手性分析

合集下载

手性色谱分析Dr.Yuan

手性色谱分析Dr.Yuan

AD,AS,OD,OJ
手性聚合物固定相Chiralcel柱类型与应用
手性聚合物固定相Chiralcel柱类型与应用
柱型号
固定相,官能团
Chiralcel OA
纤维素三乙酯
Chiralcel OB
纤维素三苯甲酸酯
Chiralcel OC
纤维素三苯氨基甲酸酯
Chiralcel OD 纤维素(3,5-二甲苯基氨基甲酸酯)
概念
• 许多药物中存在着分子组成与构造完全相同但分 子的立体结构不同的化合物,他们是立体异构体, 不能完全叠合但能互为镜像,(如左手与右手), 这就是手性(chirality)。
O
N
O
NH
O
O
沙利度胺(反应停)
手性药物
• 药物作用的靶分子都是手性的,因此药物分子与靶分子的 不对称性必须相匹配(手性识别-手与手套)。
Chiralcel OE
纤维素二苄醚
Chiralcel OF 纤维素三(对氯苯基氨基甲酸酯)
Chiralcel OG 纤维素三(对甲苯基氨基甲酸酯)
Chiralcel OJ
纤酯
Chiralcel AD 淀粉三(3,5-二甲苯基氨基甲酸酯)
Chiralcel AS 淀粉三(S)-1-苯乙基氨基甲酸酯)
Chiralcel OT(+)
聚三苯甲基乙丁烯酸酯
Chiralcel O(+)
聚吡啶二苯甲基乙丁烯酸酯
拆分化合物类型 脂肪酸族小分子化合物 脂肪酸族和芳香族小分子化合物
环戊烯酮类 生物碱,胺,莨菪碱,β-受体拮抗剂
芳香化合物 β-内酰胺,生物碱,二氢吡啶
冠醚固定相结构
大环抗生素型(Macrocyclic antibiotics)

手性分离及分析技术在化学合成中的应用

手性分离及分析技术在化学合成中的应用

手性分离及分析技术在化学合成中的应用手性分离技术是化学合成中非常重要的一项技术。

通过手性分离可以获得高纯度的手性化合物,这对于生物制药和其他领域都有着重要的应用。

本文将介绍手性分离及分析技术在化学合成中的应用。

1. 手性分离技术的基本概念手性化合物是指具有手性的分子结构,即左右两种互为镜像的构型。

由于手性化合物既具有化学性质、物理性质上的相同之处,又在光学属性上存在明显的不对称性,因而在许多领域有着广泛的应用。

手性分离技术是将混合物中的手性化合物分离开来,去除其中没有意义的对映体,保留所需要的有活性、有药效的对映异构体。

手性分离技术包括化学分离、物理分离和生物分离等,其中最常用的是化学手性分离技术。

2. 手性分析技术的基本原理手性分析技术是用来确定化合物是否手性以及手性的程度的分析技术。

常用的手性分析技术有: 红外光谱法、核磁共振法、荧光光谱法、循环极化光谱法等。

椭偏仪是用来测量圆偏光(左旋或右旋)旋转角度的仪器。

如果样品中含有手性分子,则会引起光的旋转角度发生变化。

手性分析技术的核心就是利用这种旋光性来确定化合物中的手性情况。

3. 手性分离和手性分析技术在化学合成中的应用手性药物是近年来研究的热点领域之一,而手性分离和手性分析技术在药物合成中有着至关重要的作用。

手性药物有时会存在对映异构体之间的巨大差异性,其中一种异构体可能具有治疗作用,而另一种异构体却可能存在毒性并与人体产生明显的副作用。

这就需要对药物进行有效的手性分离,从而纯化有治疗效果的对映异构体。

手性分离技术还可以用于纯化化妆品、生物酶和精细化工的制品等。

例如在生物技术中,对某些发酵产物的对映异构体纯化可以极大地提高其活性和效率。

其次,手性分析方法还可以启发手性合成以及测定生物体内手性分子的含量,这对于了解手性分子的代谢和构成、评估营养成分以及鉴别真伪等都具有重要意义。

总之,手性分离和手性分析技术在化学合成中广泛应用,并且被广泛地应用于药物合成、化妆品、生物技术和精细化工等领域。

手性分析之经验谈

手性分析之经验谈

手性分析经验谈关于手性化合物、手性分析、手性填料和手性柱,现在的理论很多,讲的也比较复杂,我看了很多也不是特别明白,做分析三年多,分过的手性化合物最少也有几千种,拿到手里的消旋体几乎没有分不开的,没用到什么理论,主要都是经验,这里还是拣最实用的来讲。

