2010年六年级奥数题:定义新运算(a)

合集下载

六年级奥数定义新运算

六年级奥数定义新运算

第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义, 从而解答某些算式的一种运算.解答定义新运算, 关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序, 将数值代入, 转化为常规的四则运算算式进行计算.定义新运算是一种人为的、临时性的运算形式, 它使用的是一些特殊的运算符号, 如:*、△、⊙等, 这是与四则运算中的“+、-、×、÷”不同的.新定义的算式中有括号的, 要先算括号里面的. 但它在没有转化前, 是不适合于各种运算定律的.二、精讲精练【例题1】假设a*b=(a+b)+(a-b), 求13*5和13*(5*4).练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).. 求27*9.2、设a*b=a2+2b, 那么求10*6和5*(2*8).【例题2】设p、q是两个数, 规定:p△q=4×q-(p+q)÷2. 求3△(4△6).练习2:1、设p、q是两个数, 规定p△q=4×q-(p+q)÷2, 求5△(6△4).2、设p、q是两个数, 规定p△q=p2+(p-q)×2. 求30△(5△3).【例题3】如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, 4*2=4+44, 那么7*4=________;210*2=________.练习3:1、如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, ……那么4*4=________.2、规定, 那么8*5=________.【例题4】规定②=1×2×3, ③=2×3×4 , ④=3×4×5, ⑤=4×5×6, ……如果1/⑥-1/⑦ =1/⑦×A, 那么, A是几?练习4:1、规定:②=1×2×3, ③=2×3×4, ④=3×4×5, ⑤=4×5×6, ……如果1/⑧-1/⑨=1/⑨×A, 那么A=________.2、规定:③=2×3×4, ④=3×4×5, ⑤=4×5×6, ⑥=5×6×7, ……如果1/⑩+1/⑾=1/⑾×□, 那么□=________.【例题5】设a⊙b=4a-2b+ ab /2,求x⊙(4⊙1)=34中的未知数x.练习5:1、设a⊙b=3a-2b, 已知x⊙(4⊙1)=7求x.2、对两个整数a和b定义新运算“△”:a△b= , 求6△4+9△8.3、设M、N是两个数, 规定M*N=M/N+N/M, 求10*20-1/4.三、课后作业1、设a*b=3a-b×1/2, 求(25*12)*(10*5).2、如果2*1=1/2, 3*2=1/33, 4*3=1/444, 那么(6*3)÷(2*6)=________.3、如果1※2=1+2, 2※3=2+3+4, ……5※6=5+6+7+8+9+10, 那么x※3=54中, x=________.4、对任意两个整数x和y定于新运算, “*”:x*y=(其中m是一个确定的整数). 如果1*2=1, 那么3*12=________.面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.。

六年级小升初常考奥数题型 第1讲定义新运算(例题和答案、讲解)

六年级小升初常考奥数题型 第1讲定义新运算(例题和答案、讲解)

第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2、设a*b=a 2+2b ,那么求10*6和5*(2*8)。

3、设a*b=3a -b ×1/2,求(25*12)*(10*5)。

【答案】1.648 2.112、65 3.193.25【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。

求3△(4△6)。

练习2:1、设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。

2、设p 、q 是两个数,规定p △q =p2+(p -q )×2。

求30△(5△3)。

3、设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。

【答案】1.36 2.902 3.412【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,7*4=7+77+777+7777=8638210*2=210+210210=2104203*3=3+33+333,……那么4*4=________。

六年级奥数新定义运算

六年级奥数新定义运算
没有新定义运算,可 以用四则运算计算
x※16=34 4x-2×16+0.5×16×x=34 12x-32=34 x=5.5
新定义运算,是指用一个符号和已知运算表达式表示一种新的运算,1、严格按照计算程序,带入数值,转 化成四则运算,2、新运算中有括号的,要先算括号里面的,但四则运算法则不再适用,3,新运算符号常 有※☆▽△等。
例2,设mn是两个数,规定m△n=4×m-(m+n)÷2,求6△(3△5) 根据规定先算(3△5) 3△5=4×3-(3+5)÷2=12-8÷2=12-4=8 6△(3△5)=6△8=4×6-(6+8)÷2=24-14÷2=24-7=17
小学奥数六年级 新定义运算一
新定义运算,是指用一个符号和已知运算表达式表示一种新的运算,1、严格按照计算程序,带入数值,转 化成四则运算,2、新运算中有括号的,要先算括号里面的,但四则运算法则不再适用,3,新运算符号常 有※☆▽△等。
例1,a*b=(a+b)+(a-b),求13*5,13*(5*4)
*代表着一种新运算,四则运算法则不再适用,但有括号,要先算括号里面的,比如第二个
13*5=(13+5)+(13-5)=18+8=26
13*(5*4)要先算括号里的,即 原式=13*[(5+4)+(5-4)] =13*10 =(13+10)+(13-10) =23+3 =26
小学奥数六年级 新定义运算二
小学奥数六年级 新定义运算三
பைடு நூலகம்
小学奥数六年级 新定义运算四
小学奥数六年级 新定义运算五
新定义运算,是指用一个符号和已知运算表达式表示一种新的运算,1、严格按照计算程序,带入数值,转 化成四则运算,2、新运算中有括号的,要先算括号里面的,但四则运算法则不再适用,3,新运算符号常 有※☆▽△等。

