电动汽车电机选择与及设计
电动汽车驱动电机匹配设计研究方案

电动汽车驱动电机匹配设计研究方案一、研究背景和意义随着环境污染和能源危机的加剧,电动汽车作为一种清洁、高效的交通工具,成为未来可持续发展的趋势。
其中,驱动电机作为电动汽车的核心动力部件,对于电动汽车的性能和效率有着至关重要的影响。
驱动电机的匹配设计是指在特定的车辆质量、行驶性能、能量管理等要求下,合理选择和设计驱动电机的类型、参数和控制策略,以实现电动汽车的最佳性能和最高效率。
因此,研究电动汽车驱动电机的匹配设计,有助于推动电动汽车技术的发展,提升电动汽车的性能和竞争力。
二、研究内容和方法1.研究内容(1)分析电动汽车的性能需求:根据电动汽车的用途和服务对象,分析电动汽车的综合性能需求,包括加速性能、最高车速、续航里程、爬坡能力等。
(2)选型电动汽车驱动电机:根据电动汽车的性能需求和电池组参数,选择合适的电动汽车驱动电机的类型和功率,并确定电机的最适工作点。
(3)设计电动汽车驱动系统:根据电机选型结果,设计电动汽车的驱动系统,包括电机控制器、电池管理系统、变速器等。
(4)研究电动汽车驱动电机的控制策略:根据电动汽车的特点和性能需求,研究电动汽车驱动电机的控制策略,包括电机启动控制、驱动电机转矩控制、能量回收等。
2.研究方法(1)理论研究:通过文献调研和综述分析,对电动汽车驱动电机的匹配设计方法和技术进行梳理和总结。
(2) 实验研究:运用动力学模拟软件(如Matlab/Simulink)进行仿真分析,验证驱动电机在不同工况下的性能指标,如输出功率、效率、扭矩、速度等,并与设计要求进行比对。
(3)数据采集和分析:通过实车测试,采集电动汽车的动态数据,包括功率曲线、扭矩曲线、速度曲线等,并进行数据分析,以求得真实可靠的研究结果。
三、预期成果及应用价值1.预期成果通过研究电动汽车驱动电机的匹配设计,预计可以得到以下成果:(1)电动汽车驱动电机匹配设计的理论方法和技术指南,为电动汽车制造商和研发人员提供参考。
电动汽车论文永磁同步电机设计论文

电动汽车论文永磁同步电机设计论文摘要:文章首先介绍电动汽车不同运行状况对电机的要求,根据要求来确定永磁同步电机的性能参数,以满足电动汽车的要求。
根据目标参数综合分析比较后确定转子结构为内置切向式的永磁同步电机为本论文研究对象。
通过计算初步确定永磁同步电机的基本尺寸、绕组类型、定子槽型等。
最后通过解析计算得出永磁同步电机各参数初选数值。
1 电动汽车对驱动电机性能的要求电动汽车运行工况多变复杂,因此对驱动电机的性能、尺寸都有相应的要求:①在电池电量一定的情况下行驶里程是电动汽车性能的关键因素,为了提高汽车的续航里程,要求电动机能耗低、效率高。
②汽车在行驶中会走烂路低速行驶,也会走高速路高速行驶,会运行于多种不同工况之中,要求电机调速范围宽泛。
③汽车在运行中会频繁起步、加速、制动减速、爬坡等,要求电机具有较大的启动转矩,在设计中可选取较大的过载系数。
④为了增大汽车车内空间、便于电机布置同时减轻汽车重量,要求电机比功率较大、体积小、尽量采用较高的额定电压。
2 永磁同步电机总体设计电动汽车用永磁同步电机总体设计首先需要确定电机的磁路结构,选用合理的计算方法确定电机各部件的尺寸参数,基本确定出电机的原型。
2.1 转子磁路结构选择转子磁路结构对永磁同步电机的驱动性能产生很大影响,是电机设计阶段首先要考虑的问题。
隔磁桥能有效控制磁漏系数的大小,因此合理设计隔磁桥很重要[1]。
磁漏系数小电机的抗去磁能力减弱,磁漏系数大所需永磁体量就多。
因此需要对电机的磁路结构进行合理设计以满足电动汽车对驱动电机的要求。
不同的磁路结构对电机的电感参数影响很大,主要根据永磁体布置与转子位置不同分为表面置式与内置式,如图1所示。
由于永磁体内置式切向式永磁同步电机转矩输出能力比其他电机强、调速范围宽、结构紧凑、运行可靠。