手性分析可以使用普通的色谱柱,需要流动相中添加手性分离试剂,也可以直接用固定相为手性填料的手性色谱柱,前者使用较少,大家更多的是使用商品化的手性色谱柱。

手性分析包括气相和液相两种,这个主要和样品的物理性质有关系,现在的手性化合物绝大多数都不能做气相,所以气相手性色谱柱无论从数量还是质量上来讲都不能与液相手性色谱柱相提并论。

一、手性柱手性分离最重要的是选择一根好的手性柱,说到手性柱就不得不提大赛璐,做手性分析的都知道,大赛璐的手性柱目前市场占有率最高,大家最熟悉的可能是OD- H,很多文献中都有报道。

大赛璐公司最初有四种填料,结构类似,对应的色谱柱分别是OD、AD、OJ和AS,粒径10um,后来填料粒径变为5um,就是卖的最多、使用范围最广的柱子,号称四大金刚,分别是OD-H、AD-H、OJ-H和AS-H,在柱子名称后边加“-H”,意思应该是高效,这些柱子都只能做正相使用,为了在反相色谱中使用开发的柱子在相应的色谱柱名称中添加了一个“R”,上述色谱柱都属于涂覆型填料,不耐溶剂,使用起来受样品溶解性的限制,最近又开发了键合相手性柱,可以使用几乎所有的常见溶剂做流动相,新的溶剂还提供了新的选择性,进而提升了色谱柱的分离能力,主要是IA、I B和IC,其中IA对应AD-H,IB对应OD-H,IC是新开发的填料。

和反相柱的发展趋势一样,大赛璐的手性柱也通过减小粒径来获得更高的柱效,最新的手性柱填料粒径是3um。

另外大赛璐还有其它一些手性色谱柱,但是远不及上述几种。

关于大赛璐手性柱的详细资料官方网站上讲的很详细,大家有兴趣可以去看,这里主要讲我的使用经验。

最近大赛璐公司的销售和技术曾经来过我们公司做讲座,因为我们先后买了他们三四十只手性柱,一直是自己摸索着使用,理论上的东西懂得很少,非常希望专家的能给我们提供指导,提升我们的技术水平,这个讲座的ppt网上流传的很多,对初学者来讲确实非常不错,但是专家的水平让我们实在不敢恭维。

