中考数学常见几何模型简介
中考数学常见几何模型简介

几何问题初中几何常见模型解析➢模型一:手拉手模型-全等1等边三角形➢条件:均为等边三角形➢结论:①;②;③平分..2等腰➢条件:均为等腰直角三角形➢结论:①;②;③平分..3任意等腰三角形➢条件:均为等腰三角形➢结论:①;②;③平分..➢➢模型二:手拉手模型-相似➢条件:;将旋转至右图位置➢结论:右图中①;②延长AC交BD于点E;必有2特殊情况➢条件:;;将旋转至右图位置➢结论:右图中①;②延长AC交BD于点E;必有;③;④;⑤连接AD、BC;必有;⑥对角线互相垂直的四边形➢➢模型三:对角互补模型➢条件:①;②OC平分➢结论:①CD=CE; ②;③➢证明提示:①作垂直;如图;证明;②过点C作;如上图右;证明;➢当的一边交AO的延长线于点D时:以上三个结论:①CD=CE不变;②;③此结论证明方法与前一种情况一致;可自行尝试..➢条件:①;②平分;➢结论:①;②;③➢证明提示:①可参考“全等型-90°”证法一;②如图:在OB上取一点F;使OF=OC;证明为等边三角形..➢当的一边交AO的延长线于点D时如上图右:原结论变成:①;②;③;可参考上述第②种方法进行证明..3全等型-任意角➢条件:①;②;➢结论:①平分;②;③.➢当的一边交AO的延长线于点D时如右上图:原结论变成:①;②;③;可参考上述第②种方法进行证明..◇请思考初始条件的变化对模型的影响..➢如图所示;若将条件“平分”去掉;条件①不变;平分;结论变化如下:结论:①;②;③.➢对角互补模型总结:①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线;②初始条件“角平分线”与“两边相等”的区别;③两种常见的辅助线作法;④注意下图中平分时;相等是如何推导的➢模型四:角含半角模型90°1角含半角模型90°-1➢条件:①正方形;②;➢结论:①;②的周长为正方形周长的一半;也可以这样:➢条件:①正方形;②➢结论:2角含半角模型90°-2➢条件:①正方形;②;➢结论:➢辅助线如下图所示:3角含半角模型90°-3➢条件:①;②;➢结论:若旋转到外部时;结论仍然成立..4角含半角模型90°变形➢条件:①正方形;②;➢结论:为等腰直角三角形..➢1倍长中线类模型-1➢条件:①矩形;②;③;➢结论:模型提取:①有平行线;②平行线间线段有中点;可以构造“8”字全等..2倍长中线类模型-2➢条件:①平行四边形;②;③;④.➢结论:➢➢模型六:相似三角形360°旋转模型1相似三角形等腰直角360°旋转模型-倍长中线法➢条件:①、均为等腰直角三角形;②➢结论:①;②1相似三角形等腰直角360°旋转模型-补全法➢条件:①、均为等腰直角三角形;②;➢结论:①;②2任意相似直角三角形360°旋转模型-补全法➢条件:①;②;③..➢结论:①;②2任意相似直角三角形360°旋转模型-倍长法➢条件:①;②;③..➢结论:①;②➢➢模型七:最短路程模型1最短路程模型一将军饮马类2最短路程模型二点到直线类1➢条件:①平分;②为上一定点;③为上一动点;④为上一动点;➢求:最小时;的位置3最短路程模型二点到直线类24最短路程模型二点到直线类3➢条件:➢问题:为何值时;最小➢求解方法:①轴上取;使;②过作;交轴于点;即为所求;③;即.5最短路程模型三旋转类最值模型6最短路程模型三动点在圆上➢➢➢。
初中中考数学常见几何模型简介

初中中考数学常见几何模型简介中考数学中,几何知识是一个非常重要的部分。
其中涵盖了许多常见的几何模型,掌握这些几何模型可以帮助学生更好地理解和解决几何题目。
本文将介绍几种常见的几何模型。
1. 点、直线、线段、射线点、直线、线段和射线是初中数学中最基本的几何概念。