因此选用该种结构形式为本课题研究对象。
2.2 永磁体材料与尺寸选择目前,永磁同步电机永磁体材料采用稀土材料钕铁硼[2],它具有很高的矫顽力和磁能积,磁能积是普通铁氧永磁体的6倍以上。
双电机电动汽车电机选型计算

双电机电动汽车电机选型计算1. 引言在设计双电机电动汽车时,正确的电机选型是非常重要的。
电机选型的准确性直接影响到车辆性能、操控性和驱动系统的效率。
本文将介绍双电机电动汽车电机选型的基本计算方法,并给出具体的步骤和示例。
2. 电机选型参数在进行电机选型计算之前,需要明确以下几个重要的参数:•汽车的总质量(m):包括车辆本身的重量和所有乘客和货物的重量。
•所需的最大加速度(a):车辆在起步和加速阶段所需的最大加速度。
•轮胎滑移系数(μ):表示轮胎与地面之间的摩擦系数,影响车辆的牵引力。
•电机的额定功率(P):表示电机在额定工况下的输出功率。
•电机的转速范围(n_min 和 n_max):电机能够工作的最低和最高转速。
3. 电机选型计算步骤进行双电机电动汽车的电机选型计算,可以按照以下步骤进行:步骤 1:计算车辆的牵引力需求根据车辆的总质量和最大加速度,可以计算出车辆在起步和加速阶段所需的总牵引力。
牵引力的计算公式如下:F_total = m * a步骤 2:计算每个电机所需的最大输出扭矩根据车辆的牵引力需求和轮胎滑移系数,可以计算出每个电机所需的最大输出扭矩。
每个电机所需的最大输出扭矩的计算公式如下:T_max = F_total / (2 * μ * r)其中,r表示轮胎半径。
步骤 3:确定每个电机的转速范围根据车辆的最高速度和轮胎半径,可以计算出每个电机的转速范围。
每个电机的转速范围的计算公式如下:n_min = 0n_max = v_max / (π * d)其中,v_max表示车辆的最高速度,d表示轮胎直径。
步骤 4:选择合适的电机根据每个电机所需的最大输出扭矩和转速范围,可以选择合适的电机型号。
在市场上有各种不同功率和转速的电机可供选择,根据具体需求进行选择。
4. 示例假设一辆双电机电动汽车,总质量为1000kg,最大加速度为3 m/s²,轮胎滑移系数为0.7,轮胎直径为0.6m,最高速度为100 km/h。
电动汽车的电力系统设计与控制

电动汽车的电力系统设计与控制近年来,随着人们对环境保护并行动的呼声不断增加,电动汽车作为一种环保、低碳的交通工具,越来越受到人们的青睐。
然而,电动汽车的电力系统设计与控制是电动汽车的关键技术之一,因此本文将重点探讨电动汽车的电力系统设计与控制。
一、电动汽车的电力系统概述电动汽车的电力系统主要包括电动机、电池和电子控制器。
其中,电动机是电动汽车的“心脏”,是实现电能转化为动力的关键部件。
而电池则是电动汽车的“动力支持”,对电动汽车的里程及性能影响较大。
此外,电子控制器是电动汽车电力系统中的“大脑”,可以控制电动机、电池和其他电子设备的正常运转。
二、电动汽车电池的设计与控制电动汽车的电池系统是电动汽车的重要组成部分,掌握其设计与控制技术是电动汽车制造商的必修课程。
电动汽车电池系统主要涉及电池组设计、电池管理系统的设计以及BMS的设计等方面。
1、电池组设计电池组的设计是电动汽车电池系统中的重要组成部分。
电池组一般由多个电池单体组成,其设计需要考虑到电池单体的电压、容量等指标,以及连接方式、结构图案、重量等一系列因素。
对于电动汽车电池组设计的主要注意点可以概括为“轻、薄、小、大”,即要重视发动机系统的轻量化设计,而且要考虑到空间的利用率和尺寸的限制。
2、电池管理系统设计电池管理系统是指控制电池单体电压、容量、温度、充放电过程、失效管理等一系列操作的系统。
其主要目的是为了延长电池组的寿命、提高电池的性能、防范电池失效风险,提供电池的状态信息等。
电池管理系统需要掌握能源管理技术、传感技术、通信技术等一些核心技术,因此制造商需要不断提升技术水平,满足市场需求。
