反比例函数

合集下载

反比例函数的方法

反比例函数的方法

反比例函数的方法反比例函数是一类特殊的函数,其定义为:y = k/x,其中k为常数,x不等于0。

这意味着当x增加时,y减小,反之亦然,因此它被称为反比例函数。

在数学、物理、工程和科学等许多领域中,反比例函数都有广泛的应用。

本文将介绍反比例函数的性质、图像和解题方法。

一. 反比例函数的性质1. 垂直渐近线:x = 0是反比例函数的垂直渐近线,因为当x趋近于0时,y无限大或无限小。

2. 水平渐近线:y = 0是反比例函数的水平渐近线,因为当x趋近于无穷大或无穷小时,y趋近于0。

3. 对称中心点:反比例函数的对称中心点为(x,y) = (±√k,±√k),因为当x等于±√k时,y等于±√k,即(x,y)关于这一点对称。

4. 定义域和值域:反比例函数的定义域为x不等于0,值域为y不等于0。

二. 反比例函数的图像反比例函数的图像可以通过绘制一些点然后连接它们来得到。

例如,对于函数y = 2/x,我们可以选择一些x值,并计算相应的y值,然后将它们表示在坐标系统中,如下所示:x y-3 -2/3-2 -1-1 -21 22 13 2/3通过连接这些点,我们可以得到反比例函数的图像如下所示:此图像具有以下特征:1. 过原点(0,0),因为当x等于0时,y等于0。

2. 右上和左下方向的开口,因为当x大于0时,y小于0,当x小于0时,y大于0。

3. 垂直渐近线x = 0。

4. 水平渐近线y = 0。

5. 对称中心点为(-√2,√2)和(√2,-√2)。

三. 反比例函数的解题方法当我们需要解决与反比例函数有关的问题时,我们可以使用以下步骤:1. 理解问题并确定变量:首先,我们需要明确问题中给出的信息,并确定与反比例函数相关的变量。

例如,如果一个问题涉及到两个变量的反比例关系,我们可以使用y=k/x的形式表示它们之间的关系,并将k视为常数。

2. 列出方程:其次,我们需要将反比例关系转化为相应的方程,并用给定的值求解未知量。

反比例函数

反比例函数

反比例函数知识Ⅰ反比例函数的概念:一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k 为常数,k≠0)的形式,那么称y是x的反比例函数。

因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。

而y=k/x有时也被写成xy=k或y=k〃x^(-1)。

Ⅱ自变量的取值范围:①在一般的情况下,自变量x的取值范围可以是不等于0的任意实数②函数y的取值范围也是任意非零实数。

Ⅲ函数图像:反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。

Ⅳ图象的形状:双曲线.K的绝对值越大,图象的弯曲度越小,曲线越平直.K的绝对值越小,图象的弯曲度越大.Ⅴk的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q 也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC 的面积为.Ⅵ函数性质:单调性:当k>0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。

对称性:反比例函数图像是中心对称图形,对称中心是原点;反比例函数的图像也是轴对称图形,其对称轴为y=x和y=-x;反比例函数图像上的点关于坐标原点对称。

Ⅶ直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.技能:Ⅰ画图像1)列表2)在平面直角坐标系中标出点。

3)用平滑的曲线连接点。

(注:当两个数相等时那么曲线呈弯月型)Ⅱ构造k(k的几何意义)思想Ⅰ数形结合(主要是k)Ⅱ分类讨论经验Ⅰ()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;Ⅱ()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;Ⅲ反比例函数的自变量,故函数图象与x轴、y轴无交点Ⅳ双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.。

反比例函数的定义

反比例函数的定义

反比例函数的定义
一般地,函数(k是常数,k≠0)叫做反比例函数,自变量x的取值范围是x≠0的一切实数,函数值的取值范围也是一切非零实数。

注:
(1)因为分母不能为零,所以反比例函数函数的自变量x不能为零,同样y也不能为零;(2)由,所以反比例函数可以写成的形式,自变量x的次数为-1;
(3)在反比例函数中,两个变量成反比例关系,即,因此判定两个变量是否成反比例关系,应看是否能写成反比例函数的形式,即两个变量的积是不是一个常数。

表达式:
x是自变量,y是因变量,y是x的函数
自变量的取值范围:
①在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;
②函数y的取值范围也是任意非零实数。

反比例函数性质:
①反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式;
②反比例函数表达式中,常数(也叫比例系数)k≠0是反比例函数定义的一个重要组成部分;
③反比例函数(k是常数,k≠0)的自变量x的取值范围是不等式0的任意实数,函数值y 的取值范围也是非零实数。

