1+i2. 下列求导正确的是A. (3x 2-2)'=3xB. (log 2x ) '=2ln 1⋅xC. (cosx ) '=sinxD. (xln 1)'=x 3. 曲线y=x ·e x 在x=1处切线的斜率等于A. 2eB. eC. 2D. 1 4. ⎰421dx x等于 A. -21n 2 B. 21n 2 C. -ln 2 D. ln 25. 函数f (x )=3+x lnx 的单调递增区间为A. (0,e 1)B. (e ,+∞)C. (e 1,+∞)D. (e 1,e0,31,221,e-1,+∞) B. (-1,+∞) C. (-∞,-11,2g (x )+21x-2 三、解答题:本大题共2小题,共20分.17. (本小题满分8分)解:(I )因为f (x )=lnx-x 2+x 其中x>0所以f '(x )=x 1-2x+1=xx x )12)(1(+- 所以f (x )的增区间为(0,1),减区间为(1,+∞).(II )由(I )f (x )在hslx3y3h 21,11,e1,21,21,21,21,21,2g (x )+21x-2(1-lnx )+21x-2hslx3y3h=xlnx-21x 2+x, 则F'(x )=lnx+l-x+l=lnx-x+2. 设t (x )=lnx-x+2,则t '(x )=x 1-1=xx -1. 令t '(x )=0,得x=1.则由t '(x )>0,得0<x<1,F '(x )为增函数;由t '(x )<0,得x>1,F '(x )为减函数;而F '(21e )=-2-21e +2=-21e <0,F '(1)=1>0. 则F '(x )在(0,1)上有且只有一个零点x 1,且在(0,x 1)上F '(x )<0,F (x )为减函数;在(x 1,1)上F '(x )>0,F (x )为增函数.所以x 1为极值点,此时m=0.又F '(3)=ln3-1>0,F '(4)=21n2-2<0,则F '(x )在(3,4)上有且只有一个零点x 2,且在(3,x 2)上F '(x )>0,F (x )为增函数;在(x 2,4)上F '(x )<0,F (x )为减函数.所以x 2为极值点,此时m=3.综上m=0或m=3. …………………9分(III )(1)当x ∈(0,e )时,g (x )>0,依题意,h (x )≥g (x )>0,不满足条件;(2)当x=e 时,g (e )=0,f (e )=e 3-3ae+e ,①若f (e )=e 3-3ae+e≤0,即a≥312+e ,则e 是h (x )的一个零点; ②若f (e )=e 3-3ae+e>0,即a<312+e ,则e 不是h (x )的零点; (3)当x ∈(e ,+∞)时,g (x )<0,所以此时只需考虑函数f (x )在(e,+∞)上零点的情况. 因为f '(x )=3x 2-3a>3e 2-3a ,所以①当a≤e 2时,f '(x )>0,f (x )在(e ,+∞)上单调递增.又f (e )=e 3-3ae+e ,所以(i )当a≤312+e 时,f (e )≥0,f (x )在(e ,+∞)上无零点; (ii )当312+e <a≤e 2时,f (e )<0, 又f (2e )=8e 3-6ae+e≥8e 3-6e 3+e>0,所以此时f (x )在(e ,+∞)上恰有一个零点;②当a>e 2时,令f '(x )=0,得x=±a .由f '(x)<0,得e<x<a;由f '(x)>0,得x>a;所以f(x)在(e,a)上单调递减,在(a,+∞)上单调递增. 因为f(e)=e3-3ae+e<e3-3e3+e<0,f(2a)=8a3-6a2+e>8a2-6a2+e=2a2+e>0,所以此时f(x)在(e,+∞)上恰有一个零点;综上,a>312e. …………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法,转化为求函数最值处理.也可构造新函数然后利用导数来求解.注意利用数形结合的数学思想方法.
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.
11.【答案】
【解析】
.
12.【答案】
【解析】因为由题意得:所求封闭图形的面积为