点是没有任何大小和形状的;直线是由无数个点组成的,没有宽度和长度;线段是直线上的两个端点和它们之间的线段组成的;射线则是直线上一点和这个点向前的某个方向组成的。
2. 三角形、直角三角形、等边三角形、等腰三角形三角形是由三条线段组成的,其中两条线段之和必须大于第三条线段。
直角三角形则是其中一条线段和另外一条线段之间形成的直角。
等边三角形的三条边长度都相等,等腰三角形的两条边长度相等。
3. 矩形、正方形、菱形、平行四边形矩形是一个有四个直角的四边形,它的相邻两条边长度相等,其对角线长度相等。
正方形是一种特殊的矩形,它的四条边长度都相等。
菱形也是一个四边形,相邻两条边长度相等,对角线长度相等。
平行四边形则是一种有两对平行线段的四边形。
4. 圆、圆心、半径、弦、切线圆是一个平面上所有点到圆心距离相等的图形。
圆心是圆的中心点,圆的直径是通过圆心的两点之间的线段。
弦则是圆上任意两个点之间的线段,它的长度可以小于、等于或大于圆的直径。
切线是与圆相切于一个点的直线。
5. 梯形、等腰梯形梯形是一个有两条平行边和另外两条不平行边的四边形。
等腰梯形是其中两条边长度相等的梯形。
以上就是几种比较常见的几何模型的简介,在解决几何题目时,可以根据题目中给出的几何模型进行分析,找到正确的解题方法。
初中几何46种模型大全

初中几何46种模型大全初中几何46种模型大全正文:几何是初中数学的重要分支,其中涉及到的模型数量和种类非常丰富。
下面,我们将介绍初中几何中的46种模型,包括它们的定义、性质、应用等。
1. 等腰三角形模型定义:一个等腰三角形的两条边长度相等,且它们的腰角度数相等。
性质:1. 等腰三角形的两条底边长度相等;2. 等腰三角形的两条顶角角度数相等;3. 等腰三角形的顶角和等于180度-底边长度的夹角。
应用:等腰三角形模型可以用来证明三角形的性质,如边长相等、角度相等等。
2. 直角三角形模型定义:一个直角三角形的两条直角边长度相等,且它们的斜角角度数相等。
性质:1. 直角三角形的两条直角边长度相等;2. 直角三角形的斜角角度数相等;3. 直角三角形的斜边长度等于两条直角边长度的乘积。
应用:直角三角形模型可以用来解决直角三角形相关问题,如勾股定理等。
3. 等边三角形模型定义:一个等边三角形的三条边长度相等。
性质:1. 等边三角形的三条边长度相等;2. 等边三角形的任意两边长度都大于第三边;3. 等边三角形的任意角度数都小于180度。
应用:等边三角形模型可以用来证明三角形的性质,如边长相等、角度相等等。
4. 正方形模型定义:一个正方形的四条边长度相等。
性质:1. 正方形的四条边长度相等;2. 正方形的任意一个角都是90度;3. 正方形的任意两个角都是直角。
应用:正方形模型可以用来解决正方形相关问题,如面积、周长等。
5. 长方形模型定义:一个长方形的两条边长度相等,且它们的长度之和等于宽度。
性质:1. 长方形的两条边长度相等;2. 长方形的长、宽相等;3. 长方形的任意一个角都是直角。
应用:长方形模型可以用来解决长方形相关问题,如面积、周长等。
6. 菱形模型定义:一个菱形的四条边长度相等且互相平分,对角线互相垂直且相等。
性质:1. 菱形的四条边长度相等且互相平分;2. 菱形的对角线互相垂直且相等;3. 菱形的任意一个角都是45度。
中考数学几何模型大汇总

中考数学几何模型大汇总
当涉及到中考数学几何模型时,以下是一些常见的模型大汇总:
1. 三角形模型:
-等边三角形:三边长度相等的三角形。
-等腰三角形:两边长度相等的三角形。
-直角三角形:一个角度为90度的三角形。
-平面内角和为180度。
2. 四边形模型:
-正方形:四边相等且角度为90度的四边形。
-长方形:相对边相等且角度为90度的四边形。
-平行四边形:对边平行的四边形。
-梯形:有一对平行边的四边形。
-菱形:四边相等的四边形。
3. 圆模型:
-圆的面积和周长计算。
-弧长和扇形面积计算。
4. 空间几何模型:
-立体图形的表面积和体积计算:
-立方体:六个面都是正方形。
-直方体:六个面都是矩形。
-圆柱体:底面是圆形,侧面是矩形。
-圆锥体:底面是圆形,侧面是三角形。
-球体:所有点到球心的距离相等。
5. 相似模型:
-相似三角形:具有相同形状但不同大小的三角形。
-相似多边形:具有相同形状但不同大小的多边形。
6. 坐标几何模型:
-直角坐标系:平面上的点通过x轴和y轴的坐标进行定位。
-坐标点之间的距离和斜率计算。
这只是一些中考数学几何模型的大致汇总,其中还有很多其他模型和概念。
掌握这些模型和概念将有助于解决与几何相关的中考数学问题。
中考数学几何模型大汇总

中考数学几何模型大汇总下面是中考几何模型的大汇总:1、平面直角坐标系模型平面直角坐标系模型中,我们可以使用坐标系来描述平面上图形和点的位置关系。
这个模型常用于图形的平移、旋转、对称等问题。
2、矩形模型矩形模型用于讨论四边形的性质、面积、周长等问题。
在这个模型中,我们将四边形近似为一个矩形,从而使问题更易解决。
3、三角形模型三角形模型是中考中最常见的模型之一、它可以用于计算三角形的面积、周长,讨论三角形的性质。
在这个模型中,我们通常使用海伦公式、正弦定理、余弦定理等方法来求解。
4、圆形模型圆形模型用于讨论圆、弧、扇形等问题。
在这个模型中,我们通常使用圆的周长、面积公式,以及角度与弧长的关系来进行计算。
5、球体模型球体模型用于讨论球体的体积、表面积以及球冠、球缺等问题。
在这个模型中,我们通常使用球的体积、表面积公式,以及球冠、球缺的体积和表面积公式来求解。
6、棱锥模型棱锥模型用于讨论棱锥的体积、表面积、正棱锥、锥台等问题。
在这个模型中,我们通常使用棱锥的体积、表面积公式,以及正棱锥、锥台的体积和表面积公式来求解。
7、棱柱模型棱柱模型用于讨论棱柱的体积、表面积、正棱柱、柱台等问题。
在这个模型中,我们通常使用棱柱的体积、表面积公式,以及正棱柱、柱台的体积和表面积公式来求解。
8、立体几何模型立体几何模型用于讨论正方体、长方体、正六面体等立体图形的体积、表面积、对角线等问题。
在这个模型中,我们通常使用立体图形的体积、表面积公式,以及对角线长的求法来计算。
总之,几何模型是中考数学中重要的一环,通过利用这些模型,我们可以更好地理解几何知识,更好地应对考试。
初中几何46种模型大全

初中几何46种模型大全篇一:初中几何46种模型大全引言几何是初中数学的重要分支,其知识点涵盖了平面几何、立体几何、向量等多个方面。
在学习几何时,掌握各种几何模型是非常重要的,这些模型可以帮助我们理解和解决几何问题,提高解题能力。
本文将介绍初中几何中的46种常见的模型,包括它们的名称、定义、性质和应用。
正文1. 正方形模型正方形模型是几何中最基本的模型之一,它是一种边长相等的矩形。
正方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。
正方形模型的性质有:- 正方形的四条边相等;- 正方形的对角线相等;- 正方形的面积等于其边长的平方。
2. 长方形模型长方形模型是有两个相等的长和两个不相等的宽的英雄。
长方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和小于斜边的平方。
长方形模型的性质有:- 长方形的两条对角线相等;- 长方形的宽比长大,长比宽大;- 长方形的长和宽相等。
3. 平行线模型平行线模型是相互平行的直线。
平行线模型的定义如下:- 两直线平行,当且仅当它们的对应角相等且且它们的方向相同。
平行线模型的性质有:- 平行线之间有且仅有一个交点;- 平行线上的点的横坐标相等;- 平行线的方向相同。
