(完整版)北师大版一元二次方程单元测试(含答案)

合集下载

第二章一元二次方程检测题(有答案)北师大版数学九年级上册

第二章一元二次方程检测题(有答案)北师大版数学九年级上册

第二章检测题(后附答案)(时间:100分钟 满分:120分) 一、选择题(每小题3分,共30分)1.一元二次方程x 2-4x +3=0的解为( )A .x 1=-1,x 2=3 B .x 1=1,x 2=3C .x 1=1,x 2=-3D .x 1=-1,x 2=-32.用配方法解一元二次方程x 2-4x -4=0时,下列变形正确的是( )A .(x -2)2=0 B .(x -2)2=5C .(x +2)2=8 D .(x -2)2=83.一元二次方程x 2-2x +b =0的两根分别为x 1和x 2,则x 1+x 2为( )A .-2 B .b C .2 D .-b 4.根据下面表格中的对应值:x 3.23 3.24 3.25 3.26ax 2+bx +c-0.06-0.020.030.09判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是( )A .3<x <3.23 B .3.23<x <3.24C .3.24<x <3.25 D .3.25<x <3.265.下列一元二次方程有实数解的是 ( )A .2x 2-x +1=0 B .x 2-2x +2=0C .x 2+3x -2=0 D .x 2+2=06.已知关于x 的一元二次方程(m -1)x 2+2x -3=0有实数根,则m 的取值范围是( )A .m ≥23 B .m<23C .m>23且m ≠1 D .m ≥23且m ≠17.随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为( )A .507(1+2x)=833.6B .507×2(1+x)=833.6C .507(1+x)2=833.6D .507+507(1+x)+507(1+x)2=833.68.已知关于x 的方程x 2-(2m -1)x +m 2=0的两实数根为x 1,x 2,若(x 1+1)(x 2+1)=3,则m 的值为( )A .-3B .-1C .-3或1D .-1或39.若直角三角形的两边长分别是方程x 2-7x +12=0的两根,则该直角三角形的面积是( )A .6 B .12 C .12或372 D .6或37210.如图,在△ABC 中,∠ABC =90°,AB =8 cm ,BC =6 cm ,动点P ,Q 分别从点A ,B 同时开始运动.点P 的速度为1 cm /s ,点Q 的速度为2 cm /s ,点P 运动到点B 停止,点Q 运动到点C 后停止.经过多长时间,能使△PBQ 的面积为15 cm 2( )A.2 sB.3 sC.4 sD.5 s二、填空题(每小题3分,共15分)11.关于x的方程2x2+mx-4=0的一根为1,则另一根为__ __.12.一元二次方程x2-3x=0的解是_ __.13.若一个直角三角形两条直角边的长分别是一元二次方程x2-6x+4=0的两个实数根,则这个直角三角形斜边的长是__ __.14.若m,n是一元二次方程x2+3x-1=0的两个实数根,则m3+m2n3m-1的值为__ __.15.已知关于x的一元二次方程:x2-2x-a=0,有下列结论:①当a>-1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>-1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的结论是____.(填序号)三、解答题(共75分)16.(8分)用适当的方法解下列方程:(1)x2-4x-5=0; (2)2x2-5x+3=0.17.(9分)比较x2+1与2x的大小.(1)尝试(用“<”“=”或“>”填空):①当x=1时,x2+1__ __2x;②当x=0时,x2+1__ __2x;③当x=-2时,x2+1__ __2x;(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.18.(9分)如图,学校要搭建一个矩形车棚,一边靠墙,在与墙正对的一面开了两个门.已知每个门宽度都是2米,三边围栏材料的总长为60米.(1)如果要使车棚的面积为440平方米,且尽量使靠墙的边长一些,那么垂直墙的一边长度应为多少米?(2)这个车棚的面积能否达到600平方米?19.(9分)已知关于x 的一元二次方程x 2-6x +2m -1=0有x 1,x 2两实数根.(1)若x 1=1,求x 2及m 的值;(2)是否存在实数m ,满足(x 1-1)(x 2-1)=6m -5?若存在,求出实数m 的值;若不存在,请说明理由.20.(9分)阅读下列内容,并答题:我们知道,计算n 边形的对角线条数公式为:12n(n -3).如果一个n 边形共有20条对角线,那么可以得到方程12n(n -3)=20.整理得n 2-3n -40=0,解得n =8或n =-5,∵n 为大于等于3的整数,∴n =-5不合题意,舍去.∴n =8,即多边形是八边形.根据以上内容,问:(1)若一个多边形共有14条对角线,求这个多边形的边数;(2)A 同学说:“我求得一个多边形共有10条对角线”,你认为A 同学的说法正确吗?为什么?21.(10分)直播购物逐渐走进了人们的生活.某电商对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?22.(10分)为更好地发展低碳经济,建设美丽中国.某公司对其生产设备进行了升级改造,不仅提高了产能,而且大幅降低了碳排放量.已知该公司去年第三季度产值是2300万元,今年第一季度产值是3200万元,假设公司每个季度产值的平均增长率相同.科学计算器按键顺序计算结果(已取近似值)32a b/c23= 1.181·18x2= 1.391·18y x3= 1.64,解答过程中可直接使用表格中的数据哟!(1)求该公司每个季度产值的平均增长率;(2)问该公司今年总产值能否超过1.6亿元?并说明理由.23.(11分)2022北京冬奥会期间,某网店直接从工厂购进A,B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价-进货价) 类别价格 A款钥匙扣B款钥匙扣进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?答案:第二章检测题(教师版)(时间:100分钟 满分:120分) 一、选择题(每小题3分,共30分)1.一元二次方程x 2-4x +3=0的解为( B )A .x 1=-1,x 2=3 B .x 1=1,x 2=3C .x 1=1,x 2=-3D .x 1=-1,x 2=-32.用配方法解一元二次方程x 2-4x -4=0时,下列变形正确的是( D )A .(x -2)2=0 B .(x -2)2=5C .(x +2)2=8 D .(x -2)2=83.一元二次方程x 2-2x +b =0的两根分别为x 1和x 2,则x 1+x 2为( C )A .-2 B .b C .2 D .-b 4.根据下面表格中的对应值:x 3.23 3.24 3.25 3.26ax 2+bx +c-0.06-0.020.030.09判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是( C )A .3<x <3.23 B .3.23<x <3.24C .3.24<x <3.25 D .3.25<x <3.265.下列一元二次方程有实数解的是 ( C )A .2x 2-x +1=0 B .x 2-2x +2=0C .x 2+3x -2=0 D .x 2+2=06.已知关于x 的一元二次方程(m -1)x 2+2x -3=0有实数根,则m 的取值范围是( D )A .m ≥23 B .m<23C .m>23且m ≠1 D .m ≥23且m ≠17.随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为( C )A .507(1+2x)=833.6B .507×2(1+x)=833.6C .507(1+x)2=833.6D .507+507(1+x)+507(1+x)2=833.68.