3、BMS设计BMS是电动汽车电池管理系统的核心技术之一,其作用是监测电池的电压、电流、温度等参数,实现对电池的控制。
BMS的设计需要考虑电池型号、工作条件、安全要求等因素,同时需要实现精确、快速、稳定的管理、监测和控制功能。
三、电动汽车电机的设计与控制电动汽车的电机系统主要包括电机、控制器和传动装置等三个部分。
电动汽车驱动电机的设计与性能优化

电动汽车驱动电机的设计与性能优化随着环保意识的提高和能源危机的日益严重,电动汽车作为一种新型的交通工具逐渐受到人们的关注和青睐。
而作为电动汽车的核心部件之一,驱动电机的设计与性能优化尤为重要。
本文将从电动汽车驱动电机的设计原理、性能参数以及性能优化等方面进行探讨,以期为电动汽车的发展做出贡献。
驱动电机的设计原理主要分为两种:直流电机和交流电机。
直流电机简单可靠,但效率较低;而交流电机具有高效率、宽速度范围和良好的调速性能。
近年来,随着电动汽车行业的快速发展,交流电机逐渐成为主流选择。
交流电机又分为感应电机和永磁同步电机,两者在结构和性能上有所不同。
感应电机结构简单,制造成本相对较低;而永磁同步电机由于其高效率、高动力密度等优点,成为电动汽车的首选。
电动汽车驱动电机的性能参数对其性能起着决定性的作用。
首先是额定功率,即电机能够持续运行的最大功率。
车辆的加速性能和爬坡能力等都与电机的额定功率密切相关。
其次是峰值功率,即电机能够短时间达到的最大功率。
在紧急加速、超车等特殊场景下,电机需要具备峰值功率较高的特性。
再次是峰值扭矩,即电机能够短时间输出的最大扭矩。
峰值扭矩的大小决定了车辆的起步动力和爬坡能力。
此外,还有电机的效率和响应时间等性能参数需要在设计过程中综合考虑。
为了优化电动汽车驱动电机的性能,可以采取以下几种方法。
首先是通过优化电机的结构设计。
结构优化可以包括磁路设计、线圈设计和散热设计等方面。
合理布置磁场线,设计合适的线圈结构,以及良好的散热系统,能够提高电机的效率和功率密度,降低热损耗,延长电机的寿命。
其次是通过改进控制算法和驱动系统。
控制算法的改进可以提高电机的响应速度和动态性能,实现更精确的控制。
驱动系统的优化可以提高电机的效率和稳定性,减少功耗。
最后是利用新材料和新技术来提高电机的性能。
例如,采用高性能的永磁材料、改变电机的结构形式、引入新的传感器和控制器等,均可以进一步提高电机的性能。
新能源汽车新型电机的设计及弱磁控制

新能源汽车新型电机的设计及弱磁控制1. 新能源汽车新型电机的设计是指针对传统燃油汽车所使用的内燃机而言,新能源汽车采用的是电动机作为动力源。
新能源汽车电机的设计主要考虑到其高效能、高可靠性以及对环境友好等特点。
新能源汽车电机的设计首先需要考虑其功率输出,根据不同车型和使用需求,确定电机的额定功率。
同时,还需要考虑电机的体积、重量以及散热性能等方面的因素,以满足车辆整体设计的要求。
2. 新能源汽车电机的设计还需要考虑其转矩特性,即电机在不同转速下的输出转矩。
转矩特性对于车辆的加速性能和爬坡能力等方面至关重要。
因此,设计者需要通过合理选择电机的磁路结构、绕组设计以及控制算法等方式来实现所需的转矩特性。
3. 弱磁控制是指在新能源汽车电机工作过程中,根据车辆的实际需求,对电机的磁场进行控制,以达到提高效率和降低能耗的目的。
弱磁控制能够在一定范围内调整电机的磁场强度,以适应不同工况下的工作要求。
弱磁控制需要考虑的关键因素包括电机的电磁特性、控制器的设计和算法以及动力系统的整体优化。
通过对电机的电流和电压进行精确控制,可以实现优化动力输出和提高能量转换效率的目标。
4. 在弱磁控制中,一种常用的方法是通过调整电机的电流控制来实现磁场强度的调节。
电机的磁场强度与电流之间存在一定的关系,通过控制电流的大小和方向,可以实现对磁场的精确调节。