反比例函数

反比例函数

k 1 .反比例函数 y= (k 是常数, k≠0)的图象是 x 双曲线.因为 x≠0,k≠0,相应地 y 值也不能为 0, 所以反比例函数的图象无限接近 x 轴和 y 轴,但永不 与 x 轴、y 轴相交.
2.反比例函数的图象和性质 k 反比例函数 y= (k 是常数, k≠0)的图象总是关于 x 原点对称的,它的位置和性质受 k 的符号的影响.
(1)求该轿车可行驶的总路程 s 与平均耗油量 a 之 间的函数解析式(关系式). (2)当平均耗油量为 0.08 升/千米时, 该轿车可以行 驶多少千米? 【点拨】本题考查建立反比例函数模型解答实际 问题. k k 解:(1)把 a=0.1,s=700 代入 s= ,得 700= , a 0.1 70 k=70,s= . a
考点三 反比例函数值的大小比较 例 3(2014· 衡阳)若点 P1(-1,m),P2(-2,n)在 k 反比例函数 y= (k>0)的图象上,则 m________n(填 x “>”“<”或“=”).
【点拨】方法一:∵k>0,∴在每个象限内y 随x的增大而减小.又∵0>-1>-2,∴m<n.方 法二:∵k>0,∴取k=2,把x=-1,x=-2分别 2 代入y= ,得m=-2,n=-1,∴m<n. x
k 2. (2014· 株洲)已知反比例函数 y= 的图象经过点 x (2,3),那么下列四个点中,也在这个函数图象上的是 ( B ) A.(-6,1) C.(2,-3) B.(1,6) D.(3,-2)
k 解析:∵y= 的图象经过点(2,3),∴k=2×3=6. x 又∵1×6=6=k, ∴点(1,6)也在这个函数的图象上. 故 选 B.
A.②③
B.③④
C.①②
D.①④

反比例函数

反比例函数

反比例函数相关知识反比例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数的性质函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

3.x的取值范围是:x≠0;y的取值范围是:y≠0。

4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

反比例函数的一般形式一般地,如果两个变量x、y之间的关系可以表示成(k为常数,k≠0)的形式,那么称y是x的反比例函数。

其中,x是自变量,y是函数。

由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。

补充说明:1.反比例函数的解析式又可以写成:(k是常数,k≠0).2.要求出反比例函数的解析式,利用待定系数法求出k即可.反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

y与x成反比xy=a(a为常数)如果二者呈反比,常数a依然被称作反比例常数。

顺便说一下,反比例的式子也可以通过下面的形式表达(可能这种形式才是主流)。

反比例函数

反比例函数
A.4B.8C.﹣4D.﹣8
2.在同一直角坐标系中,函数 与 的图象大致为( ).
A. B. C. D.
3.如图,一次函数y1=k1+b(k1≠0)的图象分别与x轴、y轴相交于点A、B,与反比例函数 的图象交于C(﹣4,-2),D(2,4).当x为()时, .
A.x>﹣2B.x<﹣4
C.x<﹣4或0<x<2D.﹣2<x<2
(1)求一次函数和反比例函数的表达式;
(2)求 的面积;
(3)根据图像,直接写出一次函数值大于反比例函数值时x的取值范围.
6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压 是气体体积 的反比例函数,其图象如图所示.
(1)写出这一函数的表达式;
(2)当气体体积为 时,气压是多少?
(3)当气球内的气压大于 时,气球将爆炸.为了安全起见,气体的体积应不小于多少?
反比例函数
反比例函数图象与性质
知识点
1.反比例函数的概念:一般地, (k为常数,k≠0)叫做反比例函数,即y是x的反比例函数。(x为自变量,y为因变量,其中x不能为零)
2.反比例函数的等价形式:y是x的反比例函数←→ ←→ ←→ ←→变量y与x成反比例,比例系数为k.
3.判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即 >。(通常第二种方法更适用)
【例5】图,点 是双曲线 : ( )上的一点,过点 作 轴的垂线交直线 : 于点 ,连结 , .当点 在曲线 上运动,且点 在 的上方时,△ 面积的最大值是______.
【例6】如图,D是矩形AOBC的对称中心,A(0,4),B(6,0),若一个反比例函数的图象经过点D,交AC于点M,则点M的坐标为___.