化学分子的手性研究

化学分子的手性研究

化学分子的手性研究手性是化学中一个重要的概念,它指的是物质在空间中的非对称性。

在化学分子中,手性是指分子的镜像和原始分子无法通过旋转和平移重合。

手性分子是由手性中心所引起的,在自然界中存在着大量手性分子的原因是其存在两种不对称的构型。

手性分子的研究在化学领域具有重要的理论和应用价值。

一、手性分子的定义和特点1. 定义:手性分子是指不对称的分子,其镜像和原始分子无法通过旋转和平移重合。

2. 特点:手性分子在物理、化学性质上与其非手性镜像分子有明显的差异,如旋光性、光学活性、生物活性等。

二、手性分子的研究方法1. 空间构型分析:通过X射线衍射、核磁共振等技术来确定分子内部的空间构型。

2. 旋光度测定:利用旋光度仪等仪器测定手性分子的旋光性。

3. 显示手性试剂:使用显示手性试剂,如酒石酸铵等,观察其对手性分子的特异性反应。

三、手性分子的应用领域1. 药物合成:药物分子通常都是手性的,研究手性分子的性质和构型有助于合成优异的药物。

2. 化学合成:手性催化剂在有机合成中起到重要作用,控制手性选择性能够合成具有特殊功能的化合物。

3. 生物领域:研究手性分子的生物活性和与生物体的作用,有助于理解生物分子的结构和功能。

四、手性分子的发展趋势1. 多功能手性分子的设计:通过合理设计手性分子的结构,实现多功能性质和应用。

2. 手性分子的催化研究:发展更高效、选择性更好的手性催化剂,促进有机合成反应的发展。

3. 生物手性研究:深入研究手性分子在生物体内的作用机制,为药物研发提供更多的信息。

综上所述,手性分子的研究在化学领域具有重要的意义。

通过研究手性分子的定义和特点、研究方法、应用领域以及发展趋势,可以更好地理解手性分子的性质和应用。

希望在未来的研究中,能够深入探索手性分子的奥秘,为科学研究和应用领域带来更多的突破和创新。

手性分析条件的建立和优化手性分析中的注意事项

手性分析条件的建立和优化手性分析中的注意事项
手性分析条件的建立和优化手 性分析中的注意事项

CONTENCT

• 手性分析简介 • 手性分析条件的建立 • 优化手性分析中的注意事项 • 手性分析的应用和发展趋势 • 结论
01
手性分析简介
手性的定义
定义
手性是指一个物体与其镜像不能重合的特性。在化学中,手性主 要与分子的空间构型有关,即一个分子与其镜像分子在空ቤተ መጻሕፍቲ ባይዱ结构 上无法完全重合。
02
手性分析条件的建立
分离条件的选择
分离介质
选择适合手性分离的介质,如手性固定相或手性流动 相添加剂。
流动相组成
根据分离需要,调整流动相的组成,如有机溶剂、缓 冲液、添加剂等。
流速
流速的改变会影响分离效果,需根据实际情况调整。
检测条件的选择
检测波长
选择适当的检测波长,以最大程度地响应手性 分子的差异。
示例
自然界中的许多化合物,如氨基酸、糖类和蛋白质,都存在手性 。这些化合物的手性形式通常与其生物活性密切相关。
手性分析的意义
80%
生物活性
许多具有手性的化合物在生物体 内具有独特的生物活性或毒性, 因此手性分析对于药物研发和食 品安全等领域具有重要意义。
100%
分离纯化
手性化合物在混合物中的存在可 能导致分离纯化的困难,因此手 性分析有助于指导分离纯化过程 。
参照物和标准品应具有代表性,能够覆盖分析范围 内的所有可能情况。
在分析过程中,使用参照物和标准品进行校准,以 提高准确度。
注意操作细节和实验误差
1
严格按照操作规程进行实验,避免误差的产生。
2
在实验过程中,注意观察并记录异常现象,以便 及时处理。