已知关于x 的方程x 2-(2m -1)x +m 2=0的两实数根为x 1,x 2,若(x 1+1)(x 2+1)=3,则m 的值为( A )A .-3B .-1C .-3或1D .-1或39.若直角三角形的两边长分别是方程x 2-7x +12=0的两根,则该直角三角形的面积是( D )A .6B .12C .12或372D .6或37210.如图,在△ABC 中,∠ABC =90°,AB =8 cm ,BC =6 cm ,动点P ,Q 分别从点A ,B 同时开始运动.点P 的速度为1 cm /s ,点Q 的速度为2 cm /s ,点P 运动到点B 停止,点Q 运动到点C 后停止.经过多长时间,能使△PBQ 的面积为15 cm 2( B )A.2 sB.3 sC.4 sD.5 s二、填空题(每小题3分,共15分)11.关于x的方程2x2+mx-4=0的一根为1,则另一根为__-2__.12.一元二次方程x2-3x=0的解是__x1=0,x2=3__.13.若一个直角三角形两条直角边的长分别是一元二次方程x2-6x+4=0的两个实数根,则这个直角三角形斜边的长是__27__.14.若m,n是一元二次方程x2+3x-1=0的两个实数根,则m3+m2n3m-1的值为__3__.15.已知关于x的一元二次方程:x2-2x-a=0,有下列结论:①当a>-1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>-1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的结论是__①③④__.(填序号)三、解答题(共75分)16.(8分)用适当的方法解下列方程:(1)x2-4x-5=0; (2)2x2-5x+3=0.解:x1=5,x2=-1 解:x1=32,x2=117.(9分)比较x2+1与2x的大小.(1)尝试(用“<”“=”或“>”填空):①当x=1时,x2+1__=__2x;②当x=0时,x2+1__>__2x;③当x=-2时,x2+1__>__2x;(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.解:(2)x2+1≥2x.理由:∵x2+1-2x=(x-1)2≥0,∴x2+1≥2x18.(9分)如图,学校要搭建一个矩形车棚,一边靠墙,在与墙正对的一面开了两个门.已知每个门宽度都是2米,三边围栏材料的总长为60米.(1)如果要使车棚的面积为440平方米,且尽量使靠墙的边长一些,那么垂直墙的一边长度应为多少米?(2)这个车棚的面积能否达到600平方米?解:(1)设垂直墙的一边长度应为x米,则平行于墙的边长为(60-2x+2×2)米,由题意得:x(60-2x +2×2)=440,解得x =10或x =22(不合题意舍去),答:垂直墙的一边长度应为10米(2)由题意得:x(60-2x +2×2)=600,整理得:x 2-32x +300=0,∵Δ=(-32)2-4×1×300=-176<0,∴此方程无实数解,∴这个车棚的面积不能达到600平方米19.(9分)已知关于x 的一元二次方程x 2-6x +2m -1=0有x 1,x 2两实数根.(1)若x 1=1,求x 2及m 的值;(2)是否存在实数m ,满足(x 1-1)(x 2-1)=6m -5?若存在,求出实数m 的值;若不存在,请说明理由.解:(1)根据题意得b 2-4ac =(-6)2-4(2m -1)≥0,解得m ≤5,∵x 1+x 2=6,x 1x 2=2m -1,x 1=1,∴1+x 2=6,x 2=2m -1,∴x 2=5,m =3(2)存在.∵(x 1-1)(x 2-1)=6m -5,∴x 1x 2-(x 1+x 2)+1=6m -5,即2m -1-6+1=6m -5,整理得m 2-8m +12=0,解得m 1=2,m 2=6,∵m ≤5且m ≠5,∴m =220.(9分)阅读下列内容,并答题:我们知道,计算n 边形的对角线条数公式为:12n(n -3).如果一个n 边形共有20条对角线,那么可以得到方程12n(n -3)=20.整理得n 2-3n -40=0,解得n =8或n =-5,∵n 为大于等于3的整数,∴n =-5不合题意,舍去.∴n =8,即多边形是八边形.根据以上内容,问:(1)若一个多边形共有14条对角线,求这个多边形的边数;(2)A 同学说:“我求得一个多边形共有10条对角线”,你认为A 同学的说法正确吗?为什么?解:(1)根据题意得12n(n -3)=14,整理得n 2-3n -28=0,解得n =7或n =-4.∵n 为大于等于3的整数,∴n =-4不合题意,舍去.∴n =7,即这个多边形是七边形(2)A 同学的说法是不正确的,理由如下:当12n(n -3)=10时,整理得n 2-3n -20=0,解得n =3±892,∴符合方程n 2-3n -20=0的正整数n 不存在,∴多边形的对角线不可能有10条21.(10分)直播购物逐渐走进了人们的生活.某电商对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?解:(1)设售价应定为x元,则每件的利润为(x-40)元,日销售量为20+10(60-x)5=(140-2x)件,依题意,得(x-40)(140-2x)=(60-40)×20,整理,得x2-110x+3000=0,解得x1=50,x2=60(舍去).答:售价应定为50元(2)该商品需要打a折销售,由题意,得62.5×a10≤50,解得a≤8.答:该商品至少需打8折销售22.(10分)为更好地发展低碳经济,建设美丽中国.某公司对其生产设备进行了升级改造,不仅提高了产能,而且大幅降低了碳排放量.已知该公司去年第三季度产值是2300万元,今年第一季度产值是3200万元,假设公司每个季度产值的平均增长率相同.科学计算器按键顺序计算结果(已取近似值)32a b/c23= 1.181·18x2= 1.391·18y x3= 1.64 ,解答过程中可直接使用表格中的数据哟!(1)求该公司每个季度产值的平均增长率;(2)问该公司今年总产值能否超过1.6亿元?并说明理由.解:(1)设该公司每个季度产值的平均增长率为x,依题意得2300(1+x)2=3200,解得x1=0.18=18%,x2=-2.18(不合题意,舍去).答:该公司每个季度产值的平均增长率为18%(2)该公司今年总产值能超过1.6亿元,理由如下:3200+3200×(1+18%)+3200×(1+18%)2+3200×(1+18%)3=3200+3200×1.18+3200×1.39+3200×1.64=3200+3776+4448+5248=16672(万元),1.6亿元=16000万元,∵16672>16000,∴该公司今年总产值能超过1.6亿元23.(11分)2022北京冬奥会期间,某网店直接从工厂购进A,B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价-进货价) 类别价格 A款钥匙扣B款钥匙扣进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,依题意得:{x+y=30,解得30x+25y=850,{x=20,答:购进A款钥匙扣20件,B款钥匙扣10件y=10.(2)设购进m件A款钥匙扣,则购进(80-m)件B款钥匙扣,依题意得:30m+25(80-m)≤2200,解得m≤40.设再次购进的A,B两款冰墩墩钥匙扣全部售出后获得的总利润为w 元,则w=(45-30)m+(37-25)(80-m)=3m+960.∵3>0,∴w随m的增大而增大,∴当m =40时,w取得最大值,最大值=3×40+960=1080,此时80-m=80-40=40.答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a-25)元,平均每天可售出4+2(37-a)=(78-2a)件,依题意得:(a-25)(78-2a)=90,整理得:a2-64a+1020=0,解得a1=30,a2=34.答:将销售价定为每件30元或34元时,才能使B款钥匙扣平均每天销售利润为90元。

