七年级下册数学:《二元一次方程》

合集下载

人教版七年级下册数学知识点归纳:第八章二元一次方程组

人教版七年级下册数学知识点归纳:第八章二元一次方程组

人教版七年级下册数学知识点归纳第八章 二元一次方程组8.1 二元一次方程组1.二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。

2.方程组:有几个方程组成的一组方程叫做方程组。

如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

8.2 消元——解二元一次方程组二元一次方程组有两种解法:一种是代入消元法,一种是加减消元法.1.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

8.3 实际问题与二元一次方程组 实际应用:审题→设未知数→列方程组→解方程组→检验→作答。

关键:找等量关系常见的类型有:分配问题、追及问题、顺流逆流、药物配制、行程问题 顺流逆流公式: v v v =+顺静水 v v v =−逆静水8.4 三元一次方程组的解法三元一次方程组:方程组含有三个未知数,每个方程中含有未知数的项的次数都是1,并且一共有三个方程组,像这样的方程组叫做三元一次方程组。

解三元一次方程组的基本思路:通过“代入”或“加减”进行消元。

把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。

数学七年级下册二元一次方程组性质

数学七年级下册二元一次方程组性质

数学七年级下册二元一次方程组性质数学七年级下册二元一次方程组性质导语:书是人类进步的阶梯,这句话说得真不错,我总是爱看书。

因为我从书本里明白了很多很多的道理。

下面是小编为大家整理的,数学知识,想要知更多的资讯,请多多留意CNFLA学习网!第一章二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。

②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。

2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。

使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。

注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。

二元一次方程组的解的讨论:a1x + b1y = c1 已知二元一次方程组a2x + b2y = c2①、②、③、当a1/a2 ≠ b1/b2 时,有唯一解; 当a1/a2 = b1/b2 ≠ c1/c2时,无解; 当a1/a2 = b1/b2 = c1/c2时,有无数解。

x + y = 4 2x + 2y = 8x + y = 4 x + y = 3 例如:对应方程组:①、②、③、 3x - 5y = 9 2x + 2y = 5例:判断下列方程组是否为二元一次方程组:a +b = 2 ②、x = 4 ③、3t + 2s = 5 ④、x = 11 ①、b +c = 3 y = 5 ts + 6 = 0 2x + 3y = 03、用含一个未知数的代数式表示另一个未知数:用含X的代数式表示Y,就是先把X看成已知数,把Y看成未知数;用含Y的代数式表示X,则相当于把Y看成已知数,把X看成未知数。