5. 弱磁控制还需要考虑到电机的动态响应特性。
在不同工况下,电机的输出要求可能会发生变化,因此需要设计合适的控制算法来实现电机动态响应的调节。
这些算法通常基于电机的模型和控制理论,以实现优化的磁场调节效果。
总结起来,新能源汽车新型电机的设计需要考虑功率输出、转矩特性等方面的因素,并通过弱磁控制来实现磁场强度的调节。
弱磁控制需要综合考虑电机的电磁特性、控制器设计和算法,以实现优化的动力输出和能量转换效率。
电动汽车电机及驱动:设计、分析和应用

“电机是电动汽车的心脏,它不仅关乎车辆的动力性能,更直接影响到整车 的能效和行驶品质。”
这一观点直接点明了电机在电动汽车中的关键地位。电机不仅是提供动力的 设备,更是车辆性能和效率的核心因素。
“驱动系统是电机的配套设施,它的优化程度决定了电机效能的发挥。”
这句话强调了驱动系统的重要性,它就像电机的“助手”,帮助电机更好地 发挥其性能。
阅读感受
《电动汽车电机及驱动:设计、分析和应用》读后感
在当今这个能源转型和环保意识日益增强的时代,电动汽车成为了可持续出 行的重要选择。电动汽车的核心技术之一是其电机及驱动系统,它决定了汽车的 能源效率、性能和行驶安全性。最近,我有幸阅读了邹国棠教授的《电动汽车电 机及驱动:设计、分析和应用》,深深被其中的内容所吸引。
内容摘要
从参数设计、性能设计到控制系统设计,每一步都进行了详尽的解释和实例演示。同时,对如何 进行系统优化,提高电机及驱动系统的效率和可靠性,也进行了深入的探讨。 再者,本书对电机及驱动系统的分析方法进行了全面的介绍。包括电磁场分析、热分析、动态性 能分析等。这些分析方法对于理解和优化电机及驱动系统的性能至关重要。本书还提供了大量的 计算和分析实例,使读者能够更直观地理解这些方法的应用。 本书详细介绍了电机及驱动系统在电动汽车上的实际应用。不仅包括各种类型电机的应用场景和 注意事项,也包括驱动系统的匹配和优化。还对电动汽车的能效评估和性能测试进行了全面的讲 解,为读者在实际应用中提供了全面的指导。 《电动汽车电机及驱动:设计、分析和应用》这本书是电动汽车领域的一部全面、深入的著作。
电动汽车电机及驱动:设计、 分析和应用
读书笔记
01 思维导图
03 精彩摘录 05 目录分析
目录
02 内容摘要 04 阅读感受 06 作者简介
电动汽车电机选择与设计--毕业论文

电动汽车电机选择与设计--毕业论文在变频电机调速控制系统中,采用电力电子变压变频器作为供电电源,供电系统中电压除基波外不可避免含有高次谐波分量,对外表现为非正弦性,谐波对电机的影响主要体现在磁路中的谐波磁势和电路中的谐波电流上,不同振幅和频率的电流和磁通谐波将引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
这些损耗都会使电动机效率和功率因数降低。
同时,这些损耗绝大部分转变成热能,引起电机附加发热,导致变频电机温升的增加。
如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。
同时这些谐波磁动势与转子谐波电流合成又产生恒定的谐波电磁转矩和振动的谐波电磁转矩,恒定谐波电磁转矩的影响可以忽略,振动谐波电磁转矩会使电动机发出的转矩产生脉动,从而造成电机转速(主要是低速时)的振荡,甚至引起系统的不稳定。
谐波电流还增加了电机峰值电流,在一定的换流能力下,谐波电流降低了逆变器的负载能力。
对于变频电机,如何在设计过程中采取合理措施避免或减小应用变频器所带来的影响,以求得系统最佳经济技术效果,是本文讨论的重点。
二、变频电机设计特点对于变频电机,其设计必须与逆变器、机械传动装置相匹配共同满足传动系统的机械特性,如何从调速系统的总体性能指标出发,求得电机与逆变器的最佳配合,是变频电机设计的特点。
