运筹学 运输问题1汇总
运筹学运输问题相关知识点

运筹学运输问题相关知识点运筹学,旨在通过数学模型和优化方法来解决各种决策问题,其中运输问题是运筹学中的一个重要分支。
运输问题旨在帮助我们确定如何在不同地点之间运输物品以达到最佳效益。
首先,运输问题基于以下几个基本假设:一是物流成本在运输过程中是线性的,二是物品在不同地点之间的运输是无差异的,三是供应和需求之间是平衡的。
在解决运输问题时,需要考虑以下几个关键要素:1.运输网络:此步骤涉及识别和描述供应地点、运输路径和需求地点。
通常使用图形表示来可视化运输网络,以便更好地理解和分析问题。
2.供应量和需求量:确定每个供应地点可提供的物品数量和每个需求地点所需的物品数量。
供应量和需求量之间必须达到平衡。
3.运输成本:每个运输路径的费用是决策的重要因素。
这可以涉及运输距离、运输方式、燃料成本等因素。
通常通过构建费用矩阵来表示各个路径的费用。
4.运输方案:确定如何分配物品以满足需求,并选择最佳的运输路径。
这通常通过使用线性规划模型来实现,以最小化总运输成本为目标。
解决运输问题的常见方法包括:1.西北角规则:该方法从供应和需求具有最大值的角度着手,逐步分配物品,直到达到平衡。
这种方法简单易行,但不一定能够找到全局最优解。
2.最小成本法:该方法根据运输路径的成本递增顺序,逐一分配物品,直到平衡为止。
这种方法能够找到最优解,但可能需要更多的计算量。
3.转运法:该方法通过寻找“供应地点里程+需求地点里程最小”的路径来决策,直至达到平衡。
这种方法在有多个供应地点和多个需求地点时非常实用。
除了基本的运输问题之外,还有其他一些相关的运筹学问题,如多品种运输问题、多目标运输问题和带有时间窗口的运输问题等。
这些问题在实际应用中都有广泛的应用,并且可以通过相应的数学模型和优化方法来解决。
综上所述,运筹学中的运输问题是一个重要的决策问题。
它涉及到寻找最佳的物品配送方案,以最小化总运输成本。
通过合适的数学模型和算法,我们可以有效地解决这类问题,为实际的物流管理提供有力的支持。
运筹学运输问题个人总结(一)

运筹学运输问题个人总结(一)运筹学运输问题个人总结前言运筹学是一门应用数学学科,旨在通过数学模型和优化算法解决现实生活中的决策问题。
其中,运筹学运输问题是运筹学的基础领域之一,涉及到在给定条件下最佳化资源利用、降低成本、提高效率等方面的问题。
正文在个人学习运筹学运输问题的过程中,我总结了以下几个重要要点:1.运输网络规划:运输问题的首要任务是确定运输网络的结构和连接方式。
这包括确定供应商、仓库、需求点之间的连接关系,以及各个节点的运输容量和成本等。
通过合理规划运输网络,可以实现资源的合理分配和供需的良好匹配。
2.运输成本优化:在确定了运输网络之后,需要通过优化算法求解最佳的运输方案。
这涉及到在满足各种限制条件下,如最小化运输成本、最大化资源利用率等指标的优化问题。
常用的算法包括线性规划、整数规划、动态规划等。
3.路线优化和物流调度:针对具体的运输任务,需要进行路线优化和物流调度。
通过合理的路径规划和物流调度,可以降低运输时间和成本,提高物流效率。
常用的算法包括最短路径算法、最优传送门问题等。
4.风险管理和决策支持:在运输过程中,会存在各种不确定性和风险因素。
因此,需要通过风险管理和决策支持技术来应对不确定情况。
常见的方法包括风险评估、灵敏度分析、决策树等。
结尾通过学习和研究运筹学运输问题,我深刻认识到其在现代物流和供应链管理中的重要性。
合理的运输规划和优化能够帮助企业降低成本、提高效率,实现可持续发展。
通过不断学习和实践,我将不断提升自己在这一领域的能力,并在实践中探索更多有创新性和实用性的解决方案。
运筹学运输问题个人总结(续)路线优化和物流调度在路线优化和物流调度方面,我学到了以下几个重要的观点:•路线优化:通过使用最短路径算法、最优传送门问题等优化算法,可以找到最佳路径来减少运输时间和成本。
另外,还可以考虑交通拥堵等因素,选择避开高峰期的最佳路径。
•物流调度:对于大规模的运输网络,物流调度成为一个重要的挑战。
运筹学 运输问题