2022年北师大版一元二次方程 单元试卷含答案解析

2022年北师大版一元二次方程 单元试卷含答案解析

一元二次方程 单元测验(解析版)学校:___________姓名:___________班级:___________考号:___________一、选择题1. 已知关于x 的方程x 2+m 2x -2=0的一个根是1,则m 的值是( )A .1B .2C .±1D .±22.一元二次方程x 2+2x+2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根3.若x 1,x 2是一元二次方程x 2﹣5x+6=0的两个根,则x 1+x 2的值是( )A .1B .5C .﹣5D .64.已知一元二次方程x 2﹣3x ﹣3=0的两根为α与β,则的值为( ) A .﹣1 B .1 C .﹣2 D .25.若关于x 的方程0222=-+-a ax x 有两个相等的实根,则a 的值是( )A .-4B .4C .4或-4D .26.若关于的x 方程230x x a ++=有一个根为 -1,则a 的值为A .4-B .2-C .2D .4-7.某商品原价800元,连续两次降价a %后售价为578元,下列所列方程正确的是( )A .800(1+a%)2=578 B .800(1-a%)2=578 C .800(1-2a%)=578 D .800(1-a 2%)=5788.(2016湖北随州第8题)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( )A .20(1+2x )B .(1+x )2=20C .20(1+x )2=28.8D .20+20(1+x )+20(1+x )29.用配方法解方程2x 2+3=7x ,方程可变形为( )A .2737()24xB .2743()24x C .271()416x D .2725()416x 10.关于x 的方程01)4(22=++-+k x k x 的两个根互为相反数,则k 值是( )A.1-B.2±C.2D.2-11.写出一个解为1和2的一元二次方程: .12.方程x 2-3=0的根是13.已知一元二次方程x 2+mx+m ﹣1=0有两个相等的实数根,则m= .14.已知1是关于x 的一元二次方程022=+-k x x 的一个根,那么=k .15.某初中毕业班的每一个同学都将自己的照片向全班其他同学各送一张作为纪念,全班共送了2550张照片,如果全班有x 名学生,根据题意,可列方程 .16.小明设计了一个魔术盒,当任意实数对(a ,b )进入其中,会得到一个新的实数a 2﹣2b+3.若将实数(x ,﹣2x )放入其中,得到﹣1,则x= .17.(2015秋•芜湖期末)若方程kx 2﹣6x+1=0有两个实数根,则k 的取值范围是 .18.已知x 1、x 2是方程x 2-3x -2=0的两个实根,则(x 1-2) (x 2-2)= .19.某玩具店今年3月份售出某种玩具2500个,5月份售出该玩具3600个,每月平均增长率为 .20.对于实数a ,b ,定义运算“⊗”:,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x 1,x 2是一元二次方程x 2﹣6x+8=0的两个根,则x 1⊗x 2= .三、解答题21.解下列方程:(1)246x x +=(2)()33x x x -=-+22.制造某电器,原来每件的成本是300元,由于技术革新,连续两次降低成本,现在的成本是192元,求平均每次降低成本的百分率.23.已知:关于x 的方程2210x kx +-=⑴ 求证:方程有两个不相等的实数根;⑵ 若方程的一个根是1-,求另一个二、填空题根及k值.24.关于x的一元二次方程2(31)+210---=,其根的判别式的值为mx m x m1,求m的值及该方程的根.25.周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?26.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为.27.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,合肥市某家小型“大学生自主创业”的快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?28.随着铁路运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍。

北师大版九年级数学上册单元测试卷:第二章 《一元二次方程》(含答案)

北师大版九年级数学上册单元测试卷:第二章 《一元二次方程》(含答案)

单元测试卷:第二章《一元二次方程》时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,692.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是()A.k≥5 B.k≥5且k≠1 C.k≤5且k≠1 D.k≤53.下列方程中,是关于x的一元二次方程的是()A.+x=3 B.x2+2x﹣3=0C.4x+3=x D.x2+x+1=x2﹣2x4.已知m、n是一元二次方程x2﹣3x﹣1=0的两个实数根,则=()A.3 B.﹣3 C.D.﹣5.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=75006.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020 B.﹣2020 C.2019 D.﹣20197.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根8.若x 1x 2=2,+=,则以x 1,x 2为根的一元二次方程是( )A .x 2+3x ﹣2=0B .x 2﹣3x +2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=0 9.若关于x 的一元二次方程x 2+2x +c =0有实数根,则c 的取值可能为( )A .4B .3C .2D .110.设a 、b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )A .﹣2018B .2018C .2020D .2022二.填空题(每题4分,共20分)11.已知一元二次方程x 2+2x +m =0的一个根是﹣1,则m 的值为 .12.若关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,则一次函数y =mx +m 的图象不经过第 象限.13.已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 . 14.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜 场.15.已知一元二次方程x 2+2x ﹣8=0的两根为x 1、x 2,则+2x 1x 2+= .三.解答题(每题10分,共50分)16.解下列方程.(1)x 2+2x ﹣35=0(2)4x (2x ﹣1)=1﹣2x17.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?20.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.参考答案一.选择题1.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.2.解:①当该方程是关于x的一元一次方程时,k﹣1=0即k=1,此时x=﹣,符合题意;②当该方程是关于x的一元二次方程时,k﹣1≠0即k≠1,此时△=16﹣4(k﹣1)≥0.解得k≤5;综上所述,k的取值范围是k≤5.故选:D.3.解:A、因为方程是分式方程,不是整式方程,所以方程不是一元二次方程,故本选项不符合题意;B、是一元二次方程,故本选项符合题意;C、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;D、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;故选:B.4.解:根据题意得m+n=3,mn=﹣1,所以=.故选:B.5.解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.6.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a 2﹣1=a ,﹣a 2+a =﹣1,∴﹣a 3+2a +2020=﹣a (a 2﹣1)+a +2020=﹣a 2+a +2020=2019.故选:C .7.解:∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =3,解出其中一个根是x =﹣1,∴(﹣1)2﹣3+c =0,解得:c =2,故原方程中c =4,则b 2﹣4ac =9﹣4×1×4=﹣7<0,则原方程的根的情况是不存在实数根.故选:A .8.解:∵+=,∴x 1+x 2=x 1x 2,∵x 1x 2=2,∴x 1+x 2=3,∴以x 1,x 2为根的一元二次方程是x 2﹣3x +2=0.故选:B .9.解:根据题意得△=22﹣4c ≥0,解得c ≤1.故选:D .10.解:∵a 、b 是方程x 2+x ﹣2020=0的两个实数根,∴a +b =﹣1,ab =﹣2020,则原式=ab ﹣a ﹣b +1=ab ﹣(a +b )+1=﹣2020+1+1=﹣2018.故选:A .二.填空题(共5小题)11.解:把x =﹣1代入方程得1﹣2+m =0,解得m =1,故答案为1.12.解:∵关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,∴m ≠0且△=(﹣2)2﹣4m (﹣1)<0,∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.故答案为一.13.解:设2x2+3=t,且t≥3,∴原方程化为:t2+2t﹣15=0,∴t=3或t=﹣5(舍去),∴2x2+3=3,故答案为:314.解:设中国队在本届世界杯比赛中连胜x场,则共有(x+1)支队伍参加比赛,依题意,得:x(x+1)=66,整理,得:x2+x﹣132=0,解得:x1=11,x2=﹣12(不合题意,舍去).故答案为:11.15.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x 2 +=2x1x 2 +=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.三.解答题(共5小题)16.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,12(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,17.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100﹣2(x﹣50)]件,依题意,得:(x﹣40)[100﹣2(x﹣50)]=1350,整理,得:x2﹣140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.18.解:(1)设BC=xm,则AB=(33﹣3x)m,依题意,得:x(33﹣3x)=90,解得:x1=6,x2=5.当x=6时,33﹣3x=15,符合题意,当x=5时,33﹣3x=18,18>18,不合题意,舍去.答:鸡场的长(AB)为15m,宽(BC)为6m.(2)不能,理由如下:设BC=ym,则AB=(33﹣3y)m,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.19.(1)证明:∵△=(2k+1)2﹣4×4(k﹣)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)x=∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=或2.20.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.。