设计理论依据交流电机设计理论,供电电源的非正弦以及全调速频域内达到满意的综合品质因数是变频电机设计中需要着重注意的两个问题,设计中参数的选取应做特别的考虑。
与传统异步电机相比,一般变频电机设计有如下一些特点:1.用于变频调速的异步电动机要求其工作频率在一定范围内可调,所以设计电机时不能仅仅考虑某单一频率下的运行特性,而要求电机在较宽的频率范围内工作时均有较好的运行性能。
如目前大多调速异步电动机的工作频率在5Hz~100Hz内可调,设计时要全面考虑。
2.变频电机在低速时降低供电频率,可以把最大转矩调到起动点,获得很好的起动特性,因而在设计变频电机时不需要对起动性能作特别的考虑,转子槽不必设计为深槽,从而可以重点进行其它方面的优化设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动汽车电动汽车电机选择与设计学院:机械与车辆学院指导教师::::摘要:介绍了轮毂电机相对于燃油汽车和单电机集中驱动系统的优势,比较了各种电动汽车用电机的基本性能,选择不同性能的电机满足现状电动汽车的性能、结构需要,并对电动汽车的动力驱动——轮毂电机、以及涉及动力模块上结构、功能上的设计。
关键词:电动汽车;驱动系统;轮毂电机概述全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置,由于传统汽车的技术成熟,人们对汽车的性能要求已经达到一个比较高的程度。
在对于电动汽车普及方面上,这是一个很大的障碍。
但是,新能源汽车的开发发展是必然的,应当冲破旧思想的束缚,大胆创新,将电动汽车的优势充分体现是如今比较重要的一步。
早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。
该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。
相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点:(1)动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。
(2)容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。
(3)底架结构大为简化,使整车总布置和车身造型设计的自由度增加。
若能将底架承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。
(4)若在采用轮毂电机驱动系统的四轮电动汽车上导人线控四轮转向技术(4WS),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。
1.电动汽车基本参数参数确定1.1 该电动汽车基本参数要求,如下表:参数数值 参数 数值最大总质量(kg )1400 轮胎半径(m ) 0.33 迎风面积(㎡)2.50 传动效率 0.90 风阻系数0.33 最高车速(km/h ) 1001.2 动力性指标如下:(1)最大车速max 100a u km ≥;(2)在车速a u =60km/h 时爬坡度i ≥5%(3度);(3)在车速a u =40km/h 时爬坡度i ≥12% (6.8度);(4)原地起步至100km/h 的加速时间35t s ≤;(5)最大爬坡度i ≥12%(16度);(5)0到75km/h 加速时间25t s ≤;(6)具备2~3倍过载能力[7]。
2.电机参数设计一般来说,电动汽车整车动力性能指标中最高车速对应的是持续工作区,即电动机的额定功率;而最大爬坡度和全力加速时间对应的是短时工作区(1~5min),即电动机的峰值功率。
