奥数五年级定义新运算加逻辑推理29页PPT

合集下载

(小学奥数)定义新运算

(小学奥数)定义新运算

定義新運算教學目標定義新運算這類題目是在考驗我們的適應能力,我們大家都習慣四則運算,定義新運算就打破了運算規則,要求我們要嚴格按照題目的規定做題.新定義的運算符號,常見的如△、◎、※等等,這些特殊的運算符號,表示特定的意義,是人為設定的.解答這類題目的關鍵是理解新定義,嚴格按照新定義的式子代入數值,把定義的新運算轉化成我們所熟悉的四則運算。

知識點撥一定義新運算基本概念:定義一種新的運算符號,這個新的運算符號包含有多種基本(混合)運算。

基本思路:嚴格按照新定義的運算規則,把已知的數代入,轉化為加減乘除的運算,然後按照基本運算過程、規律進行運算。

關鍵問題:正確理解定義的運算符號的意義。

注意事項:①新的運算不一定符合運算規律,特別注意運算順序。

②每個新定義的運算符號只能在本題中使用。

我們學過的常用運算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,為什麼運算結果不同呢?主要是運算方式不同,實際是對應法則不同.可見一種運算實際就是兩個數與一個數的一種對應方法,對應法則不同就是不同的運算.當然,這個對應法則應該是對任意兩個數,通過這個法則都有一個唯一確定的數與它們對應.只要符合這個要求,不同的法則就是不同的運算.在這一講中,我們定義了一些新的運算形式,它們與我們常用的“+”,“-”,“×”,“÷”運算不相同.二 定義新運算分類1.直接運算型2.反解未知數型3.觀察規律型4.其他類型綜合模組一、直接運算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【巩固】 定義新運算為a △b =(a +1)÷b ,求的值。

6△(3△4)【巩固】 設a △2b a a b =⨯-⨯,那麼,5△6=______,(5△2) △3=_____.例題精講【巩固】 P 、Q 表示數,*P Q 表示2P Q +,求3*(6*8)【巩固】 已知a ,b 是任意自然數,我們規定: a ⊕b = a +b -1,2a b ab ⊗=-,那麼[]4(68)(35)⊗⊕⊕⊗= .【巩固】 M N *表示()2,(20082010)2009M N +÷**____=【巩固】 規定運算“☆”為:若a >b ,則a ☆b =a +b ;若a =b ,則a ☆b =a -b+1;若a <b ,則a ☆b =a ×b 。

(完整版)定义新运算(小学数学五年级奥数)

(完整版)定义新运算(小学数学五年级奥数)

定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+ 2=8, 6X2=12等。

都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。

由此可见,一种运算实际就是两个数与一个数的一种对应方法。

对应法则不同就是不同的运算。

当然,这个对应法则应该是对应任意两个数。

通过这个法则都有一个唯一确定的数与它们对应。

这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。

解决定义新运算这类题的关键:是抓住定义的本质借用“ +、一、X、十”四则运算进行的,解答时要弄活新运算与四则运算的关系。

特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。

例1:设a、b都表示数,规定:aAb =3X a— 2X b。

试计算:(1) 3A2; (2) 2A3。

练习1:1. 设a b都表示数,规定:a。

b=5X a— 2X b。

试计算3042. 设a b都表示数,规定:a*b=3x a+ 2X b。

试计算:5*6例2:对于两个数a与b,规定b=3a+ 2a,试计算( 3^5)练习2:1.对于两个数a与b,规定:aOb=a+3b,试计算405062.对于两个数A与B,规定:A△ B=2X A — B,试计算5A6A7例3:对于两个数a, b,规定:a金b=ax b+ a+ b,试计算:9 ®练习3:1.对于两个数a, b,规定:a$b=ax b— ( a+ b),试计算:6 ® 7.2..对于两个数A与B,规定:A GB=A X B-2,试计算:8 99例4:如果2、3=2 + 3 + 4, 5A4=5+ 6+ 7+ 8,那么按此规律计算:(1) 3A5;(2) 8A3。

练习4:1.如果4A2=4X 5, 2A3=2X 3X 4,那么按此规律计算:5A4。

2.如果24=24- (2+ 4), 3V6=36- (3 + 6), 6V3=63- (6+ 3),那么按此规律计算:7V2.例5:对于两个数a与b,规定aDb=a(a+1)+(a+2)+・・・(a+b— 1)。