北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)

北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)

北师大版九年级数学上册《第二章一元二次方程》单元测试卷(带答案)时间:60分钟,满分:100分一、选择题(每题3分,共24分)1.一元二次方程2x2−4x−5=0的一次项系数是()A.2 B.−4C.5 D.42.关于x的方程x2−mx−6=0的一个根为x=−3,则实数m的值为()A.−1B.1 C.−5D.53.用配方法解方程x2+6x+5=0,配方后所得的方程是()A.y=14x2B.(x−3)2=−4C.(x+3)2=4D.(x−3)2=44.方程中x(x−1)=0的根是()A.x1=0,x2=−1B.x1=0C.x1=x2=0D.x1=x2=15.如果关于x的一元二次方程x2−4x−k=0有两个不相等的实数根,则k的取值范围是()A.k<−4B.k>−4C.k<4且k≠0D.k>−4且k≠06.下列一元二次方程的两个实数根之和为−3的是()A.x2+2x−3=0B.x2−3x+3=0C.x2+3x−5=0D.x2+3x+5=07.毕业前夕,班主任王老师让每一位同学为班级的其他同学发送祝福短信,全班一共发送870条,这个班级的学生总人数是()A.40B.30C.29D.398.已知方程x2−7x+12=0的两根是x1,x2,则1x1+1x2的值是()A.−112B.112C.−712D.712二、填空题(每题2分,共10分)9.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是.10.已知方程x2−6x+q=0可以配方成(x−p)2=7的形式,那么p−q=.11.关于x的一元二次方程(k−1)x2−2x−1=0有两个实数根,则k的取值范围是.12.等腰三角形的底和腰是方程x2−7x+10=0的两根,则这个三角形的周长是.13.已知方程x2−2x−3=0的两个根分别为x1x2,则x1+x2−x1⋅x2的值为.三、计算题(共10分)14.解方程:(1)(x+2)2=x+2(2)3x2+2x−3=0四、解答题(共56分)15.已知关于x的一元二次方程x2−(m+3)x+m+2=0.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.16.关于x的一元二次方程x2+(2m−1)x+m2=0有实数根.(1)求m的取值范围;(2)若两根为x1、x2且x12+x22=7,求m的值.17.淄博烧烤风靡全国.某烧烤店今年5月份的盈利额为15万元,7月份的盈利额达到21.6万元,如果每月增长的百分率相同.(1)求该烧烤店这两个月的月均增长率.(2)若该烧烤店盈利的月增长率继续保持不变,预计8月份盈利多少万元?18.某电商店铺销售一种儿童服装,其进价为每件50元,现在的销售单价为每件80元,每周可卖出200件,双十二期间,商家决定降价让利促销,经过市场调查发现,单价每件降低1元,每周可多卖出20件.(1)若想满足每周销售利润为7500元,同时尽可能让利于顾客,则每件童服装应降价多少元?(2)该店铺每周可能盈利10000元吗?请说明理由.参考答案1.B2.A3.C4.B5.B6.C7.B8.D9.110.111.k≥0且k≠112.1213.514.(1)解:x2+4x+4−x−2=0.x2+3x+2=0(x+1)(x+2)=0.∴x1=−1x2=−2(2)解:a=3b=2c=−3 b2−4ac=4+36=40>0.∴x=−2±√406=−2±2√106∴x1=−1+√103x2=−1−√10315.(1)证明:Δ=(m+3)2−4(m+2)=m2+6m+9−4m−8=m2+2m+1=(m+1)2≥0∴无论m为何值,方程总有两个实数根.(2)解:x=m+3±(m+1)2,则x1=m+2,x2=1,又方程两根均为正整数,则m+2>0m>−2,所以负整数m=−1.16.(1)解:∵关于x的一元二次方程x2+(2m−1)x+m2=0有实数根∴Δ=(2m−1)2−4×1×m2=−4m+1≥0解得:m≤14.(2)解:∵x1,x2是一元二次方程x2+(2m−1)x+m2=0的两个实数根∴x1+x2=1−2m,x1x2=m2∴x12+x22=(x1+x2)2−2x1x2=7,即(1−2m)2−2m2=7整理得:m2−2m−3=0解得:m1=−1,m2=3.又∵m≤14∴m=−1.17.(1)解:设该烧烤店这两个月盈利额的月均增长率为x根据题意得:15(1+x)2=21.6解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去).答:该烧烤店这两个月盈利额的月均增长率为20%;(2)解:根据题意得:21.6×(1+20%)=25.92(万元).答:预计8月份盈利25.92万元.18.(1)解:设每件童服装应降价x元根据题意,得(80﹣50﹣x)(200+20x)=7500整理,得x2﹣20x+75=0解得x1=5,x2=15∵尽可能让利于顾客∴x=15答:每件童服装应降价15元;(2)解:该店铺每周不可能盈利10000元,理由为:设该店铺每周可能盈利10000元,则(80﹣50﹣x)(200+20x)=10000 整理,得x2﹣20x+200=0∵Δ=(﹣20)2﹣4×200=﹣400<0∴所列方程没有实数根故该店铺每周不能盈利10000元.。