人教版七年级下册数学第八章二元一次方程组应用题——方案问题

人教版七年级下册数学第八章二元一次方程组应用题——方案问题

人教版七年级下册数学第八章二元一次方程组应用题——方案问题1.为预防新冠肺炎病毒,市面上95KN等防护型口罩出现热销.已知3个A型口罩和2个B型口罩共需31元;6个A型口罩和5个B型口罩共需70元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)小红打算用160元(全部用完)购买A型,B型两种口罩(要求两种型号的口罩均购买),正好赶上药店对口罩价格进行调整,其中A型口罩售价上涨40%,B型口罩按原价出售,则小红有多少种不同的购买方案?请设计出来.2.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品,两种奖品的单价.共需120元,购买5个A奖品和4个B奖品共需210元.求A B3.某文具店销售甲、乙两种钢笔,甲钢笔每支进价6元,乙钢笔每支进价14元,该文具店同时进购甲、乙两种钢笔共50支,恰好用去540元.求该文具店购进了甲、乙两种钢笔各多少支?4.某商店订购了A,B两种商品,A商品18元/千克,B商品20元/千克,若B商品的数量比A商品的2倍少10千克,购进两种商品共用了1540元,求两种商品各多少千克.5.甲类票480元/张,乙类票280元/张,某球迷协会组织50名球迷去现场为辽宁男篮加油助威,买门票共花20000元,请问该协会甲、乙两类门票各买了多少张?6.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A种饮料每瓶需加该添加剂2克,B种饮料每瓶需加该添加剂3克,已知生产共100瓶的A,B两种饮料恰好添加了270克该添加剂,则生产A、B两种饮料各多少瓶?7.小亮家装修,需购进甲、乙两种地砖共100块,共花费5600元,已知甲种地砖单价是80元/块,乙种地砖的单价是40元/块,问甲、乙两种地砖各购进了多少块?8.某工厂第一季度生产甲、乙两种机器共450台,改进技术后,计划第二季度生产这两种机器520台,其中甲种机器增产10%,乙种机器增产20%,该厂第二季度计划生产甲、乙机器各多少台?9.有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?10.寿阳某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元,购买一个足球、一个篮球各需多少元?11.已知用3辆A型车和2辆B型车一次可运货19吨;用2辆A型车和3辆B型车一次可运货21吨.(每辆车每次都满载货物)(1)求1辆A型车和1辆B型车载满货物一次分别可以运多少吨?(2)某货物中心现有49吨货物,计划同时租用A型车和B型车若干辆,一次运完,且恰好每辆车都载满货物,请问有哪几种不同的租车方法.12.为了更好地保护环境,治污公司决定购买若干台污水处理设备.现有A、B两种型号的设备,已知购买1台A型号设备比购买1台B型号设备多2万元,购买2台A 型号设备比购买3台B型号设备少6万元.求A、B两种型号设备的单价.13.“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.14.为备战体育中考,学校新购买一批排球和实心球,在某体育用品商店,若购买10个排球和20个实心球需用960元,若购买20个排球和10个实心球需用1380元.(1)排球、实心球的单价各是多少元?(2)寒假期间,该店开展了促销活动,所有商品一律九折销售.则购买20个排球和20个实心球实际共需要花费多少元?15.小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.16.在抗击新型冠状肺炎期间,我市某企业向湖北武汉捐赠了价值26万元的甲、乙两种仪器共30套.已知甲种仪器每套8000元,乙种仪器每套10000元,问甲、乙两种仪器各捐赠了多少套?17.疫情期间,学校为了学生在班级将生活垃圾和废弃口罩分类丢弃,准备购买A,B 两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需270元,购买2个A型垃圾箱比购买3个B型垃圾箱少用80元.求每个A型垃圾箱和B型垃圾箱各多少元?学校购买A型垃圾桶8个,B型垃圾桶16个,共花费多少元?18.(列二元一次方程组解应用题)某公司共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐.(1)请问1个大餐厅、1个小餐厅分别可供多少名员工就餐;(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全体450名员工就餐?请说明理由.19.某储运公司现有货物35吨,要全部运往灾区支援灾区重建工作.计划要同时租用A B、两种型号的货车,一次运送完全部货物,且每辆车均为满载.已知在货车满载的情况下,2辆A型货车和3辆B型货车一次共运货18吨;3辆A型货车和2辆B型货车一次共运货17吨.根据以下信息回答下列问题:(1)一辆A型车和一辆B型车各能满载货物多少吨?、两种型号的货车各几辆?请(2)按计划完成本次货物运送,储运公司要同时租用A B求出所有的租车方案.20.某家具商先准备购进A,B两种家具,已知100件A型家具和150件B型家具需要35000元,150件A型家具和100件B型家具需要37500元.(1)求A,B两种家具每件各多少元;(2)家具商现准备了8500元全部用于购进这两种家具,他有几种方案可供选择?请你帮他设计出所有的购买方案.。

七年下册数学二元一次方程计算题目

七年下册数学二元一次方程计算题目

七年下册数学二元一次方程计算题目在七年级的数学课程中,学生将接触到一元一次方程和二元一次方程的相关知识。

其中,二元一次方程是一种含有两个未知数的方程,需要通过一系列运算和规律进行求解。

本文将为您呈现七年级下册数学二元一次方程的计算题目,通过这些题目的练习,学生可以更好地掌握解二元一次方程的方法和技巧。

题目一求解下列二元一次方程组: 1. \(2x - y = 3\) 2. \(3x + 4y = 15\)解答过程首先,可以通过消元法或代入法来求解上述方程组。

我们将以代入法为例来解题。

将第一个方程中的\(y\)用\(2x - 3\)代入第二个方程中,得到: \[3x + 4(2x - 3) = 15\]化简得: \[3x + 8x - 12 = 15\] \[11x = 27\] \[x = \frac{27}{11}\]再将求解得到的\(x\)的值代入第一个方程中,得到: \[2(\frac{27}{11}) - y = 3\] \[y = \frac{54}{11} - 3\] \[y = \frac{21}{11}\]因此,该方程组的解为\(x = \frac{27}{11}\),\(y = \frac{21}{11}\)。