五数奥数新定义运算

五数奥数新定义运算

第一讲定义新运算一、学习目标1. 了解新运算的定义并学会按新运算的要求进行计算。

2. 学习观察、比较、判断和推理的数学方法。

二、内容提要与方法点拨1.要熟练掌握四则运算的法则及运算定律。

2. 定义新运算是指用某种特定的符号表示特定意义的运算。

解答这类题目时,首先要弄清新定义的运算的特定含义,也就是弄清它所表示的通常意义下是什么运算,然后转化为通常意义下的四则运算来进行解答。

在没有特别说明的情况下,一些基本的四则运算法则如从左往右计算、有括号时先算括号里面的等在新定义的运算中也是适用的。

但是,在新定义的运算中,不一定都适合交换律或结合律。

三、例题选讲例1如果a▽b表示a×b+a-b,试计算:(7▽4)▽5。

解:式子a▽b表示两个数的积加上第一个数后再减去第二个数。

在式子(7▽4)▽5中,要先算小括号里面的。

(7▽4)=7×4+7-4=31而31▽5=31×5+31-5=181,所以,(7▽4)▽5=181。

例2规定a☆b表示a的4倍减去b的3倍,即a☆b=4a-3b,试计算:(1)5☆6 ;(2)6☆5。

解:(1)根据a☆b=4a-3b,所以,5☆6=4×5-3×6=2(2)6☆5=6×4-5×3=9注意:a☆b表示a的4倍减去b的3倍,而b☆a表示b的4倍减去a的3倍,这里a≠b,所以a☆b≠b☆a。

因此,本例定义的新运算是不满足交换律的,计算中不能把前后两个数交换。

例3 对于两个数x、y,规定x#y表示3x+2y,试计算:(1)(5#7)#8 ;(2)5#(7#8)。

解:(1)根据x#y=3x+2y,得(5#7)#8=(3×5+2×7)#8=29#8=3×29+2×8=103(2)5#(7#8)=5#(3×7+2×8)=5#37=3×5+2×37=89注意:本例定义的运算是不满足结合律的。

五年级奥数逻辑推理ppt课件

五年级奥数逻辑推理ppt课件
22
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
23
21
B只打了一盘,与A打了就
1-1.五位同学一起打乒乓球,两人之间最多只能不能打与一D打盘。,矛盾 打完后,A说:“我打了四盘。”B说:“我打了一盘。” C说:“我打了三盘。”D说:“我打了四盘。”E说: “我打了三盘。” 你能肯定其中有人说错了吗?为什么?
1-2.A、B、C三个人各爱好篮球、排球和足球中的一项, 并分别在一小、二小和三小中的一所小学上学,已知 ① A不在一小;② B不在二小; ③ 爱好足球的不在三小; ④ 爱好篮球的在一小; ⑤ 爱好篮球的不列是表B法B。三。小A二,小排,球足;球; 问:三人各爱好什么运动?各上哪所小学? C一小,篮球。
5
例题二
• 卢刚、丁飞和陈俞一位是工程师,一位是医生,一位是飞行员。现在 只知道:
• 卢刚和医生不同岁; • 医生比丁飞年龄小; • 陈俞比飞行员年龄大。 • 请问:谁是工程师,谁是医生,谁是飞行员?
×
×


×
×
×

×
6
欢乐加油站
1、淘气、笑笑、欢欢三人各戴着黄、 白红三种颜色的帽子,但不知道谁 戴着什么颜色的帽子,只知道淘气 不戴黄、红两种颜色的帽子,欢欢 不戴红帽子,你能猜出每人各戴什 么颜色的帽子吗?
第三个人说:“第二个人是说自己是老实国人,我是 老实国人。” 根据他们的回答,你能判断谁是老实国人吗?
15
2、小光的电脑开机密码是一个五位数,它由五个不同的 数字组成.小伟说:“它是73152.”小华说:“它是 15937.”小丽说:“它是38179.”小光说:“谁说的某一位 上的数字与我的密码上的同一位数字相同,就算谁猜对了 这位数字.现在你们每人都猜对了位置不相邻的两个数 字.”这个密码是多少?

奥数第三讲新定义运算

奥数第三讲新定义运算
b.
4. 定义新的运算 a ⊖ b = a × b + a + b .求(1⊖2)⊖3.
5. 有一个数学运算符号“⊗”,使下列算式成立:2⊗4=10,5⊗3=18,3⊗5=14, 9⊗7=34.求 7⊗3=?
a +1 .求 2∇(3∇ 4) 的值. b
6. 定义新运算为 a∇b =
7. 对于数 x, y 规定运算“○”为 x ○ y = (a + 4) × (b − 3) .求 7○(8○9)的值. 8. 设 a F b 表示 a 的 3 倍减去 b 的 2 倍,即 a F b = 3a − 2b ,已知 x F(4F1)=7. 求x. 9. 定义两种运算“ ⊕ ”、“ ⊗ ”,对于任意两个整数 a, b , a ⊕ b = a + b − 1 ,
11. x, y 表 示 两 个 数 , 规 定 新 运 算 “※” 及 “ ○ ” 如 下 : x ※ y = 5 x + 4 y , x ○
y = 6 xy .求(3※4)○5 的值.
12. 设 a, b 分别表示两个数,如果 a F b 表示 5)]的结果是什么?
a−b ,照这样的规则,3F[6F(8F 3
名精 师点
名师精点教育
五年级奥数班
数学金牌精编(谢老师)
第三讲: 第三讲:新定义运算
名师精讲 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混 合)运算。 基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除 的运算,然后按照基本运算过程、规律进行运算。
【名师精点:典型例题】 名师精点:典型例题】
13. 规定 x ∗ y =
Ax + y ,且 5F6=6F5,求(3F2)×(1F10)的值. xy