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案知识点总结:①配方法和十字叉乘法求解一元二次方程{二次项系数为±1二次项系数不是±1配方法:(a±b)2=a2+b2±2ab十字叉乘法:化简成(x±a)(x±b)=0的形式,解得x=∓a或∓b②公式法求解一元二次方程公式法:x=−b±√b2−4ac2a③因式分解法求解一元二次方程因式分解法:{(a±b)2=a2+b2±2ab a2−b2=(a−b)(a+b)④一元二次方程的根与系数的关系关系:x1+x2=−ba ;x1∙x2=ca⑤应用一元一次方程应用题第二章一元二次方程测试1(拔高题)1、下列方程为一元二次方程,求a的取值范围或者具体值:①2ax2−2bx+a=4x2②(a−1)x|a|+1−2x−7=0③ax2+6x+1=0没有实数根2、已知一元二次方程x2+k+3=0有一个根为1,则k的值为.3、已知一元二次方程为5x2+x=0,其中二次项系数为,一次项系数为,常数项为,x1x2=,x1+x2=.x2+3x−2=0 的两根,则(x1−x2)2的值为.4、设x1与x2为一元二次方程−125、关于x的一元二次方程x2−(k−3)x−k+1=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.实数根的个数由k的值确定6、已知关于x的一元二次方程x2+2mx+m2−m=0的两实数根为x1,x2,且满足x1x2=2,则x1+x2的值为()A.4B.−4C.4或−2D.−4或27、配方法解方程x2+6x+9=23x2−2=5x8、公式法解方程(x−2)(3x−5)=19x2+6x+1=49、直接开平方法解方程2(x−1)2 −18=010、因式分解法解方程3x(x−1)=3(x+2)(1−x)3(4−x)2=x2−16(1−2x)(x−8)=8x−411、如图,在矩形ABCD 中,AB =10 cm ,AD =8 cm ,点P 从点A 出发沿AB 以2cm /s 的速度向点B 运动,同时点Q 从点B 出发沿BC 以1cm /s 的速度向点C 运动,点P 到达终点后,P ,Q 两点同时停止运动。

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一.一元二次方程的定义1.若关于x的方程4x3m﹣1﹣mx+1=0是一元二次方程,则m的值为.二.一元二次方程的解2.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.3.若m是方程x2﹣2x﹣1=0的根,则m2+=.4.已知m是方程x2﹣x﹣3=0的一个实数根,则代数式(m2﹣m)(m﹣+1)的值为.三.解一元二次方程-公式法5.利用公式法可得一元二次方程式3x2﹣11x﹣1=0的两解为a、b,且a>b,求a值为何()A.B.C.D.6.解方程:2x2+3x﹣1=0.四.解一元二次方程-因式分解法7.解方程:x2﹣4x+3=0.8.用适当的方法解下列方程:(1)x2+5x﹣1=0;(2)7x(5x+2)=6(5x+2);五.根的判别式9.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≤﹣且k≠0 C.k≥﹣D.k≥﹣且k≠010.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k≥﹣1C.k≠0D.k<1且k≠011.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.12.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.13.已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于.14.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.15.关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.16.已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.六.根与系数的关系17.已知,实数x1,x2(x1≠x2)是关于x的方程kx2+2kx+1=0(k≠0)的两个根.若,则k的值为()A.1B.﹣1C.D.18.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则=.19.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=.20.已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为.21.已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是.22.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015=.23.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=.24.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.参考答案与试题解析一.一元二次方程的定义1.若关于x的方程4x3m﹣1﹣mx+1=0是一元二次方程,则m的值为1.【解答】解:∵关于x的方程4x3m﹣1﹣mx+1=0是一元二次方程,∴3m﹣1=2,解得:m=1∴m的值为1.二.一元二次方程的解2.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于2028.【解答】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=20283.若m是方程x2﹣2x﹣1=0的根,则m2+=6.【解答】解:∵m是方程x2﹣2x﹣1=0的根,∴m2﹣2m﹣1=0,即m2﹣1=2m,∴m2+=(m﹣)2+2=()2+2=22+2=6.4.已知m是方程x2﹣x﹣3=0的一个实数根,则代数式(m2﹣m)(m﹣+1)的值为6.【解答】解:∵m是方程x2﹣x﹣3=0的一个实数根,∴m2﹣m﹣3=0,∴m2﹣m=3,m2﹣3=m∴(m2﹣m)(m﹣+1)=3×(+1)=3×(1+1)=6.三.解一元二次方程-公式法(共2小题)5.利用公式法可得一元二次方程式3x2﹣11x﹣1=0的两解为a、b,且a>b,求a值为何()A.B.C.D.【解答】解:3x2﹣11x﹣1=0,这里a=3,b=﹣11,c=﹣1,∴Δ=(﹣11)2﹣4×3×(﹣1)=133>0∴x==,∵一元二次方程式3x2﹣11x﹣1=0 的两解为a、b,且a>b,∴a的值为.故选:D.6.解方程:2x2+3x﹣1=0.【解答】解:这里a=2,b=3,c=﹣1,∵△=9+8=17>0,∴x=解得:x1=,x2=.四.解一元二次方程-因式分解法7.解方程:x2﹣4x+3=0.【解答】解:x2﹣4x+3=0(x﹣1)(x﹣3)=0x﹣1=0或x﹣3=0x1=1,x2=3.8.用适当的方法解下列方程:(1)x2+5x﹣1=0;(2)7x(5x+2)=6(5x+2);【解答】解(1)∵x2+5x﹣1=0,∴a=1,b=5,c=﹣1,∴Δ=b2﹣4ac=52﹣4×1×(﹣1)=29>0∴,解得;(2)∵7x(5x+2)=6(5x+2),∴7x(5x+2)﹣6(5x+2)=0,∴(7x﹣6)(5x+2)=0,∴7x﹣6=0或5x+2=0解得;五.根的判别式9.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≤﹣且k≠0 C.k≥﹣D.k≥﹣且k≠0【解答】解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,∴Δ=b2﹣4ac≥0,即:9+4k≥0解得:k≥﹣,∵关于x的一元二次方程kx2+3x﹣1=0中k≠0,则k的取值范围是k≥﹣且k≠0.故选:D.10.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k≥﹣1C.k≠0D.k<1且k≠0【解答】解:,解得k<1且k≠0.故选:D.11.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【解答】解:根据题意得k﹣1≠0且Δ=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.12.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0解得:k≤5且k≠113.已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于2.【解答】解:Δ=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:c﹣2=﹣,则+c=214.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.【解答】解:∵|b﹣1|+=0,∴b﹣1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴Δ=a2﹣4kb≥0且k≠0,即16﹣4k≥0,且k≠0,解得,k≤4且k≠0;15.关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.【解答】(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,Δ=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.16.已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.【解答】解:(1)根据题意,将x=1代入方程x2+mx+m﹣2=0,得:1+m+m﹣2=0,解得:m=;(2)∵Δ=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.六.根与系数的关系17.已知,实数x1,x2(x1≠x2)是关于x的方程kx2+2kx+1=0(k≠0)的两个根.若,则k的值为()A.1B.﹣1C.D.【解答】解:根据根与系数的关系得x1+x2=﹣=﹣2,x1x2=,∵+=2,∴x1+x2=2x1x2,∴﹣2=2×解得k=﹣1,方程化为﹣x2﹣2x+1=0,∵Δ=(﹣2)2﹣4×(﹣1)×1=8>0,∴方程有两个不相等的实数解∴k的值为﹣1.故选:B.18.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则=﹣2.【解答】解:根据根与系数的关系得x1+x2=2,x1x2=﹣3,所以则====﹣2.19.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=8.【解答】解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m2+2m﹣5=0∴m2=5﹣2mm2﹣mn+3m+n=(5﹣2m)﹣(﹣5)+3m+n=10+m+n=10﹣2=820.已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.【解答】解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=321.已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是2.【解答】解:∵x2﹣6x+k=0的两个解分别为x1、x2,∴x1+x2=6,x1x2=k,+===3,:k=222.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015=2026.【解答】解:由题意可知:m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,所以m,n是x2﹣x﹣3=0的两个不相等的实数根,则根据根与系数的关系可知:m+n=1,mn=﹣3,又n2=n+3,则2n2﹣mn+2m+2015=2(n+3)﹣mn+2m+2015=2n+6﹣mn+2m+2015=2(m+n)﹣mn+2021=2×1﹣(﹣3)+2021=2+3+2021=2026.23.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=5.【解答】解:∵设m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,∵m是原方程的根,∴m2+2m﹣7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7﹣2=524.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【解答】解:(1)根据题意得Δ=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.。