运筹学运输问题
运筹学是一门研究如何最优地规划和管理资源以实现预定目标的学科。
在运筹学中,运输问题是其中一个重要的应用领域。
运输问题主要关注如何有效地分配有限的资源到不同的需求点,以最小化总体运输成本或最大化资源利用效率。
这些资源可以是货物、人员或其他物资。
运输问题通常涉及到多个供应地点和多个需求地点之间的物流调度。
运输问题的目标是找到一种最佳的调度方案,使得满足所有需求的同时,总运输成本达到最小。
为了解决运输问题,可以采用线性规划、网络流和启发式算法等方法。
在运输问题中,需要确定以下要素:
1. 供应地点:确定从哪些地点提供资源,例如仓库或生产基地。
2. 需求地点:确定资源需要分配到哪些地点,例如客户或销售点。
3. 运输量:确定每个供应地点与需求地点之间的运输量。
4. 运输成本:确定不同供应地点与需求地点之间运输的成本,可以
包括距离、时间、燃料消耗等因素。
通过数学建模和优化技术,可以对这些要素进行量化和分析,以求得最佳的资源分配方案。
这样可以降低运输成本、提高物流效率,并且满足不同地点的需求。
总而言之,运输问题是运筹学中的一个重要领域,涉及到如何有效地规划和管理资源的物流调度。
通过数学建模和优化方法,可以找到最优的资源分配方案,从而实现成本最小化和效率最大化。
运筹学中的运输问题例题

在运筹学中,运输问题是一类经典的线性规划问题,涉及将有限数量的货物从多个供应点运输到多个需求点,并且对应的成本最小化或者利润最大化。
以下是一个运输问题的例题:
假设有三个供应点A、B和C,和四个需求点X、Y、Z和W。
每个供应点都有一定数量的货物可供运输,每个需求点需要一定数量的货物。
给定的成本矩阵代表从每个供应点到每个需求点的运输成本。
供应点的供应量和需求点的需求量以及成本矩阵如下:
供应量:
A: 80单位
B: 70单位
C: 60单位
需求量:
X: 50单位
Y: 40单位
Z: 30单位
W: 70单位
成本矩阵:
X Y Z W
A 4 6 8 9
B 5 7 10 12
C 6 8 11 14
问题是如何将货物从供应点运输到需求点,以使总运输成本最小化。
在这个例题中,可以使用线性规划方法来解决运输问题,通过确定每个供应点向每个需求点运输的数量来最小化总成本。
解决该问题的线性规划模型可以表示为:
最小化ΣΣ(cost(i, j) * x(i, j))
i j
满足以下约束条件:
1. 每个供应点的供应量不能超过其可供应的数量:Σx(i, j) ≤供应点i的供应量, for each i
2. 每个需求点的需求量必须得到满足:Σx(i, j) ≥需求点j的需求量, for each j
3. x(i, j) ≥0, for each i, j
其中,x(i, j) 表示从供应点i到需求点j运输的货物数量,cost(i, j) 表示从供应点i到需求点j的运输成本。
通过求解该线性规划模型,我们可以获得最优的货物运输方案,以最小化总运输成本。
(典型例题)《运筹学》运输问题

xj0,yij0,zij0,(i=1,┈,4;j=1,┈,5)
2008/11
--22--
--《Ⅵ 产量
新购 1 第一天 M 第二天 M 第三天 M
第四天 M
1 1 1 1 0 5200
0.2 0.1 0.1 0.1 0 1000
2008/11
--21--
建立模型:
--《运筹学》 运输问题--
设 xj—第j天使用新毛巾的数量;yij—第i天送第j天使用快洗 餐巾的数量;zij—第i天送第j天使用慢洗餐巾的数量;
Min z=∑xj+∑∑0.2yij+∑∑0.1zij
第一天:x1=1000
需 第二天:x2+y12=700
求 约
m1
xij b j (j 1,2,...,n)
i1
x 0 (i 1,...,m,m 1; j 1,...,n) ij
2008/11
--16--
--《运筹学》 运输问题--
销>产问题单位运价表
产地销地 B1 B2 ┈
A1
C11 C12 ┈
A2
C21 C22 ┈
┊ ┆┊┈
Am Cm1 Cm2 ┈
2008/11
--8--
产销平衡表
--《运筹学》 运输问题--
单位运价表
B1 B2 B3 B4 产量
A1 (1) (2) 4 3 7 A2 3 (1) 1 (-1) 4 A3 (10) 6 (12) 3 9 销量 3 6 5 6
B1 B2 B3 B4 A1 3 11 3 10 A2 1 9 2 8 A3 7 4 10 5
Ⅰ Ⅱ
示。又如果生产出来的柴
Ⅲ
运筹学第三章 运输问题