小学六年级奥数(A版) 第1周定义新运算~例1(含习题答案)

小学六年级奥数(A版)  第1周定义新运算~例1(含习题答案)

1
第一周 定义新运算
专题简析:
定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“∆、#、*、·”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

例题1。

假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

分析与解:
这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。

这里的“*”就代表一种新运算。

在定义新运算中同样规定了要先算小括号里的。

因此,在13*(5*4)中,就要先算小括号里的(5*4)。

练习1
1..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。

3.设a*b=3a-1
2
×b,求(25*12)*(10*5)。

练习参考答案:
1..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。

分析与解:
2
3
分析与解:
3.设a*b=3a -12
×b ,求(25*12)*(10*5)。

分析与解:。

有关定义新运算的奥数题

有关定义新运算的奥数题

有关定义新运算的奥数题
定义新运算的奥数题通常涉及数学中的某些基本概念,如数论、代数、几何等,并且通常需要使用一些特殊的工具或方法来解决。

以下是一些有关定义新运算的奥数题:
1. 定义新运算“+”,使得对于任意的整数 a、b 和 c,有
a+(b+c)=a+b+c。

请证明这个运算的封闭性、结合律和交换律。

2. 定义新运算“*”,使得对于任意的整数 a、b 和 c,有
a*b*c=a*b*(a*b+c)。

请证明这个运算的封闭性、结合律和交换律。

3. 定义新运算“/”,使得对于任意的整数 a、b 和 c,有
a/b/c=a/(b*c)。

请证明这个运算的封闭性、结合律和交换律。

4. 定义新运算“+”,使得对于任意的整数 a、b 和 c,有
a+(b-c)=a+b-c。

请证明这个运算的封闭性、结合律和交换律。

5. 定义新运算“*”,使得对于任意的整数 a、b 和 c,有
a*b*(a-b)=a*b-a*b*c。

请证明这个运算的封闭性、结合律和交换律。

解决这些问题需要深入的数学知识和技巧,例如代数、几何和概率等。

在解决这些问题时,通常需要使用一些特殊的方法和工具,例如归纳法、递推法、递归法等。

定义新运算的奥数题是数学中的一个重要分支,它们能够帮助学生发展他们的数学思维和解决问题的能力。

通过解决这些问题,学生可以更深入地了解数学中的各种概念和技巧,并且可以提高他们的数学素养。

小学六年级数学经典奥数题训练50(含答案)

小学六年级数学经典奥数题训练50(含答案)

小学六年级数学经典奥数题训练50(含答案)一、拓展提优试题1.定义新运算“*”:a*b=例如3.5*2=3.5,1*1.2=1.2,7*7=1,则=.2.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.3.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.4.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.5.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.6.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.7.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.8.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.9.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.10.如图所示的“鱼”形图案中共有个三角形.11.已知自然数N的个位数字是0,且有8个约数,则N最小是.12.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.13.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?14.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.15.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.【参考答案】一、拓展提优试题1.解:根据分析可得,,=,=2;故答案为:2.2.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.3.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.4.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.5.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.6.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.7.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.8.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.9.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.10.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.11.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.12.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.13.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.14.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.15.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.。

六年级奥数专题-定义新运算

六年级奥数专题-定义新运算

六年级奥数专题-定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“∆、#、*、·”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

例题1。

假设a*b=(a+b)+(a -b),求13*5和13*(5*4)。

13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a -b).求27*9。

2.设a*b=a 2+2b ,那么求10*6和5*(2*8)。

3.设a*b=3a -12×b ,求(25*12)*(10*5)。

例题2。

设p 、q 是两个数,规定:p △q=4×q -(p+q)÷2。

求3△(4△6).3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习21. 设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。