2022-2023学年北师大版九年级数学上册《第2章一元二次方程》单元达标测试题(附答案)

2022-2023学年北师大版九年级数学上册《第2章一元二次方程》单元达标测试题(附答案)

2022-2023学年北师大版九年级数学上册《第2章一元二次方程》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列方程是一元二次方程的是()A.x(x+3)=0B.x2﹣4y=0C.x2﹣=5D.ax2+bx+c=0(a、b、c为常数)2.若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2021﹣a﹣b的值是()A.2016B.2020C.2025D.20263.若关于x的一元二次方程(m+1)x2+3x+m2﹣1=0的一个实数根为0,则m等于()A.1B.±1C.﹣1D.04.若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,且满足4a﹣2b+c =0,则()A.b=a B.c=2a C.a(x+2)2=0D.﹣a(x﹣2)2=0 5.用配方法解方程x2+8x+9=0,配方后可得()A.(x+8)2=73B.(x+4)2=25C.(x+8)2=55D.(x+4)2=7 6.如图,某学校计划在一块长12米,宽9米的矩形空地修建两块形状大小相同的矩形种植园,它们的面积之和为60平方米,两块种植园之间及周边留有宽度相等的人行通道,若设人行通道的宽度为x米,则可以列出关于x的方程()A.x2﹣17x﹣16=0B.2x2+17x﹣16=0C.2x2﹣17x﹣16=0D.2x2﹣17x+16=07.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,58.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③二.填空题(共8小题,满分40分)9.如果关于x的方程(m﹣3)﹣x+3=0是一元二次方程,那么m的值为.10.一元二次方程x2﹣x=0的解是.11.若关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,则k的取值范围是.12.若a是方程x2+x﹣1=0的根,则代数式2022﹣3a2﹣3a的值是.13.某地区加大教育投入,2020年投入教育经费2000万元,以后每年逐步增长,预计2022年,教育经费投入为2420万元,则年平均增长率为.14.已知等腰三角形三边分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两个根,则m的值是.15.2021年端午节期间,合肥某食品专卖店准备了一批粽子,每盒利润为50元,平均每天可卖300盒,经过调查发现每降价1元,可多销售10盒,为了尽快减少库存,决定采取降价措施,专卖店要想平均每天盈利16000元,设每盒粽子降价x元,可列方程.16.如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB向B点以1cm/s的速度移动,点Q从B点开始沿BC边向C点以2cm/s的速度移动.如果P、Q分别从A、B同时出发,经过秒钟△PQB的面积等于△ABC面积的.三.解答题(共5小题,满分40分)17.解方程:(1)3x2﹣1=4x;(2)(x+4)2=5(x+4).18.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积.19.x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个实数根,若满足|x1﹣x2|=1,则此类方程称为“差根方程”.根据“差根方程”的定义,解决下列问题:(1)通过计算,判断下列方程是否是“差根方程”:①x2﹣4x﹣5=0;②2x2﹣2x+1=0;(2)已知关于x的方程x2+2ax=0是“差根方程”,求a的值;(3)若关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差根方程”,请探索a与b 之间的数量关系式.20.疫情肆虐,万众一心.由于医疗物资极度匮乏,许多工厂都积极宣布生产医疗物资以应对疫情.某工厂及时引进了1条口罩生产线生产口罩,开工第一天生产300万个,第三天生产432万个,若每天生产口罩的个数增长的百分率相同,请解答下列问题:(1)每天增长的百分率是多少?(2)经调查发现,一条生产线最大产能是900万个/天,如果每增加1条生产线,每条生产线的最大产能将减少30万个/天.现该厂要保证每天生产口罩3900万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?21.“阳光玫瑰”葡萄品种是广受各地消费者的青睐的优质新品种,在我国西部区域广泛种植,某葡萄种植基地2018年种植“阳光玫瑰”100亩,到2020年“阳光玫瑰”的种植面积达到256亩.(1)求该基地这两年“阳光玫瑰”种植面积的平均年增长率.(2)市场调查发现,当“阳光玫瑰”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出45千克.①若降价x(0≤x≤20)元,每天能售出多少千克?(用x的代数式表示)②为了推广宣传,基地决定降价促销,同时尽量减少库存,已知该基地“阳光玫瑰”的平均成本价为10元/千克,若要销售“阳光玫瑰”每天获利2125元,则售价应降低多少元?参考答案一.选择题(共8小题,满分40分)1.解:A、x(x+3)=0,是一元二次方程,符合题意;B、x2﹣4y=0,含有两个未知数,最高次数是2,不是一元二次方程,不符合题意;C、x2﹣=5,不是整式方程,不是一元二次方程,不符合题意;D、ax2+bx+c=0(a、b、c为常数),一次项系数可以为任意数,二次项系数一定不能为0,此方程才为一元二次方程,但题目中并没给出这个条件,故此方程不一定是一元二次方程,不符合题意;故选:A.2.解:把x=1代入方程ax2+bx+5=0得a+b+5=0,所以a+b=﹣5,所以2021﹣a﹣b=2021﹣(a+b)=2021+5=2026.故选:D.3.解:把x=0代入(m+1)x2+3x+m2﹣1=0,得m2﹣1=0,解得m1=﹣1,m2=1,而m+1≠0,即m≠﹣1.所以m=1.故选:A.4.解:∵一元二次方程ax2+bx+c=0(a≠0)满足4a﹣2b+c=0,∴x=﹣2是方程ax2+bx+c=0的解,又∵有两个相等的实数根,∴a(x+2)2=0(a≠0).故选:C.5.解:x2+8x+9=0,x2+8x=﹣9,x2+8x+16=﹣9+16,(x+4)2=7,故选:D.6.解:设人行道的宽度为x米,根据题意得,(12﹣3x)(9﹣2x)=60,化简整理得,2x2﹣17x+16=0.故选:D.7.解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.8.解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知Δ=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴Δ=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b=或2ax0+b=﹣∴故④正确.故选:B.二.填空题(共8小题,满分40分)9.解:由题意得:m2﹣7=2,且m﹣3≠0,解得:m=﹣3,故答案为:﹣3.10.解:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1,故答案为:x1=0,x2=1.11.解:∵关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,∴△≥0且k﹣2≠0,即42﹣4(k﹣2)×2≥0且k﹣2≠0解得k≤4且k≠2.故答案为:k≤4且k≠2.12.解:把x=a代入x2+x﹣1=0,得a2+a﹣1=0,解得a2+a=1,所以2022﹣3a2﹣3a=2022﹣3(a2+a)=2022﹣3=2019.故答案是:2019.13.解:设年平均增长率为x,根据题意得:2000(1+x)2=2420,解得:x=0.1=10%,或x=﹣2.1(不合题意舍去).即:年平均增长率为10%.故答案是:10%.14.解:当a=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8,而4+4=8,不符合题意;当b=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,而4+4=8,不符合题意;当a=b时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=a+b,解得a=b=6,∴m+2=36,∴m=34,故m的值为34,故答案为34.15.解:设每盒粽子降价x元,则每盒的利润为(50﹣x)元,平均每天可卖(300+10x)盒,依题意得:(50﹣x)(300+10x)=16000,故答案为:(50﹣x)(300+10x)=16000.16.解:根据题意,知BP=AB﹣AP=6﹣t,BQ=2t.∵△PQB的面积等于△ABC面积的,则根据三角形的面积公式,得PB•BQ=××6×8,2t(6﹣t)=18,(t﹣3)2=0,解得t=3.故经过3秒钟△PQB的面积等于△ABC面积的.故答案是:3.三.解答题(共5小题,满分40分)17.解:(1)3x2﹣4x﹣1=0,∵a=3,b=﹣4,c=﹣1,∴Δ=b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0.∴x==,∴x1=,x2=.(2)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,∴x+4=0或x﹣1=0,∴x1=﹣4,x2=1.18.(1)证明:∵Δ=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即Δ>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,该直角三角形的面积为=;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的面积为=;综上,该直角三角形的面积为或.19.解:(1)①设x1,x2是一元二次方程x2﹣4x﹣5=0的两个实数根,∴x1+x2=4,x1•x2=﹣5,∴|x1﹣x2|===6,∴方程x2﹣4x﹣5=0不是差根方程;②设x1,x2是一元二次方程2x2﹣2x+1=0的两个实数根,∴x1+x2=,x1•x2=,∴|x1﹣x2|===1,∴方程2x2﹣2x+1=0是差根方程;(2)x2+2ax=0,因式分解得:x(x+2a)=0,解得:x1=0,x2=﹣2a,∵关于x的方程x2+2ax=0是“差根方程”,∴2a=±1,即a=±;(3)设x1,x2是一元二次方程ax2+bx+1=0(a,b是常数,a>0)的两个实数根,∴x1+x2=﹣,x1•x2=,∵关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差根方程”,∴|x1﹣x2|=1,∴|x1﹣x2|==1,即=1,∴b2=a2+4a.20.解:(1)设每天增长的百分率是x,依题意得:300(1+x)2=432,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率是20%.(2)设应该增加y条生产线,则每条生产线的最大产能为(900﹣30y)万个/天,依题意得:(900﹣30y)(1+y)=3900,整理得:y2﹣29y+100=0,解得:y1=4,y2=25.又∵要节省投入,∴y=4.答:应该增加4条生产线.21.解:(1)设该基地这两年“阳光玫瑰”种植面积的平均增长率为y,依题意,得:100(1+y)2=256,解得:y1=0.6=60%,y2=﹣2.6(不合题意,舍去).答:该基地这两年“阳光玫瑰”种植面积的平均增长率为60%.(2)①设售价应降低x元,则每天可售出(200+45x)千克;②依题意,得:(20﹣10﹣x)(200+45x)=2125,整理,得:9x2﹣50x+25=0,解得:x1=5,x2=.∵要尽量减少库存,∴x=5.答:售价应降低5元.。