销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 3
3 1
4
4
2
A3
销量 2
4 7
1 3
4
4 6
3
7 5
3
5
6
8
4 3 13
σ11=-3, σ12=-2,σ23=-4, σ31=-1,σ33=1, σ34=-1
销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 0
3 4
4
4
2
A3
销量 2
4 7
4
4 6
3
4 3
5
3
4
3
4 7
1
5
4 6
A3 销量 2
7
0
4
6
3
5
3
4
8
3 13
x11检验数为 6-4+8-6+4-4=4
销地 产地 A1
A2
B1
B2
B3
B4
产量
6 4 2 4
5
3
4
3
4 7
1
5
4 6
A3 销量 2
7
0
4
6
3
5
3
4
8
3 13
x12检验数为 5-4+8-6=3
销地 产地 A1
A2
B1
B2
B3
B4
产量
2、位势法 当运输问题变量的格数较多时,用闭 回路法计算检验数比较麻烦,而位势法比 较简便。 对于运输问题 minf=CX AX=b X≥0 设B为其一个可行基,则xij的检验数为 σ ij=CBB-1Pij-Cij
运筹学运输问题笔记(一)

运筹学运输问题笔记(一)运筹学运输问题笔记一、运输问题的概述运输问题的定义运输问题是运筹学中的一种经典问题,也是线性规划中最简单的一种。
其定义是:在将若干种供给物品分别运往若干种需求地的过程中,在满足各个供求量限制和运输能力限制的基础上,使得总的运输成本最小。
运输问题的特点• 只涉及一种商品的运输;• 供给地和需求地的数量相等;• 供给地和需求地之间的运费相同。
运输问题的模型运输问题的模型可以用线性规划的形式表示:min Z =∑∑c ij nj=1m i=1x ijs.t. {∑x ij ni=1=b j (j =1,2,...,n )∑x ij m j=1=a i (i =1,2,...,m )x ij ≥0 (i =1,2,...,m;j =1,2,...,n )其中,c ij 代表从供给点i 到需求点j 的单位运费,a i 代表供给点的总供给量,b j 代表需求点的总需求量,x ij 代表从供给点i 到需求点j 的运输量。
二、运输问题的求解方法1. 列出初始可行解运输问题的求解可以先列出初始可行解,常用的方法有两种: • 西北角法(Northwest Corner Method )• 最小元素法(Least Cost Method )以上两种方法均可得到初始可行解,但最终得到的最优解可能不同。
2. 用改进的对角线法求解在得到初始可行解后,可以用改进的对角线法求解运输问题。
该方法的基本思想是:通过计算每个空运输路线上的机会成本,确定可能改进的单元格,然后通过交错路径法得到改进可行解,并最终求出最优解。
3. 用运输单纯形法求解对于规模较大或复杂的运输问题,可以用运输单纯形法求解。
该方法是将单纯形法应用到运输问题上,可以快速、准确地求解最优解。
三、运输问题的应用运输问题在物流领域的应用在物流领域中,运输问题是非常重要的,可以通过求解运输问题来优化物流配送方案、降低物流成本、提高物流效率。
运输问题在生产计划中的应用运输问题还可以应用于生产计划中,可以通过求解运输问题来优化原材料到达厂区和半成品成品出厂的方案,提高生产效率,降低成本。
运筹学中的运输问题例题