2.1 以最高车速确定电机额定功率根据虽高车速计算电机功率时,不考虑加速阻力和坡道阻力,电机功率N P 应满足:2max max 360021.15a D a N T u C A u P m g f η⎛⎫⋅⋅=⋅⋅⋅+ ⎪⎝⎭ (1)20(1/19400)a f f u =+ (2)式中:N P ——电机输出功率,kw ;T η——传动系效率,取0.9;m ——最大车重,取1400kg;0f ——滚动摩擦系数,取0.014;D C ——风阻系数,取0.33;A ——迎风面积,取2.50㎡;max a u ——最高车速,取100km/h 。
根据(1)(2)式,可以计算出满足最高车速时,电机输出额定功率为21.023kw[3]。
2.2 根据要求车速的爬坡度计算()sin 3600a f w N T u F F G P αη⋅++=(3)根据公式(4),其中在车速a u =60km/h 时爬坡度i ≥5%可得: ()20.014160/1940014009.8cos 3227.4f F =⨯+⨯⨯⨯=(N ) 20.33 2.560140.421.15w F ⨯⨯==(N )()140.4277.414009.80.0526020.9536000.9N P ++⨯⨯⨯==⨯(kw )根据公式(4),其中在车速a u =40km/h 时爬坡度i ≥12%可得: ()20.014140/1940014009.8cos 12203.38f F =⨯+⨯⨯⨯=(N )20.33 2.54062.4121.15w F ⨯⨯==(N )()62.41203.3814009.80.1184023.30736000.9N P ++⨯⨯⨯==⨯(kw )根据(4)式,可以计算出满足车速为60km/h 时,爬坡度为5%,电机输出额定功率为20.95kw ,满足车速为40km/h 时,爬坡度为12%,电机输出额定功率为23.307kw[3][5]。
2.3 根据最大爬坡度确定电机的额定功率根据公式(4),其中在车速a u =20km/h 时爬坡度i ≥28%(16度)可得:()20.014120/1940014009.8cos 16188.395f F =⨯+⨯⨯⨯=(N ) 20.33 2.52015.60221.15w F ⨯⨯==(N )()188.39515.60214009.80.2762024.63436000.9N P ++⨯⨯⨯==⨯(kw )根据(4)式,可以计算出满足车速为20km/h 时,爬坡度为28%,电机输出额定功率为24.634kw ,在这里假定额定功率为25kw 。
2.4 根据额定功率来确定电机的最大功率电机的最大功率可以由下式计算得出:max N P P λ=⨯ (4)式中:max P ——电机最大功率,kw ; λ——电机过载系数,一般取2~3。
根据式(3),可计算得max P =50~75kw ,所以初步假设电机的峰值功率为75kw 。
由于选用的是轮毂电机,所以每个电机设定为:峰值功率20kw ,额定功率为10kw[5]。
2.5 电机额定转速和转速的选择对电机本身而言,额定功率相同的电机额定转速越高,体积越小,质量越轻,造价越低;而且电机功率恒定时,随着电机额定转速和最高转速的增加,电机的最大转矩会减小,从而避免造成转矩过太的不利影响。
因此.选择高速电机是比较有利的。
但当电机转速超过一定程度后,其转矩降低幅度明显减小.因此,电机最高转速过高时,将导致电机及减速装置的制造成本增加。
电机转速的选择既要考虑负载的要求.又要考虑电机与传动机构的经济性等固素。
综合上述各种因素,由于选用轮毂电机,根据车用驱动电机的特点井参考其他电动车辆上采用的电机,选定电机的额定转速为2000r/min ,最高转速为3000r/min 。
max max max 1955095509550N N N N NN T n T n P T n P P λ⨯⨯⨯==⨯=⨯(5)式中:max T ——电机的最大转矩,N ·m ;NT ——电机的额定转矩,N ·m ; N n ——电机的额定转速,r/min 。