北师大版九年级数学上册《第二章一元二次方程》单元检测题-附答案

北师大版九年级数学上册《第二章一元二次方程》单元检测题-附答案

北师大版九年级数学上册《第二章一元二次方程》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.方程3x2−5=4x中,关于a、b、c的说法正确的是()A.a=3,b=4,c=−5B.a=3,b=−5,c=4C.a=−3,b=−4,c=−5D.a=3,b=−4,c=−52.已知关于x的方程x2+bx−a=0有且只有一个根x=a(a≠0),则b的值为()A.2B.−2C.±2D.以上都不是3.用配方法解方程x2+4x+3=0,变形后的结果正确的是()A.(x+2)2=−1B.(x+2)2=1C.(x+2)2=3D.(x+2)2=74.若α,β是一元二次方程3x2+x−1=0的两个实数根,则3α2+4α+3β+1的值是()A.−1B.1C.2D.−25.方程(m−2)x2−√3−mx+14=0有两个实数根,则m的取值范围()A.m≤52B.m≤52且m≠2C.m≥3D.m≤3且m≠26.关于x的方程a(x+m)2+b=0的解是x1=−2,x2=1(a,m,b均为常数a≠0),则方程a(x+3+m)2+ b=0的解是()A.−1或−4B.−2或1C.1或3D.−5或−27.已知关于x的一元二次方程x2−kx+2k−1=0的两个实数根分别为x1、x2,且x12+x22=7,那么(x1−x2)2的值为()A.13或−11B.13C.−11D.118.如果△ABC有两边的长是方程x2−7x+12=0的根,第三边的长是方程x2−12x+35=0的根,那么△ABC的周长为()A.14B.12C.12或14D.以上都不对二、填空题9.已知关于x的一元二次方程2x2−4x+3=0的两个实数根分别是α,β;则(α+1)(β+1)=.10.某等腰三角形的一边长为3,另外两边长是关于x的方程x2−12x+k=0的两根,则k=;11.若a是一元二次方程x2−2023x+1=0的一个根,则代数式a2−2022a+2023a2+1的值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.若 n( n 0 )是关于 x 的方程 x2 mx 2n 0 的根,则 m+n 的值为
A.1
B.2
C.-1
D.-2
16.已知关于 x 的一元二次方程 x2 6x k 1 0 的两个实数根是 x1,x2 ,且 x12 x22 24 ,则 k 的值是( )
A.8
B. 7
C.6
D.5
到 2009 年底家庭轿车将达到多少辆? (2) 为了缓解停车矛盾,该小区决定投资 15 万元再建造若干个停车位.据测算,建造费
用分别为室内车位 5000 元/个,露天车位 1000 元/个,考虑到实际因素,计划露天 车位的数量不少于室内车位的 2 倍,但不超过室内车位的 2.5 倍,求该小区最多可 建两种车位各多少个?试写出所有可能的方案.
)A. ab
a B. b
C. a b
D. a b
6. 一元二次方程 x2+kx-3=0 的一个根是 x=1,则另一个根是( )
A.3
B.-1
C.-3
D.-2
7.关于 x 的一元二次方程 x2-6x+2k=0 有两个不相等的实数根,则实数 k 的取值范围是
9 ( ).A.k≤ 2
9 B.k< 2
9 C.k≥ 2
动点 P、Q 运动时间为 t(单位:秒).
(1)当 t 为何值时,四边形 PABQ 是等腰梯形,请写出推理过程;
(2)当 t=2 秒时,求梯形 OFBC 的面积;
(3)当 t 为何值时,△PQF 是等腰三角形?请写出推理过程.
-6-
hing at a time and All things in their being are good for somethin
周长为( )
A.14
B.12
C.12 或 14
D.以上都不对
12.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的
人均约为10m2 提高到12.1m2,若每年的年增长率相同,则年增长率为( )
A. 9% B.10% C.11% D.12%
A 13. 如图 5,在 ABCD 中, AE BC 于 E,AE EB EC a,且 a 是一元二次方程
A.0
B.1 C.0 或 2 D.0 或 1
6、已知关于 x 的一元二次方程 ax2 bx c 0 没有实数解,甲由于看错了二次项系数,
误求得两根为 2 和 4;乙由于看错了某一项系数的符号,误求得两根为-1 和 4,那么
2b 3c 的值为 _____ 。 a
7、设 m 是不为 0 的整数,一元二次方程 mx2 (m 1)x 1 0 有有理根,求 m 的值?
三、解答题
1.解方程: x 12 x 1 2 0 .
x2
x
; x2 2x 2 x2 4x 3 0.
2.某旅行社有 100 张床位,每床每晚收费 10 元,床位可全部租出,在每床的收费提高幅 度不超过 5 元的情况下,若每床的收费提高 2 元,则减少 10 张床位租出,若收费再提高 2 元,则再减少 10 张床位租出,以每次提高 2 元的这种方式变化下去,为了获得 1120 元的 收入,每床的收费每晚应提高多少元?
5.已知一元二次方程 x 2 2x m 0 .
(1)若方程有两个实数根,求 m 的范围;
(2)若方程的两个实数根为 x1 , x2 ,且 x1 +3 x2 =3,求 m 的值。
-4-
hing at a time and All things in their being are good for somethin
(C)6b2=25ac
(D)不能确定
19.已知方程 3x2+2x-6 = 0 ,以它的两根的负倒数为根的新方程应是( )
(A)6x2-2x+1=0
(B)6x2+2x+3=0
(C)6x2+2x+1=0
(D)6x2+2x-3=0
二、填空题
1. 已知关于 x 的一元二次方程(m 1)x 2 x 1 0 有实数根,则 m 的取值范围是
hing at a time and All things in their being are good for somethin
一元二次方程 一、选择题 1.下列四个说法中,正确的是( )
x2 4x 5 2
x2 4x 5 3
A.一元二次方程
2 有实数根 B.一元二次方程
2 有实数根
x2 4x 5 5
8.若实数 m 满足 m2- 10 m + 1 = 0,则 m4 + m-4 =