反比例函数知识讲解

反比例函数知识讲解

反比例函数知识讲解具体来说,当x≠0时,反比例函数的定义域为R\{0},值域为R。

当x=0时,函数的值将无法定义,因为在分母为零的情况下,函数没有意义。

1.当x趋近于正无穷大或负无穷大时,y趋近于零。

2.当x趋近于零时,y趋近于正无穷大或负无穷大。

3.函数图像不会与坐标轴相交。

1.比例定律:在一定条件下,两个量之间的比值始终保持不变。

如果该比值为常数k,我们可以写成y=k/x的形式,其中自变量x和因变量y之间呈现出反比例关系。

2.电阻和电流关系:根据欧姆定律,电阻R与电流I之间的关系为R=k/I,其中k为电阻常数。

根据这个关系,可以推导出电压和电流之间的关系为V=kI,其中V为电阻上的电压。

3. 速度和时间关系:根据路程与时间的关系式 S = vt,可以得到时间和速度之间呈现出反比例的关系。

要求提高反比例函数的知识理解,可以进一步研究以下几个方面:1.反比例函数的图像特点:观察不同常数k值的情况下函数图像的变化情况。

通过画出函数图像来理解反比例函数的性质。

2.反比例函数的性质:研究反比例函数的性质,例如定义域、值域、单调性等。

了解函数图像的变化对应的函数性质的变化。

3.反比例函数的应用:研究反比例函数在实际问题中的应用,例如物理学、经济学、生物学等领域中的应用。

需要注意的是,在应用反比例函数的过程中,需要将模型与实际问题相结合,并针对具体问题来确定函数中的常数。

总之,反比例函数是一类重要的函数形式,具有特殊的数学特征和实际应用背景。

通过进一步的研究和探索,可以提高对反比例函数的理解和应用能力。

反比例函数表达式的三种形式

反比例函数表达式的三种形式

反比例函数表达式的三种形式
反比例函数是一种特殊的函数,其表达式可以有三种形式,标
准形式、一般形式和直线方程形式。

1. 标准形式,反比例函数的标准形式可以表示为 y = k/x,其
中 k 是一个非零常数。

在标准形式中,y 和 x 是函数的变量,k
是比例常数,表示 y 和 x 的乘积的比例。

2. 一般形式,反比例函数的一般形式可以表示为 y = k/(ax +
b),其中 k、a 和 b 都是非零常数。

一般形式中,除了比例常数 k,还引入了两个常数 a 和 b,用于调整函数的斜率和截距。

3. 直线方程形式,反比例函数的直线方程形式可以表示为 xy
= k,其中 k 是一个非零常数。

直线方程形式中,将反比例函数转
化为直线的乘积形式,其中 x 和 y 的乘积保持不变。

这三种形式都可以用来表示反比例函数,选择使用哪种形式取
决于具体的问题和需要。

无论使用哪种形式,反比例函数都具有一
个特点,即当一个变量增大时,另一个变量会相应地减小,它们之
间的乘积保持不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函數
1. 反比例函數的定义。

反比例函數是一种特殊的函數,它的定义为:一个变量与另一个变量
的倒数成反比例关系的函数。

也就是说,当一个变量增加时,另一个
变量会减少,而且减少的幅度与增加的幅度成反比。

反比例函数可以
用一元二次方程来表示,其形式为:y=k/x,其中k为常数,x和y分
别为变量。

2. 反比例函數的图像
反比例函数的图像是一条以原点为中心的对称曲线,其形状为“U”字形。

其函数表达式为y=k/x,其中k为正实数,x不等于0。

函数图像的横
轴和纵轴上的任意一点都满足反比例函数的函数关系,横轴上的点的
横坐标和纵轴上的点的纵坐标都是k的倒数。

反比例函数的图像具有
对称性,即以原点为中心,其图像左右对称,上下对称。

此外,反比
例函数的图像在原点处有一个拐点,曲线在原点处的切线斜率为无穷大。

3. 反比例函數的性质
反比例函数是一种变量之间的反比例关系,其函数表达式为 y=k/x,其中k为常数。

反比例函数的性质如下:
1. 反比例函数的图像是一条抛物线,其图像经过原点,且抛物线的斜率与x轴的斜率正好相反;
2. 反比例函数的图像在x轴上的对称轴是y轴;
3. 反比例函数的图像在y轴上的对称轴是x轴;
4. 反比例函数的图像在x轴上的截距是k/2;
5. 反比例函数的图像在y轴上的截距是k/2;
6. 反比例函数的图像在x轴上的极值点是(0, k);
7. 反比例函数的图像在y轴上的极值点是(k, 0);
8. 反比例函数的图像在x轴上的最小值是k;
9. 反比例函数的图像在y轴上的最大值是k;
10. 反比例函数的图像在x轴上的最大值是无穷大;
11. 反比例函数的图像在y轴上的最小值是0。

4. 反比例函數的应用
反比例函數的应用:
1. 生物学:反比例函數可以用来描述植物对光照的反应,以及动物对食物的反应。

2. 经济学:反比例函數可以用来表示供求关系,以及价格与需求量之间的关系。

3. 医学:反比例函數可以用来描述药物的作用,以及药物与毒性之间的关系。

4. 工程:反比例函數可以用来描述力学中的物体运动,以及热量传输中的温度变化。

5. 社会学:反比例函數可以用来描述社会结构中的社会等级,以及人口规模与社会结构之间的关系。

5. 反比例函數的求导
反比例函数是一类特殊的函数,它的函数图像是一条反比例的直线。

反比例函数的求导可以通过对函数的定义进行求导来实现。

首先,反比例函数的定义为:y=k/x,其中k是常数。

求导:将y=k/x带入求导公式:
dy/dx=k*(x^(-2))*(-1)= -k/x^2
因此,反比例函数的导数为:-k/x^2。

6. 反比例函數的积分
反比例函数的积分可以用来计算曲线下面积,这种函数的积分是通过分析函数的参数来完成的。

为了计算反比例函数的积分,首先需要将反比例函数表示为一种更简单的函数,然后使用积分公式来计算积分值。

反比例函数的积分可以用来计算函数的变化量,以及曲线下面积的变化。

此外,反比例函数的积分还可以用来计算函数在某一点的导数值。

相关文档
最新文档