有机化学的手性分析方法

有机化学的手性分析方法

有机化学的手性分析方法
在有机化学领域中,手性分析是一项十分重要的工作。

手性化合物是指分子的结构镜像不能完全重合的分子。

因此,手性分析的目的就是确定有机化合物中手性中心的配置。

在本文中,将介绍几种常用的手性分析方法。

一、圆二色谱分析法
圆二色谱分析法是一种利用圆二色现象测定有机物的手性的方法。

圆二色现象是指左旋光和右旋光通过具有手性的物质后,光传播方向不变,但相位差发生变化的现象。

通过观察物质在不同波长下的圆二色光谱,可以确定其手性。

二、红外吸收光谱分析法
红外吸收光谱分析法是一种常用的手性分析方法。

在红外光谱中,手性物质通常表现出特定的旋光效应,通过比较旋光贡献可以判断有机物的手性。

三、核磁共振分析法
核磁共振分析法是一种非常重要的手性分析方法。

通过核磁共振技术,可以观察到手性物质中的不对称中心周围原子核的信号差异,从而确定有机物的手性。

四、质谱分析法
质谱分析法是一种高灵敏度的手性分析方法。

通过质谱仪对有机物进行分析,可以观察到手性分子离子的不同质量谱峰,从而确定有机物的手性。

五、氨基酸序列分析法
氨基酸序列分析法主要用于蛋白质的手性分析。

通过氨基酸序列分析仪,可以确定蛋白质中的手性氨基酸的排列顺序,从而确定蛋白质的整体手性。

综上所述,有机化学的手性分析方法主要包括圆二色谱分析法、红外吸收光谱分析法、核磁共振分析法、质谱分析法以及氨基酸序列分析法。

这些方法各自有其优点和适用范围,科学家们可以根据具体情况选择合适的手性分析方法来进行研究。

手性分子的判断方法

手性分子的判断方法

手性分子的判断方法手性分子是指旋光性质不可重叠镜像异构体,即左旋与右旋镜像异构体。

手性分子在化学和生物学领域中起着重要的作用。

判断一些分子是否是手性分子,通常可以通过以下三种方法进行。

1.对称性分析法2.手性圆二色谱法3.X射线晶体学分析法接下来,我们将详细说明这三种方法。

1.对称性分析法:对称性分析法是一种简单且直观的方法,用于判断分子是否具有手性。

具体步骤如下:(1)确定分子是否具有对称面,即分子可以对称折叠。

如果分子有平面对称面,那么它是一个非手性分子。

(2)确定分子是否具有中心对称。

中心对称分子是指具有旋转轴并且轴上的每一点都与该轴上的一个等距离的点对称。

如果分子具有中心对称,则为非手性分子。

(3)如果分子不具有对称面或中心对称,则可能是手性分子。

需要进一步进行实验确认。

2.手性圆二色谱法:手性圆二色谱法是一种通过测量手性分子的光学活性来确定其手性性质的方法。

它利用分子的吸收螺旋度、光旋和偏振度来进行分析。

具体步骤如下:(1)用手性圆二色仪测量样品在可见光区域的吸光度。

(2)比较左旋和右旋样品的吸光度。

如果两者相等,则该分子是非手性的。

(3)如果左旋和右旋样品的吸光度不相等,则该分子是手性的。

3.X射线晶体学分析法:X射线晶体学是一种用于确定有机化合物和无机化合物的分子结构的方法。

它可以提供有关分子的空间排列和立体构型的信息。

具体步骤如下:(1)生长手性晶体。

在晶体生长过程中,手性分子会形成手性晶体,而非手性分子不会。

(2)通过X射线衍射确定晶体结构。

X射线通过晶体时会产生衍射,通过分析衍射图样可以确定晶体的三维结构。

(3)通过晶体结构确定分子手性。

在分析晶体结构的过程中,可以观察到分子的手性特征,从而确定分子的手性性质。

总结起来,对称性分析法是一种简单而常用的方法,而手性圆二色谱法和X射线晶体学分析法则是用来对手性分子进行更准确的判断和确认的方法。

这些方法在判断分子手性性质和研究手性分子在化学和生物学中的作用方面具有重要的意义。

药物研究中手性分离分析方法及技巧

药物研究中手性分离分析方法及技巧

药物研究中手性分离分析方法及技巧手性药物是指药物分子结构中引入手性中心后,得到的一对互为实物与镜像的对映异构体。

液相色谱法成为目前手性药物分离测定的首选方法,根据实际工作中需要的手性分离问题,总结如下:1、流动相手性分析很关键的一项是流动相的选择,手性分析一般都采用正相,使用最多的流动相是正己烷、正庚烷、乙醇和异丙醇这四种,其中起洗脱作用的流动相是乙醇和异丙醇,正己烷和正庚烷用来调节流动相的洗脱强度。

正己烷和正庚烷对于样品分离没有什么太大的影响,不会改变选择性和分离度,通常都可以混用,不过正庚烷比正己烷对人体的伤害要小很多,但价格是后者的一倍,所以欧美的很多大制药公司多使用正庚烷,而国内多使用正己烷。

乙醇和异丙醇对样品的分离起关键的作用,不同的醇有不同的选择性,改变醇的种类可以改变选择性,常用的醇类是乙醇和异丙醇,甲醇不能使用是因为它和正己烷、正庚烷不互溶,叔丁醇粘度太大,一般作为添加剂配合乙醇或者异丙醇少量使用,提供特殊的选择性,通常能起到意想不到的效果。

一般情况下分析手性样品,很多人推荐首选异丙醇,但是我喜欢首选乙醇,因为乙醇气味比异丙醇好一点,且乙醇做流动相压力要低一些,实际上二者差别不是太大。

流动相里经常需要添加酸或者是碱来调节峰形,常用的酸有三氟乙酸、乙酸和甲基磺酸,碱一般是二乙胺和三乙胺,也有用乙醇胺和异丁胺的,流动相里添加酸和碱的浓度一般要求控制在0.2%(体积比)以下,我们一般用0.1%,使用的原则一般是酸性样品加酸,碱性样品加碱,但实际上很多样品是即含酸性基团又含碱性基团,这就要看哪个基团作用强了,对于某些含氨基的两性样品,例如苯甘氨酸,甲基磺酸是一个非常好的选择,磺酸基能够抑制氨基的碱性,又能提供一个酸性的流动相环境,使样品既能得到很好的分离又能获得对称的峰形。

一般做纯度分析检测杂质含量时我们要求尽量的采用低波长来让尽可能多的杂质有紫外吸收,而做手性分析时我们需要采用尽可能高的波长来去除在低波长下才有吸收的杂质的干扰,一般原则还是尽量选择样品紫外吸收最好的地方来获得较高的灵敏度,但流动相里添加二乙胺会导致在低波长下基线波动变大,系统难以平衡,这种情况下一般要提高检测波长,实际操作过程中有些样品在高波长下吸收非常差,只能用低波长检测,这样的样品可以尝试在样品稀释的时候加入过量的二乙胺(但不宜太多),而流动相用中性,从而获得满意的分析结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