9.已知一元二次方程 x2
3 1 x
3
1 0 的两根为 x1 、 x2 ,则
1 x1
1 x2
.
10. 将一条长为 20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,
则这两个正方形面积之和的最小值是
9 D.k> 2
8.方程 x(x-1)=2 的解是
A.x=-1 B.x=-2 C.x1=1,x2=-2 D.x1=-1,x2=2
9.方程 x2-3|x|-2=0 的最小一根的负倒数是( )
(A)-1
1 (3 17) (B) 4
1 (C) 2 (3- 17 )
1 (D) 2
10.关于 x 的一元二次方程 x2 mx 2m 1 0 的两个实数根分别是 x1、x2 ,且
拓展训练
1、若 t 是一元二次方程 ax2 bx c 0(a 0) 的根,则判别式 b2 4ac 和完全平方式
M (2at b)2 的关系是( )A. M B. M C. M D.不能确定
2、已知 b 、 c 是满足 c b 0 的整数,方程 x2 bx c 0 有两个不等的实数根 x1, x2 ,
9.△ABC 中,已知∠BAC=45°,AD⊥BC 于 D,BD=2,DC=3,求 AD 的长.
-5-
hing at a time and All things in their being are good for somethin
10.如图 12,在直角梯形 OABC 中,
OA∥CB,A、B 两点的坐标分别为 A(15,0),
x2 b 2x 6 b 0 有两个相等的实数根,求△ABC的周长.
8.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区 2006 年底拥有家庭轿车 64 辆,2008 年底家庭轿车的拥有量达到 100 辆. (1) 若该小区 2006 年底到 2009 年底家庭轿车拥有量的年平均增长率都相同,求该小区
-2-
hing at a time and All things in their being are good for somethin

2.若一元二次方程 x2-(a+2)x+2a=0 的两个实数根分别是 3、b,则 a+b=
3.方程 4x2+(k+1)x+1=0 的一个根是 2,那么 k=
,另一根是
C.一元二次方程
3 有实数根;D.一元二次方程 x2+4x+5=a(a≥1)有实数
根.
2.关于 x 的方程(a -5)x2-4x-1=0 有实数根,则 a 满足()
A.a≥1 B.a>1 且 a≠5 C.a≥1 且 a≠5
D.a≠5
3. 若 a 为方程式(x 17 )2=100 的一根,b 为方程式(y4)2=17 的一根,
在P
1 x1
1 x2
,Q
x12
x22 , R
( x11)( x2
1) 的值中,最大及最小值分别是(

A. P, R B. Q, R C. R, P D. Q, P
3、如果正数 a 、 b 、 c 满足 b a c ,那么关于 x 的方程 ax2 bx c 0 的根的情况是
() A.有 2 个实根
B.有 2 个相等的实根
C.没有实根 D.无法确定有无实根
4、如果 x1, x2 是两个不相等的实数,且满足 x12 2005x1 1, x22 2005x2 1, 那么
x1 x2 等于( ) A.2005
B. 2005 C.1
D.-1
5、一元二次方程 x2 px q 0 的两个根为 p 、 q ,则 p q 等于( )
-1-
hing at a time and All things in their being are good for somethin
x12 x22 7 ,则 (x1 x2 )2 的值是( )A.1 B.12 C.13 D.25
11.三角形两边的长是 3 和 4,第三边的长是方程 x2 12x 35 0 的根,则该三角形的
4.设 x1、x2 是一元二次方程 x2+4x-3=0 的两个根,2x1(x22+5x2-3)+a
. 5.方程 x + 6= x是一元二次方程 x 2 mx n 0 的一个根,则 .
m 2 2mn n 2 的值为
7.设 x1 , x2 是一元二次方程 x2 3x 2 0 的两个实数根,则 x12 3x1x2 x22 的值为
8、实数 k 取何值时,一元二次方程 x2 (2k 3)x 2k 4 0 。
(1)有两个正根 (2)有两个异号根,且正根的绝对值较大 (3)一个根大于 3,一 个根小于 3;
A x2 2x 3 0 的根,则 ABCD 的周长为(

A. 4 2 2
A
B.12 6 2
D
C. 2 2 2
D. 2 2或12 6 2
B
E
C
图C 5
14. 设 a,b 是方程 x2 x 2009 0 的两个实数根,则 a2 2a b 的值为( )
A.2006
相关文档
最新文档