题目二求解下列二元一次方程组: 1. \(5x + 2y = 10\) 2. \(3x - y = 7\)解答过程同样地,我们可以选择代入法或消元法来解题。

这里我们以消元法为例。

首先,将第一个方程乘以3,得到: \[15x + 6y = 30\]然后将第二个方程乘以2,得到: \[6x - 2y = 14\]相加两个方程,得到: \[21x = 44\] \[x = \frac{44}{21}\]将求解得到的\(x\)的值代入任一原方程中,得到: \[5(\frac{44}{21}) + 2y = 10\] \[y = \frac{10 - \frac{220}{21}}{2}\] \[y = \frac{10}{21}\]因此,该方程组的解为\(x = \frac{44}{21}\),\(y = \frac{10}{21}\)。

人教版数学七年级下册 二元一次方程组

人教版数学七年级下册 二元一次方程组
y = 3x + 4
2. 若 2x2m+3 + 3y3n-7 = 0 是关于 x、y 的二元一次方程,
8 则 m =___-_1__,n =___3___.
3. 加工某种产品需经两道工序,第一道工序每人每天 可完成 900 件,第二道工序每人每天可完成 1200 件. 现有 7 位工人参加这两道工序,应怎样安排人力,才 能使每天第一、第二道工序所完成的件数相等?请列 出符合题意的二元一次方程组.
一次方程,则 m+n =__0___.
| m |=1
|m-1|≠0 2n-1 = 1
m = -1
n=1
m+n =0
总结 (1) 未知数的系数不为 0;
(2) 含未知数的项的次数都是 1.
2. 若 x2m-1 + 5y3n-2m = 7 是关于 x、y 的二元一次方程, 则 m =__1__,n =__1__.
和 y),并且含有未知数的项的次数都是 1, 像这样
的方程叫做二元一次方程.
例1 判断下列方程是否为二元一次方程:
(1) 4 y 3z z 6 ; 是
(2)2 y 5 x; 3
不是
(3) x2 2 y 0;
不是
(4) x
3 y
1;
不是
(5)2 x2 2 x y 2 x2; 是 总结 判断要点:
的解是 ( C )
B. x = 3,
y=6
D. x = 4,
y=2
一般地,二元一次方程有无数个解,而二元一次方 程组只有一个解.
二元 一次 方程
①每个方程含有
_两_个未知数;
②含有未知数的 项的次数_都__是___1
使二元一次方程两 边的值_相__等_的两个 _未__知__数__的值

人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)

人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)
第八章 二元一次方程组
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.


合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】

苏科版数学七年级下册《10.1二元一次方程》说课稿

苏科版数学七年级下册《10.1二元一次方程》说课稿

苏科版数学七年级下册《10.1 二元一次方程》说课稿一. 教材分析苏科版数学七年级下册《10.1 二元一次方程》这一节主要介绍了二元一次方程的概念、性质和简单的解法。