手性分析经验谈关于手性化合物、手性分析、手性填料和手性柱,现在的理论很多,讲的也比较复杂,我看了很多也不是特别明白,做分析三年多,分过的手性化合物最少也有几千种,拿到手里的消旋体几乎没有分不开的,没用到什么理论,主要都是经验,这里还是拣最实用的来讲。

手性分析可以使用普通的色谱柱,需要流动相中添加手性分离试剂,也可以直接用固定相为手性填料的手性色谱柱,前者使用较少,大家更多的是使用商品化的手性色谱柱。

手性分析包括气相和液相两种,这个主要和样品的物理性质有关系,现在的手性化合物绝大多数都不能做气相,所以气相手性色谱柱无论从数量还是质量上来讲都不能与液相手性色谱柱相提并论。

一、手性柱手性分离最重要的是选择一根好的手性柱,说到手性柱就不得不提大赛璐,做手性分析的都知道,大赛璐的手性柱目前市场占有率最高,大家最熟悉的可能是OD- H,很多文献中都有报导。

大赛璐公司最初有四种填料,结构类似,对应的色谱柱分别是OD、AD、OJ 和AS,粒径10um,后来填料粒径变为5um,就是卖的最多、使用范围最广的柱子,号称四大金刚,分别是OD-H、AD-H、OJ-H和AS-H,在柱子名称后边加“-H”,意思应该是高效,这些柱子都只能做正相使用,为了在反相色谱中使用开发的柱子在相应的色谱柱名称中添加了一个“R”,上述色谱柱都属于涂覆型填料,不耐溶剂,使用起来受样品溶解性的限制,最近又开发了键合相手性柱,可以使用几乎所有的常见溶剂做流动相,新的溶剂还提供了新的选择性,进而提升了色谱柱的分离能力,主要是IA、IB和IC,其中IA对应AD-H,IB 对应OD-H,IC是新开发的填料。

和反相柱的发展趋势一样,大赛璐的手性柱也通过减小粒径来获得更高的柱效,最新的手性柱填料粒径是3um。

另外大赛璐还有其它一些手性色谱柱,但是远不及上述几种。

关于大赛璐手性柱的详细资料官方网站上讲的很详细,大家有兴趣可以去看,这里主要讲我的使用经验。

最近大赛璐公司的销售和技术曾经来过我们公司做讲座,因为我们先后买了他们三四十只手性柱,一直是自己摸索着使用,理论上的东西懂得很少,非常希望专家的能给我们提供指导,提升我们的技术水平,这个讲座的ppt网上流传的很多,对初学者来讲确实非常不错,但是专家的水平让我们实在不敢恭维。

我们买了几十只手性色谱柱,但是型号相对很少,平时几乎只用两只色谱柱:AD-H和IC,但是拿到手里的手性化合物除去溶解性和紫外吸收的原因之外,几乎所有的样品都能用这两只色谱柱分开,我们主要的手段是在流动相上下功夫,通过流动相的调整来达到只用一两只柱子去解决遇到的所有手性分析问题,而大赛璐的专家讲座时给我们提供的思路是流动相变化相对较少,更多的是分不开就换柱子。

细想一下也不难理解,厂家手里最不缺的就是柱子,为了分析一个样品他们可以试用所有型号的手性柱,但是对我们用户来说,一只柱子动辄一两万,相信没有哪个用户能有厂家那样的魄力和实力,一下子拿出那么多型号的手性柱来为一个样品的分离做筛选。

二、样品前处理说到手性分析,样品的前处理非常重要。

首先是消旋体样品的普通液相纯度问题,样品的纯度低了,看到手性柱上分离开的几个峰让人无从判断究竟对映异构体有没有分离开,分离开的几个峰哪个是杂质峰哪个是对映异构体的峰,所以样品的纯度要尽量的高,一般我们的要求是样品的纯度能达到90%以上,纯度低的样品需要做进一步的纯化。

关于对映异构体峰的判断,现在比较好的手段是使用旋光检测器,在色谱图上可以直接看到分离开的两峰吸收一正一负,再有就是使用DAD检测器,通过看两峰的紫外吸收是否一致来做判断。