4. 菱形模型菱形模型是具有四个相等的直角边的矩形。
菱形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方,且任意两条边的长度小于第三条边的长度。
菱形模型的性质有:- 菱形的四条边相等;- 菱形的对角线相等;- 菱形的面积等于其四条边长度的平方和。
5. 等腰三角形模型等腰三角形模型是有一个相等的腰部的两个三角形。
等腰三角形模型的定义如下:- 在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。
等腰三角形模型的性质有:- 等腰三角形的两条直角边相等;- 等腰三角形的底角相等;- 等腰三角形的顶角平分线相等。
6. 等边三角形模型等边三角形模型是具有三个相等的边长的三角形。
中考数学几何模型分类总结

中考数学几何模型分类总结一、直线与角1. 线段定义:线段是由两个不同点在平面上连接起来的线段,并且线段的两个端点是不可移动的。
特征:线段具有长度和方向,可以通过测量线段的长度来确定它的大小。
2. 射线定义:射线是由一个固定点(起点)和从该点伸出的一条直线组成的图形。
特征:射线没有固定的终点,可以无限延伸。
射线由起点开始,沿着特定的方向延伸。
3. 直线定义:直线是由无限多个点在同一平面上连接而成的。
直线上的两个点可以确定一条直线。
特征:直线没有起点和终点,可以无限延伸。
直线上的任意两点与该直线上的任意一点合成的角度均为180°。
4. 垂线定义:垂线是与另一条线段或直线相交,且与之成直角的线段或直线。
特征:垂线与另一条线段或直线的交点称为垂足,垂足离该线段或直线的距离最短。
二、二维图形1. 三角形定义:三角形是由三条线段组成的闭合图形,每两条线段之间的交点称为顶点。
特征:三角形具有三个内角和三条边。
三角形的内角之和等于180°。
分类: - 等边三角形:三条边的长度相等。
- 等腰三角形:具有两条边的长度相等。
- 直角三角形:具有一个90°的内角。
- 锐角三角形:具有三个小于90°的内角。
- 钝角三角形:具有一个大于90°的内角。
定义:矩形是由四条边和四个顶点组成的四边形,相邻的两条边互相垂直。
特征:矩形的相对边相等且平行,对角线相等且互相平分。
3. 正方形定义:正方形是一种特殊的矩形,具有相等的边长和相邻边互相垂直。
特征:正方形的所有边长相等,对角线相等且互相平分,内角均为90°。
4. 平行四边形定义:平行四边形是由四条边和四个顶点组成的四边形,具有相邻两边互相平行。
特征:平行四边形的对边相等且平行,对角线互相平分。
5. 梯形定义:梯形是由一对平行边和两条非平行边组成的四边形。
特征:梯形的非平行边称为腰,腰之间的夹角称为梯形的顶角。
三、立体图形1. 立方体定义:立方体是一个有六个面的多面体,每个面都是一个正方形。
初三数学几何模型

初三数学几何模型
初三数学几何模型是指在初三数学课程中使用的用来展示和解决
几何问题的模型。
这些模型可以帮助学生理解和掌握几何概念和定理,提高他们的几何思维能力和问题解决能力。
常见的初三数学几何模型包括平面图形模型、立体几何模型和投
影模型等。
平面图形模型可以使用纸板、剪纸和绳子等材料制作,用
来展示和研究平行线、垂直线、相交线、三角形、四边形、圆等几何
图形的性质和相关定理。
立体几何模型可以通过拼装和折纸的方式制作,用来研究平行四边形、正方体、棱柱、棱锥、圆锥、圆柱等立体
图形的性质和相关定理。
投影模型则可以使用灯光和投影仪等设备进
行展示,用来研究平行投影、垂直投影、中心投影等几何问题。
在初三数学课堂上,老师可以使用这些模型进行教学和演示,引
导学生观察、推理和实证,培养他们的几何思维和几何直觉。
通过实
际操作和观察,学生能够更加深入地理解几何概念和定理,提升解决
几何问题的能力。