13.【答案】(1,0)或(-1,-4)
【解析】函数求导,
,令
A. [-1,+∞) B. (-1,+∞) C. (-∞,-1] D. (-∞,-1)
20. 观察( )'=- ,(x3)'=3x2,(sinx)'=cosx,由归纳推理可得:若函数 f(x)在其定义域上满足 f(-x)=-f
(x),记 g(x)为 f(x)的导函数,则 g(-x)=
A. -f(x) B. f(x) C. g(x) D. -g(x)
3. 曲线 y=x·ex 在 x=1 处切线的斜率等于 A. 2e B. e C. 2 D. 1
Байду номын сангаас4.
等于
A. -21n 2 B. 21n 2 C. -ln 2 D. ln 2 5. 函数 f(x)=3+x lnx 的单调递增区间为
A. (0, ) B. (e,+∞) C. ( ,+∞)
D. ( ,e]
+∞)上恰有 2 个零点,求实数 a 的取值范围.
3 / 12
2017 北京四中高二(下)期中数学(文)
参考答案
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 1.
【答案】D
【解析】
,故选 D.
2. 【答案】B
3. 【答案】A
【解析】
时,
,故选 A.
4. 【答案】D
【解析】
故选 C
可得规律:奇函数的导函数是偶函数.由 f(-x)=-f(x)可知 是奇函数,故 为偶函数,
,故
选 C.
21.
【答案】C
【解析】|z-1+i|的几何意义是单位圆上的点与(1,1)点的距离,因为圆心到(1,1)点的距离为 ,所以|z-1+i|的最大
值为
,故选 C.
【答案】1 【解析】由题意,阴影部分的面积
为:
,故填 1.
15.【答案】
【解析】
,故填
.
16.【答案】 【解析】根据已知中关于函数 f(x)在 D 上的几何平均数为 M 的定义,
由于 f(x)的导数为
在[1,2]内 f′(x)>0,
则 f(x)=x3−x2+1 在区间[1,2]单调递增, 则 x1=1 时,存在唯一的 x2=2 与之对应, 且 x=1 时,f(x)取得最小值 1,x=2 时,取得最大值 5, 故 M= 故答案为: . 三、解答题:本大题共 2 小题,共 20 分.
6. 在复平面内,复数 (i 是虚数单位)的共轭复数对应的点位于
A. 第四象限 B. 第三象限 C. 第二象限 D. 第一象限
7. 函数 f(x)= 在区间[0,3]的最大值为
A. 3 B. 4 C. 2 D. 5 8. 已知 f(x)=1+(1+x)+(1+x)2+(1+x)3+…+(1+x)n,则 f '0)=
18. 已知函数 f(x)=
,其中 a∈R.
(I)当 a=1 时,求曲线 y=f(x)在原点处的切线方程; (II)求 f(x)的极值.
卷(II) 一、选择题:本大题共 3 小题,每小题 5 分,共 15 分
19. 若 f(x)=- x2+bln(x+2)在(-1,+∞)上是减函数,则实数 b 的取值范围是
(I)解:当 a=1 时,f(x)= ,f '(x)=-2
.…………2 分
由 f '(0)=2,得曲线 y=f(x)在原点处的切线方程是 2x-y=0.………4 分
(II)解:f '(x)=-2
. ………6 分
①当 a=0 时,f '(x)= .
所以 f(x)在(0,+∞)单调递增,(-∞,0)单调递减. ………………7 分
21. 若 i 为虚数单位,设复数 z 满足| z |=1,则|z-1+i|的最大值为
A. -1 B. 2-
C. +1 D. 2+
2 / 12
二、填空题:本大题共 3 小题,每小题 5 分,共 15 分. 22. 曲线 y=xn 在 x=2 处的导数为 12,则正整数 n=__________. 23. 设函数 y=-x2+l 的切线 l 与 x 轴,y 轴的交点分别为 A,B,O 为坐标原点,则△OAB 的面积的最小值为__________. 24. 对于函数①f(x)=4x+ -5,②f(x)=|log2 x|-( )x,③f(x)=cos(x+2)-cosx,判断如下两个命题的真 假:
,解得