五年级奥数第五讲定义新运算

五年级奥数第五讲定义新运算

定义新运算例1.a、b是自然数,规定a※b=(a+b)÷2,求:(1)5※7;(2)3※(4※6)的值。

练1.对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?例2.定义运算“a○+b”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+12)哪一个大?大的比小的大多少?练2.定义新运算“△”:a△b=6a+3b+7,那么5△6和6△5哪个大?大的比小的大多少?例3.规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。

练3 y x ,表示两个数,规定新运算“*”及“△”如下:x *y x y 56+=,x △xy y 3=.求(2*3)△4的值.例4.定义一种运算“*”,它的意义是a ∗b=a+a a+aaa+…+(a ,b 都是非0自然数).(1)求:2∗3,3∗2;(2)求:23∗3,340∗2(3)求:5678×(5677∗2) - 5677×(5678∗2).练4.若a*b=a+(a+1)+(a+2)+(a+3)+…+(a+b-1),那么3*4*5=?例5.规定“口”的运算法则如下,对于任何整数a ,b ,有:求:(1口2)+(2口3)+(3口4)+ (4口5)+(5口6)+(6口7)+(7口8)十(8口9)+(9口10).练5.规定“⊕”的运算法则如下,对于任何整数P,Q,有:求:(1⊕2)+(2⊕3)+(3⊕4)+(4⊕5)+(5⊕6)作业1. 设b a ,表示两个不同的数,规定b a b a ⨯-⨯=∆34.求2)34(∆∆.2. 定义新的运算a ⊖b a b a b ++⨯=.求(1⊖2)⊖3.3. 定义两种运算“⊕”、“⊗”,对于任意两个整数b a ,,1-+=⊕b a b a ,1-⨯=⊗b a b a .计算)]53()86[(4⊕⊕⊕⊗的值.4. y x ,表示两个数,规定新运算“※”及“○”如下:x ※y x y 45+=,x ○xy y 6=.求(3※4)○5的值.5.对于任意自然数x和y,定义运算如下:若x和y同奇同偶,则x×y=(x+y)÷2若x和y奇偶性不同,则x×y=(x+y+1)÷2求(1994×1995)+(1995×1996)+(1996×1997)+……+(1999×2000)。

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

小学五年级奥数逻辑推理PPT课件

小学五年级奥数逻辑推理PPT课件
第11页/共26页
6. 三.
N次比赛共得20+10+9=39(分),39=313,所以共进行了3次
比赛,每次比赛共得13分,即a+b+c=13.因为一班3次比赛共得
20分,203=6…2,所以a 7,a,b,c可能组合为7、5、1;7、4、2;
8、4、1;8、3、2;9、3、1,考虑到3次比赛得20分,只有
第1页/共26页
第2页/共26页
• 2. 有四个人各说了一句话.
• 第一个人说:“我是说实话的人.”
• 第二个人说:“我们四个人都是说谎话的人.”
• 第三个人说:“我们四个人只有一个人是说谎话的人.”
• 第四个人说:“我们四个人只有两个人是说谎话的人.”
• 请你确定第一个人说 话.
话,第二个人说
第15页/共26页
第16页/共26页
9. 甲、乙、丙、丁四个队参加足球循环 赛,已知甲、乙、丙的情况列在下表中
由此可推知,甲与丁的比分为 ,丙与丁 的比分为 .
已赛场数 胜(场数) 负(场数) 平(场数) 进球数 失球数

2
1
0
1
3
2

3
2
0
1
2
0

2
0
2
0
3
5
第17页/共26页
第18页/共26页
• 若某丙学生所读的所有的书,都被另一同学全部读 过,而后一同学读过的书中,至少有一本书,丙未读 过,则丙同学就分在第一组.另外,凡一本书也未读 过的同学也分在第一组,其余的同学就分在第二组.
• 按照以上分组方法,不可能将全体同学都分在第一 组,因为读书数最多的同学一定在第二组.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档