教材通过生活实例引入二元一次方程,使学生能够理解和掌握方程的基本概念。

同时,教材还通过例题和练习题,帮助学生掌握解二元一次方程的方法。

二. 学情分析学生在学习这一节之前,已经学习了有理数、方程和不等式等基础知识,对代数有一定的理解。

但是,对于二元一次方程这个概念,学生可能还比较陌生,需要通过实例和讲解来理解和掌握。

另外,学生可能对于解方程的方法还不够熟练,需要通过练习来提高。

三. 说教学目标1.知识与技能目标:学生能够理解二元一次方程的概念,掌握二元一次方程的解法。

2.过程与方法目标:学生能够通过实例和练习,提高解方程的能力。

3.情感态度与价值观目标:学生能够感受到数学与生活的联系,增强对数学的兴趣。

四. 说教学重难点1.教学重点:二元一次方程的概念、性质和解法。

2.教学难点:二元一次方程的解法和应用。

五. 说教学方法与手段1.教学方法:采用启发式教学法,通过实例和练习,引导学生理解和掌握二元一次方程的概念和解法。

2.教学手段:使用多媒体课件,展示实例和练习题,帮助学生直观地理解和掌握知识。

六. 说教学过程1.引入:通过一个生活实例,引导学生理解和掌握二元一次方程的概念。

2.讲解:讲解二元一次方程的性质和解法,通过例题和练习题,帮助学生理解和掌握解法。

3.练习:学生独立完成练习题,巩固所学知识。

4.应用:通过一个应用题,让学生将所学知识运用到实际问题中。

七. 说板书设计板书设计包括二元一次方程的定义、性质和解法。

通过板书,使学生能够清晰地理解和掌握知识。

八. 说教学评价教学评价主要包括学生的课堂表现、练习题和应用题的完成情况。

通过评价,了解学生对知识的掌握程度,及时调整教学方法和手段。

九. 说教学反思在教学过程中,教师需要不断反思自己的教学方法和手段,以确保学生能够更好地理解和掌握知识。

人教版初一数学下册:《二元一次方程组》全章复习与巩固(提高)知识讲解

人教版初一数学下册:《二元一次方程组》全章复习与巩固(提高)知识讲解

《二元一次方程组》全章复习与巩固(提高)知识讲解【学习目标】1.了解二元一次方程组及其解的有关概念;2.掌握消元法(代入或加减消元法)解二元一次方程组的方法;3.理解和掌握方程组与实际问题的联系以及方程组的解;4.掌握二元一次方程组在解决实际问题中的简单应用;5.通过对二元一次方程组的应用,培养应用数学的理念. 【知识网络】【要点梳理】要点一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个.要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程; ③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程; (3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式; ②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组. 要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的求知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组. 要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组. 2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组; (2)解这个二元一次方程组,求出两个未知数的值; (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起. 要点诠释: (1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法. (2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解. 3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z )表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; (4)解这个方程组,求出未知数的值; (5)写出答案(包括单位名称). 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 【典型例题】类型一、二元一次方程组的相关概念1.在下列方程中,只有一个解的是( )A . 1330x y x y +=⎧⎨+=⎩ B . 1332x y x y +=⎧⎨+=-⎩ C . 1334x y x y +=⎧⎨-=⎩ D . 1333x y x y +=⎧⎨+=⎩【思路点拨】逐一求每个选项中方程组的解,便得出正确答案 【答案】C .【解析】选项A 、B 、D 中,将方程1x y +=,两边同乘以3得333x y +=,从而可以判断A 、B 选项中的两个二元一次方程矛盾,所以无解;而D 中两个方程实际是一个二元一次方程,所以有无数组解,排除法得正确答案为C. 【总结升华】在111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 均不为零),(1)当121222a a c a b c =≠时,方程组无解;(2)当121222a a c a b c ==,方程组有无数组解; (3)当1222a a ab ≠,方程组有唯一解. 举一反三:【高清课堂:二元一次方程组章节复习409413 例1(3)】 【变式1】若关于x 、y 的方程()12mm x y ++=是二元一次方程,则m = .【答案】1.【变式2】已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于 .【答案】a =﹣3,b =﹣14.类型二、二元一次方程组的解法2. (黄冈调考)解方程组2()5335()322x y y x y y ⎧-+=⎪⎪⎨⎪--=-⎪⎩①②【思路点拨】本题结构比较复杂,一般应先化简,再消元.仔细观察题目,不难发现,方程组中的每一个方程都含有(x -y ),因此可以把(x -y )看作一个整体,消去(x -y )可得到一个关于y 的一元一次方程.【答案与解析】解:由①×9得:6(x -y )+9y =45 ③ ②×4得:6(x -y )-10y =-12 ④ ③-④得:19y =57, 解得y =3.把y =3代入①,得x =6.所以原方程组的解是63x y =⎧⎨=⎩.【总结升华】本题巧妙运用整体法求解方程组,显然比加减法或代入法要简单,在平时求方程组的解时,要善于发现方程组的特点,运用整体法求解会收到事半功倍的效果. 举一反三:【变式】(换元思想)解方程组16105610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=⎪⎩【答案】 解:设6x y m +=,10x yn -=. 则原方程组可化为15m n m n +=⎧⎨-=⎩,解得32m n =⎧⎨=-⎩.所以36210x y x y +⎧=⎪⎪⎨-⎪=-⎪⎩ 即1820x y x y +=⎧⎨-=-⎩.∴ 119x y =-⎧⎨=⎩.3.(2015•江都市模拟)小明和小文解一个二元一次组小明正确解得小文因抄错了c ,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c的值. 【思路点拨】把代入方程组第一个方程求出c 的值,将x 与y 的两对值代入第二个方程求出a 与b 的值,即可求出a+b+c 的值.【答案与解析】 解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5, 把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.举一反三:【变式】已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x y x 的解为a x =,b y =,则=-b a .【答案】11.类型三、实际问题与二元一次方程组4.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.60cm【思路点拨】初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x ,宽为y ,就可以列出一个关于x 、y 的二元一次方程组. 【答案与解析】解:设每块地砖的长为xc m 与宽为ycm ,根据题意得:6023x y x x y +=⎧⎨=+⎩,解得:4515x y =⎧⎨=⎩ 答:每块地砖长为45cm ,宽为15cm【总结升华】有些题目的相等关系不是直接给我们的,这就需要我们仔细阅读题目,设法提炼出题目中隐含的相等关系.举一反三:【变式】如图,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.【答案】解:设每个小长方形的长为x ,宽为y ,根据题意得:422(2)37x y x y y +=⎧⎨+-=⎩,解得103x y =⎧⎨=⎩所以阴影部分的面积为:22(73)922(79)910382y xy +-=+-⨯⨯=. 答:图中阴影部分的面积为82.5.(龙岩)已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)1辆A 型车和1辆车B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费. 【答案与解析】【总结升华】本题实际上是求二元一次方程组的正整数. 举一反三:【变式1】甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x+y=35 ① 2x +4y=9 ②
请找出下列方程的共同特点: x+y=35 ① 2x+4y=94 ②
二元一次方程
含有两个未知数,且含有未 知数的项的次数都是一次的方 程叫做二元一次方程.
练一练
判断下列式子是否为二元一次方程? x=0 不是 → 不是 → x的次数是2 不是 → 分式方程
(1) x+y=y (2) x2+y=0 (4) x+y=3
已知二元一次方程 3x+2y=10.
(1) 用关于x的代数式表示y;
(2) 求当x= -2,0,3时,对应的y的值, 并写出方程3x+2y=10的三个解.
练一练
请写出一个以 为解的二元一 y=1 次方程.
x=2
知识延伸
如图,等腰三角形ABC, AB=x,BC=y,周长为12. (1)列出关于x、y的二元一 A 次方程___________________. 2x+y=12 (2)求该方程的所有整数解。
使二元一次方程两边的值相 等的一对未知数的值叫做二元 一次方程的一个解.
x 记作 y
x 0 比如: 是方程 y 5 3x 2 y 10 的一个解.
要注意呦!
试一试
看谁写的快,写得多!
你能写出二元一次方程2x+y=5的解吗?
看 谁 理 解 好
由此你可以得出什么结论?
已知二元一次方程 x+y=10.
(1)用关于x的代数式表示y . y=10 - x (2)用关于y的代数式表示x . x=10 -y
变式训练1
已知二元一次方程 3x+y=10. (1)用关于x的代数式表示y. (2)用关于y的代数式表示x.
解:移项,得3x =10 -y
所以
x=
10- y
3
变式训练2
2 (3) x=―+1 y
(5)