运筹学中的运输问题例题运筹学中的运输问题例题在运筹学领域中,运输问题一直是研究的焦点之一。
它是一种经典的线性规划问题,旨在寻找最佳的物流运输方案,以最小化运输成本或最大化利润。
下面将给出几个运输问题的例题,以便更好地理解运筹学中的运输问题。
例题一:某物流公司需要将货物从A、B、C三个仓库分别运输到D、E、F 三个地点。
已知各仓库的存货数和各地点的需求量如下:仓库存货数地点需求量A 50 D 30B 70 E 40C 80 F 20已知运输成本矩阵如下:D E FA 5 7 9B 6 8 10C 4 6 8要求给出最佳的物流运输方案,并计算出最小的运输成本。
例题二:某公司有两个工厂,分别位于城市X和城市Y,需要向三个销售点分别运输产品。
已知两个工厂的产能和三个销售点的需求量如下:工厂产能销售点需求量X 60 P 18Y 80 Q 30R 22已知运输成本矩阵如下:P Q RX 6 5 9Y 8 7 6要求确定最佳的运输方案,并计算出最小的运输成本。
例题三:某电子产品制造商面临着将产品从几个工厂运输到多个供应商的问题。
已知各工厂的产能和各供应商的需求量如下:工厂产能供应商需求量F1 80 S1 30F2 60 S2 50F3 70 S3 20已知运输成本矩阵如下:S1 S2 S3F1 4 7 6F2 6 3 8F3 5 7 9寻找最优的运输方案,以满足供应商的需求,并计算出最小的运输成本。
以上是几个常见的运输问题例题,这些例题涵盖了不同规模和不同约束条件的情况,帮助我们了解运筹学中的运输问题的解决方法。
通过运用线性规划等方法,可以得出最佳的运输方案,实现物流运输的优化,减少成本,并提高效率。
运输问题不仅在物流行业中有广泛应用,也可在其他领域中找到类似的应用场景,例如生产调度、供应链管理等。
因此,掌握运输问题的解决方法对于提高运营效率和降低成本是非常重要的。
综上所述,通过解决运输问题例题,我们可以更深入地理解运筹学中的运输问题,并通过适当的模型和算法,找到最佳的运输方案,实现资源的合理配置和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 运输问题
1、运输问题表上作业法的基本步骤。
答:表上作业法的基本步骤可参照单纯形法归纳如下:
(1)找出初始基可行解:即要在阶产销平衡表上给出“”个数字格(基变量);
(2)求各非基变量(空格)的检验数,判断当前的基可行解是否是最优解,如已得到最优解,则停止计算,否则转到下一步;
(3确定入基变量,若,那么选取为入基变量;
(4确定出基变量,找出入基变量的闭合回路,在闭合回路上最大限度地增加入基变量的值,那么闭合回路上首先减少为“0”的基变量即为出基变量;
(5)在表上用闭合回路法调整运输方案;
(6)重复2、3、4、5步骤,直到得到最优解。
2、“最小元素法”和“伏格尔”法的基本思想及基本操作。
答:最小元素法的基本思想是就近供应,即从单位运价表中最小的运价开始确定产销关系,依此类推,一直到给出基本方案为止。
伏格尔法把费用增量定义为给定行或列次小元素与最小元素的差(如果存在两个或两个以上的最小元素费用增量定义为零)。
最大差对应的行或列中的最小元素确定了产品的供应关系,即优先避免最大的费用增量发生。
当产地或销地中的一方在数量上供应完毕或得到满足时,划去运价表中对应的行或列,再重复上述步骤,即可得到一个初始的基可行解。
3、闭合回路的构成以及利用闭合回路法求检验数的基本操作。
答:判断基可行解的最优性,需计算空格(非基变量)的检验数。
闭合回路法即通过闭合回路求空格检验数的方法。
从给定的初始方案的任一空格出发寻找闭合回路,闭合回路顶点所在格括号内的数字是相应的单位运价,单位运价前的“+”、“-”号表示运量的调整方向。
空格处单位运量调整所引起的运费增量就是空格的检验数。
仿照此步骤可以计算初始方案中所有空格的检验数。
4、利用位势法求检验数以及利用闭合回路进行方案调整的基本操作。
答:位势法求解非基变量检验数的基本步骤:
第一步:把方案表中基变量格填入其相应的运价并令;让每一个基变量都有,可求得所有的位势;
第二步:利用计算各非基变量的检验数
方案的优化基本步骤:
在负检验数中找出最小的检验数,该检验数所对应的变量即为入基变量。
在入基变量所处的闭合回路上,赋予入基变量最大的增量,即可完成方案的优化。
在入基变量有最大增量的同时,一定存在原来的某一基变量减少为“0”,该变量即为出基变量。
切记出基变量的“0”运量要用“空格”来表示,而不能留有“0”。
5 、应用最小元素法和伏格尔法求出下列运输模型的初始解,并比较它们的计算结果。
甲乙丙产量
A 5 1 6 12
B 2 4 0 14
C 3 6 7 4
销量9 10 11
6、应用伏格尔法求初始解的方法解下面的运输问题。
甲乙丙产量
A 1 0 2 4
B 3 5 4 6
C 1 2 3 10 销量 3 5 12
7、下列运输问题:
产地销地
供应量
6 4 2
4
8 5 7 5
需求量 3 3 3
用表上作业法求解此问题(分别用闭回路法和位势法)。