样品前处理的另外一项是稀释问题,这个问题最容易被忽视,处理不好会直接导致实验失败。

我们都知道反相样品稀释的时候需要尽量使用流动相做稀释剂,且稀释剂里水含量要尽量高一些,这个要求对于手性分析同样适用,正相的手性分析要求样品稀释溶剂尽量要求和流动相所采用的溶剂种类一致,且起洗脱作用的醇类溶剂含量尽量要低,最好不要超过流动相里醇类的含量,否则会导致有些样品的分离度降低,使原本能达到基线分离的样品不能基线分离,严重的甚至使样品峰分叉甚至不成峰,因为在手性分离里起洗脱作用的醇类能够促进样品在管路里的扩散,我做过一个化合物,手性分析的时候只能用正己烷做稀释剂,只要稀释样品添加了醇类的溶剂样品就不能达到基线分离。

有时候我们从实验室拿到的样品是溶液,使用的可能是DMF、甲苯、二氯甲烷或者乙酸乙酯等常见的溶剂,这些溶剂对于涂覆型的填料都不能使用,即使含量很低也会对固定相造成伤害,这样的样品必须除掉溶剂。

有时候样品不溶于流动相,我们又不得不使用这些溶剂,可以先用少量这类溶剂超声将样品溶掉,再加流动相稀释,对于键合相手性柱这样做完全没有问题,但有时我们不得以将此方法用到涂覆型手性柱上,就要牺牲手性柱寿命来换分离。

很多时候我们拿到手的样品比较难溶,毕竟乙醇和异丙醇不是非常好的溶剂,即便是二氯甲烷、四氢呋喃、DMF或者DMAC也会遇到溶解性比较差的样品,通常此类样品分子式都相对比较复杂,分子量偏大,结构中含有带N的显碱性基团和显酸性基团,此类样品可以通过稀释样品时加酸或者碱来促进其溶解,但是加入的酸或碱含量不宜太高,浓度不宜过大。

很多化合物为了增加其稳定性,都要做成盐来保存和转移,常见的包括盐酸盐、三氟乙酸盐、甲基磺酸盐、酒石酸盐以及其它更复杂的盐,这些盐类也是可以直接拿来做手性分析的,无论是正相还是反相都可以,只要样品能用合适的稀释剂溶解,当然样品游离出来做手性分析会更好。

再有就是很多样品因为液相没有紫外吸收、气相不能气化而不能直接做手性分析,这时就要衍生,衍生最多的样品可能就是氨基酸了。

氨基酸衍生方法可以是给氨基上衍生CBZ 做液相,或者是用HCl(HBr)的乙醇(甲醇、异丙醇)溶液加三氟乙酸酐将羧基衍生成酯,氨基衍生成酰胺来做气相。

最近比较流行的氨基酸衍生方法是用苯异硫氰酸酯(也叫异硫氰酸苯酯)衍生氨基来做手性分析,此方法当然也可以用来做普通的氨基酸液相纯度分析,这个衍生方法要求化合物分子结构中的N原子上至少连接有一个H,所以只要是分子结构中含有带有至少一个H原子的N结构,化合物都可以用此方法衍生。

需要指出的是,做手性分析的原则是能不衍生就不衍生,因为衍生有可能会引起样品手性纯度下降,即消旋。

总结一下,手性分析中使用的消旋体纯度一定要好,最好能配合DAD检测器或者是旋光检测器来做分析方法开发。

样品在稀释时尽量用流动相相同种类的溶剂做稀释剂,稀释剂中醇类的含量不宜超过流动相中醇类的含量,难溶的样品尽量不要用其它的溶剂,一方面可能会伤害柱子,另一方面容易导致峰形变差,但实际操作过程中很多时候为了达到分析目的,还不得不牺牲柱子的寿命,而且即便是使用纯的乙醇或者是异丙醇做稀释剂也不是不可以,只要是稀释剂和流动相能够互溶就行。

三、流动相手性分析很关键的一项是流动相的选择,手性分析一般都采用正相,使用最多的流动相是正己烷、正庚烷、乙醇和异丙醇这四种,其中起洗脱作用的流动相是乙醇和异丙醇,正己烷和正庚烷用来调节流动相的洗脱强度。

正己烷和正庚烷对于样品分离没有什么太大的影响,不会改变选择性和分离度,通常都可以混用,不过正庚烷比正己烷对人体的伤害要小很多,但价格是后者的一倍,所以欧美的很多大制药公司多使用正庚烷,而国内多使用正己烷。