不是 → xy的次数是2 xy+y=2 x 是 (6) -2y=0 3
把下列各对数代入二元一次方程 x+y=35,哪些能使方程两边的值相等? √ x=12,y=23
把x=12,y=23代入方程x+y=35,
左边=12+23=35=右边.
× x=-10,y=25 x=0,y=35 √ 2 1 ,y= 14 √ x=10 3 3
B
C
知识延伸
解: 把x=-2,y=a代入方程2x+3y=5,得: 2×(-2)+3×a=5 ∴ 3a=9
x=-2 是方程2x+3y=5的一 已知 y=a 个解,求a的值.

a=3
小结




欢迎您走进我们的课堂
§ 13、1
Байду номын сангаас
第十九中学 李英杰
一、学习目标: 1、了解二元一次方程,二元 一次方程组的概念。
2、会判断一组数是不是给出
的二元一次方程组的解。
情景导航:
今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何? 如果设鸡有x只,兔有y只,
则可列方程为:
鸡头+兔头=35
鸡脚+兔脚=94
一般情况下,一个二元一次方 程有无数个解.
请根据题意列出方程:
某球员在一场篮球比赛中共得35分 (其中罚球得10分).问:他分别投中了多 少个两分球和三分球?
解: 设他投中x个两分球、y个三分球, 那么 2x+3y=35-10, 即 2x+3y=25.
你能编拟一个所列方程为:2x+y=5 的实际问题吗?
相关文档
最新文档