.
综上:P0 坐标为(1,0)或(-1,-4).
点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点
及斜率,其求法
为:设
是曲线
上的一点,则以 的切点的切线方程为:
.若曲线


的切线平行于 轴(即导数不存在)时,由切线定义知,切线方程为

5 / 12
14. 如下图,由函数 f(x)=x2-x 的图象与 x 轴、直线 x=2 围成的阴影部分的面积为__________.
5. 【答案】C
【解析】
,令
,解得 ,故增区间为( ,+∞),故选 C.
6. 【答案】D
考点:复数的运算及表示. 7.
【答案】A 【解析】
,令
,解得

(舍),当
时,
;当
时,
8. 【答案】D
【解析】
;所以当
时,函数有极大值
,即 f(x)在[0,3]的最大值为 3,故选 A.

,故选 D.
4 / 12
9. 【答案】C 【解析】
当 a≠0,f '(x)=-2a
.
②当 a>0 时,令 f '(x)=0,得 x1=-a,x2= ,f(x)与 f '(x)的情况如下:
x
(-∞,x1)
x1
(x1,x2)
x2
f '(x)
-
0
+
0
f(x)

f(x1)

f(x2)
故 f(x)的单调减区间是(-∞,-a),( ,+∞);单调增区间是(-a, ).
命题甲:f(x)在区间(1,2)上是增函数; 命题乙:f(x)在区间(0,+∞)上恰有两个零点 x1,x2,且 x1x2<1. 能使命题甲、乙均为真的函数的序号是_____________. 三、解答题:本大题共 2 小题,共 20 分学&科&网... 25. 已知函数 f(x)=x3+ax2+bx+a2. (I)若 f(x)在 x=1 处有极值 10,求 a,b 的值; (II)若当 a=-1 时,f(x)<0 在 x∈[1,2]恒成立,求 b 的取值范围 26. 已知函数 f(x)=x3-3ax+e,g(x)=1-lnx,其中 e 为自然对数的底数. (I)若曲线 y=f(x)在点(1,f(1))处的切线与直线 l:x+2y=0 垂直,求实数 a 的值; (II)设函数 F(x)=-x[g(x)+ x-2],若 F(x)在区间(m,m+1)(m∈Z)内存在唯一的极值点,求 m 的值; (III)用 max{m,n}表示 m,n 中的较大者,记函数 h(x)=max{f(x),g(x)}(x>0). 若函数 h(x)在(0,
6 / 12
(II)由(I)f(x)在[ ,1]单调递增,在[1,e]上单调递减,
∴f(x)max=f(1)=0,f(x)max=f(1)=a-1. 18. 【答案】(I)2x-y=0; (II)见解析. 【解析】试题分析:(1)求出在原点处的导数值,得斜率,即可求出切线方程;
(2)求出导数,讨论单调性得极值. 试题解析:
的几何平均数为 M. 那么函数 f(x)=x3-x2+1,在 x∈[1,2]上的几何平均数 M=____________.
f(x)=x2-x
三、解答题:本大题共 2 小题,共 20 分. 17. 设函数 f(x)=lnx-x2+x.
(I)求 f(x)的单调区间;
(II)求 f(x)在区间[ ,e]上的最大值.
2017 北京四中高二(下)期中 数 学(理)
卷(I) 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 1. 复数 =
A. + i B. + i C. 1-i D. 1+i 2. 下列求导正确的是
A. (3x2-2)'=3x B. (log2x) '=
C. (cosx) '=sinx D. ( )'=x
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分. 11. 复数(2+i)·i 的模为__________. 12. 由曲线 y=x2,y=x3 围成的封闭图形的面积为__________.
1 / 12
13. 若曲线 y=x3+x-2 上的在点 P0 处的切线平行于直线 y=4x-1,则 P0 坐标为__________. 14. 如下图,由函数 f(x)=x2-x 的图象与 x 轴、直线 x=2 围成的阴影部分的面积为__________.
相关文档
最新文档