乙醇和异丙醇对样品的分离起关键的作用,不同的醇有不同的选择性,改变醇的种类可以改变选择性,常用的醇类是乙醇和异丙醇,甲醇不能使用是因为它和正己烷、正庚烷不互溶,叔丁醇粘度太大,一般作为添加剂配合乙醇或者异丙醇少量使用,提供特殊的选择性,通常能起到意想不到的效果。

一般情况下分析手性样品,很多人推荐首选异丙醇,但是我喜欢首选乙醇,因为乙醇气味比异丙醇好一点,且乙醇做流动相压力要低一些,实际上二者差别不是太大。

流动相里经常需要添加酸或者是碱来调节峰形,常用的酸有三氟乙酸、乙酸和甲基磺酸,碱一般是二乙胺和三乙胺,也有用乙醇胺和异丁胺的,流动相里添加酸和碱的浓度一般要求控制在0.2%(体积比)以下,我们一般用0.1%,使用的原则一般是酸性样品加酸,碱性样品加碱,但实际上很多样品是即含酸性基团又含碱性基团,这就要看哪个基团作用强了,对于某些含氨基的两性样品,例如苯甘氨酸,甲基磺酸是一个非常好的选择,磺酸基能够抑制氨基的碱性,又能提供一个酸性的流动相环境,使样品既能得到很好的分离又能获得对称的峰形。

一般做纯度分析检测杂质含量时我们要求尽量的采用低波长来让尽可能多的杂质有紫外吸收,而做手性分析时我们需要采用尽可能高的波长来去除在低波长下才有吸收的杂质的干扰,一般原则还是尽量选择样品紫外吸收最好的地方来获得较高的灵敏度,但流动相里添加二乙胺会导致在低波长下基线波动变大,系统难以平衡,这种情况下一般要提高检测波长,实际操作过程中有些样品在高波长下吸收非常差,只能用低波长检测,这样的样品可以尝试在样品稀释的时候加入过量的二乙胺(但不宜太多),而流动相用中性,从而获得满意的分析结果。

有些样品只添加碱或者酸效果不好,可以尝试在样品里同时添加酸或者碱,这样的样品我曾经遇到过,只添加酸或碱样品都拖尾,不能达到基线分离,这种情况下通过酸碱同时加入,最后获得了非常漂亮的峰形和良好的分离度。

实际操作中有些样品碱性太强,进样以后根本不成峰,低波长下细看似乎能感觉到基线一直在漂,开始时怀疑样品浓度不够,加大样品浓度以后仍看不到样品峰,流动相加入二乙胺或三乙胺以后再进样,得到比较漂亮的样品峰。

流动相里添加酸或者碱以后,基本上不会提供额外的选择性,但是却能提高分离度,因为峰形好了,相同的保留时间两个峰之间的分离度自然就好了。

但是流动相里添加酸或者碱以后,会在柱子上残留,即使长时间用中性流动相冲洗也不会有什么效果,这一点在键合相手性柱上表现的尤为明显。

有时我们发现原来用中性流动相分离很好的一个偏酸性的样品,柱子用过碱性流动相以后再用中性流动相去做,发现样品峰不能达到基线分离,拖尾严重,甚至不成峰,这时可以往流动相里添加一滴酸,或者柱子用酸性流动相冲洗一下再用中性的流动相,一切又正常了,同理,用过酸性流动相的柱子去做弱碱性的样品会有一样的问题。

残留在柱子上的酸或碱最好是用碱或酸性的流动相来清洗,有条件的话尽量固定一只柱子只用酸性流动相或只用碱性流动相。

还见过一些国外客户提供的正相手性分析方法,需要在流动相里加入0.5%的水,估计是用来改变流动相的选择性,但是据说加水以后方法重复性不好,且水对固定相有伤害,我本人没有开发过这样的分析方法,也不做推荐,这份客户分析方法拿到我手里的时候最终还是被我改了。

四、方法优化做手性分析时我一般选用两只柱子:AD-H和IC,基本上这两只柱子可以解决我遇到的所有的手性化合物,AD-H是早期我们一直在使用的,后来的IC可以使用更多的溶剂从而提供了更多的选择性,但是我还是习惯先用AD-H做手性分析方法开发,因为这个型号的柱子我们买了好多只。

相关文档
最新文档