同时,这些几何模型也可以激发学生的兴趣,使数
学学习更加生动有趣。
因此,初三数学几何模型在教学中起着重要的作用,它们能够帮
助学生更好地理解和应用几何知识,提高他们的数学水平和学习成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何问题初中几何常见模型解析
(1)等边三角形
➢条件:均为等边三角形
➢结论:①;②;③平分。
(2)等腰
➢条件:均为等腰直角三角形
➢结论:①;②;③平分。
(3)任意等腰三角形
➢条件:均为等腰三角形
➢结论:①;②;③平分。
➢模型二:手拉手模型-相似
(1)一般情况
➢条件:,将旋转至右图位置
➢结论:右图中①;②延长AC交BD于点E,必有
(2)特殊情况
➢条件:,,将旋转至右图位置
➢结论:右图中①;②延长AC交BD于点E,必有;
③;④;⑤连接AD、BC,必有
;
⑥(对角线互相垂直的四边形)
➢模型三:对角互补模型
➢条件:①;②OC平分
➢结论:①CD=CE; ②;③
➢证明提示:
①作垂直,如图,证明;
②过点C作,如上图(右),证明;➢当的一边交AO的延长线于点D时:
以上三个结论:①CD=CE(不变);②;③此结论证明方法与前一种情况一致,可自行尝试。
➢条件:①;②平分;
➢结论:①;②;③
➢证明提示:①可参考“全等型-90°”证法一;
②如图:在OB上取一点F,使OF=OC,证明为等边三角形。
➢当的一边交AO的延长线于点D时(如上图右):
原结论变成:①;
②;
③;
可参考上述第②种方法进行证明。
(3)全等型-任意角
➢条件:①;②;
➢结论:①平分;②;③
.
➢当的一边交AO的延长线于点D时(如右上图):
原结论变成:①;
②;
③;
可参考上述第②种方法进行证明。
◇请思考初始条件的变化对模型的影响。
如图所示,若将条件“平分”去掉,条件①不变,平分,结论变化如下:
结论:①;②;③.
➢对角互补模型总结:
①常见初始条件:四边形对角互补;
注意两点:四点共圆及直角三角形斜边中线;
②初始条件“角平分线”与“两边相等”的区别;
③两种常见的辅助线作法;
④注意下图中平分时,相等是如何推导的?
(1)角含半角模型90°-1
➢条件:①正方形;②;
➢结论:①;②的周长为正方形周长的一半;
也可以这样:
➢条件:①正方形;②
➢结论:
(2)角含半角模型90°-2
➢条件:①正方形;②;
➢结论:
➢辅助线如下图所示:
(3)角含半角模型90°-3
➢条件:①;②;
➢结论:
若旋转到外部时,结论仍然成立。
(4)角含半角模型90°变形
➢条件:①正方形;②;
➢结论:为等腰直角三角形。
(1)倍长中线类模型-1
➢条件:①矩形;②;③;
➢结论:
模型提取:①有平行线;②平行线间线段有中点;
可以构造“8”字全等。
(2)倍长中线类模型-2
➢条件:①平行四边形;②;③;④.➢结论:
➢模型六:相似三角形360°旋转模型
(1)相似三角形(等腰直角)360°旋转模型-倍长中线法
➢条件:①、均为等腰直角三角形;②
➢结论:①;②
(1)相似三角形(等腰直角)360°旋转模型-补全法
➢条件:①、均为等腰直角三角形;②;
➢结论:①;②
(2)任意相似直角三角形360°旋转模型-补全法
➢条件:①;②;③。
➢结论:①;②
(2)任意相似直角三角形360°旋转模型-倍长法
➢条件:①;②;③。
➢结论:①;②
➢模型七:最短路程模型
(2)最短路程模型二(点到直线类1)
➢条件:①平分;②为上一定点;③为上一动点;④为上一动点;➢求:最小时,的位置?
(3)最短路程模型二(点到直线类2)
➢条件:
➢问题:为何值时,最小
➢求解方法:①轴上取,使;②过作,交轴于点,即为所求;
③,即.
(5)最短路程模型三(旋转类最值模型)
➢模型九:相似三角形模型。