通过式(5),可算出电机的最大转矩为:max T =143.25N ·m ,额定转矩为:N T =47.75N ·m[1]。
3.传动系最大传动比的设计(1)0i 的选择首先应满足车辆最高行驶速度要求, 由最高车速max a u 与电机最高转速max n 确定传动比的上限。
根据公式:max 0max 0.377a n ri u ≤ (6)得:0i ≤3.732(2)由电机的最高转速对应的最大输出转矩max T 和最高车速对应的行驶阻力max F 确定速比的下限值:max 0max T F ri T η⋅≥⋅ (7)由前面的计算可得:max f w F F F =+=681.16(N )最大输出转矩max T =143.25(N ·m )max 0max 1.743T F r i T η⋅≥=⋅(3)由电机最大输出转矩和最大爬坡度对应行驶阻力确定0i 。
根据公式:max 0max T F ri T αη⋅≥⋅ (8)max (sin )F G fcos ααα=+=203.997(N )最大输出转矩max T =143.25(N ·m )max 0max 0.522T F r i T αη⋅≥=⋅由以上的计算我们选定一个合适的减速比0i =3.4[1]。
4.电机的种类与性能分析4.1 直流电动机有刷直流电动机的主要优点是控制简单、技术成熟。
具有交流电机不可比拟的优良控制特性。
在早期开发的电动汽车上多采用直流电动机,即使到现在,还有一些电动汽车上仍使用直流电动机来驱动。
但由于存在电刷和机械换向器,不但限制了电机过载能力与速度的进一步提高,而且如果长时间运行,势必要经常维护和更换电刷和换向器。
另外,由于损耗存在于转子上,使得散热困难,限制了电机转矩质量比的进一步提高。
鉴于直流电动机存在以上缺陷,在新研制的电动汽车上已基本不采用直流电动机4.2交流三相感应电动机交流三相感应电动机的基本性能交流三相感应电动机是应用得最广泛的电动机。
其定子和转子采用硅钢片叠压而定子之间没有相互接触的滑环、换向器等部件。
结构简单,运行可靠,经久耐用。
交流感应电动机的功率覆盖面很宽广,转速达到12000~15000r/min。
可采用空气冷却或液体冷却方式,冷却自由度高。
对环境的适应性好,并能够实现再生反馈制动。
与同样功率的直流电动机相比较,效率较高,质量减轻一半左右,价格便宜,维修方便。
4.3 永磁无刷直流电动机永磁无刷直流电动机的基本性能永磁无刷直流电动机是一种高性能的电动机。
它的最大特点就是具有直流电动机的外特性而没有刷组成的机械接触结构。
加之,它采用永磁体转子,没有励磁损耗:发热的电枢绕组又装在外面的定子上,散热容易,因此,永磁无刷直流电动机没有换向火花,没有无线电干扰,寿命长,运行可靠,维修简便。
此外,它的转速不受机械换向的限制,如果采用空气轴承或磁悬浮轴承,可以在每分钟高达几十万转运行。
永磁无刷直流电动机机系统相比具有更高的能量密度和更高的效率,在电动汽车中有着很好的应用前景。
永磁无刷直流电动机的不足永磁无刷直流电动机受到永磁材料工艺的影响和限制,使得永磁无刷直流电动机的功率范围较小,最大功率仅几十千瓦。
永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降或发生退磁现象,将降低永磁电动机的性能,严重时还会损坏电动机,在使用中必须严格控制,使其不发生过载。
永磁无刷直流电动机在恒功率模式下,操纵复杂,需要一套复杂的控制系统,从而使得永磁无刷直流电动机的驱动系统造价很高4.4 开关磁阻电动机开关磁阻电动机的基本性能开关磁阻电动机是一种新型电动机,该系统具有很多明显的特点:它的结构比其它任何一种电动机都要简单,在电动机的转子上没有滑环、绕组和永磁体等,只是在定子上有简单的集中绕组,绕组的端部较短,没有相间跨接线,维护修理容易。