2. 设p 、q 是两个数,规定p △q =p 2+(p -q )×2。

求30△(5△3)。

3. 设M 、N 是两个数,规定M*N =M N +N M ,求10*20-14。

例题3。

如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。

那么7*4=?,210*2=?7*4=7+77+777+7777=8638210*2=210+210210=210420练习31. 如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,…..那么,4*4=?,18*3=?2. 规定a*b=a+aa+aaa+aaa+aaaa……..a ,那么8*5=?(b -1)个a3. 如果2*1=12 ,3*2=133 ,4*3=1444,那么(6*3)÷(2*6)=?。

奥赛起跑线六年级分册 定义新运算

奥赛起跑线六年级分册 定义新运算

定义新运算例1 “⊙”表示一种新的运算,它是这样定义的:a⊙b=a×b-(a+b) 求:(1) 3⊙5;(2)(3⊙4)⊙5例2 将新运算“*”定义为:a×b=(×)÷(÷)(a、b非0)。

求3*(4*5)。

例3 如果2△3=2+3+4=9,5△4=5+6+7+8=26,那么:(1)求9△5;(2)解方程x△3=15例4 规定“□”的运算法则如下,对于任何整数a,b:(a+b≥10),a□b=(a+b<10)。

求,1□2+2□3+3□4+4□5+5□6+6□7+7□8+8□9+9□10。

例5 定义运算“#”,它的意义是a#b=a+.aa+.aaa+…+.a…aaa(b个a)(a、b都是自然数),求:(1)求2#3,3#2;(2)1#x=123456789,求x;(3)5678×(5677#2)-5677×(5678#2)。

1.设a☆b=a2+b2,则15☆13=()。

2. 设a*b=4×a-5×b,则(1)5*4=();(2)(6*4)*2=();(3)x*(2*x)=18,x=();3.如果a*b的含义表示a×b-a+b,那么2*(4*6)*8=();4.规定a△b= - ,则5△3 + =();5.对于整数a、b,固定运算#的含义为:a#b=a×b+a+1,又知(2#x)#2=10,则x=();6.对于任意非零自然数a、b,规定a*b=a÷b×2+3,且256*x=19,则x=();7.对顶a*b=,则2*2*10=()。

8.对于任意非零自然数x、y,定义新运算□如下:若x、y奇偶性相同,则x□y=(x+y)÷2;若x、y奇偶性不同,则x□y=(x+y+1)÷2.求(1)(1994□1995)□(1995□1996)□(1996□1997)…□(2010□2011);(2)2004□2006□2008□2010□2011。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年六年级奥数题:定义新运算(A)
一、填空题(共10小题,每小题3分,满分30分)
1.(3分)规定a☉b=,则2☉(5☉3)之值为_________.
2.(3分)(2012•成都)规定“※”为一种运算,对任意两数a,b,有a※b=,若6※x=,则x=_________.
3.(3分)设a,b,c,d是自然数,定义<a,b,c,d>=ad+bc.则<<1,2,3,4>,<4,1,2,3>,<3,4,1,2>,<2,3,4,1>>=_________.
4.(3分)[A]表示自然数A的约数的个数.例如,4有1,2,4三个约数,可以表示成[4]=3.计算:([18]+[22])÷[7]= _________.
5.(3分)规定新运算※:a※b=3a﹣2b.若x※(4※1)=7,则x=_________.
6.(3分)两个整数a和b,a除以b的余数记为a☆b.例如,13☆5=3,5☆13=5,12☆4=0.根据这样定义的运算,(26☆9)☆4=_________.
7.(3分)对于数a,b,c,d规定<a,b,c,d>=2ab﹣c+d.如果<1,3,5,x>=7,那么x=_________.8.(3分)(2012•武汉模拟)规定:6※2=6+66=72,2※3=2+22+222=246,1※4=1+11+111+1111=1234.7※5=_________.
9.(3分)规定:符号“△”为选择两数中较大数,“☉”为选择两数中较小数.例如:3△5=5,3☉5=3.那么,[(7☉3)△5]×[5☉(3△7)]=_________.
10.(3分)假设式子a#a×b表示经过计算后,a的值变为原来a与b的值的积,而式子b#a﹣b表示经过计算后,b 的值为原来a与b的值的差.设开始时a=2,b=2,依次进行计算a#a×b,b#a﹣b,a#a×b,b#a﹣b,则计算结束时,a 与b的和是_________.
二、解答题(共4小题,满分0分)
11.设a,b,c,d是自然数,对每两个数组(a,b),(c,d),我们定义运算※如下:(a,b)※(c,d)=(a+c,b+d);又定义运算△如下:(a,b)△(c,d)=(ac+bd,ad+bc).试计算((1,2)※(3,6))△((5,4)※(1,3)).
12.羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了.
小朋友总是希望羊能战胜狼,所以我们规定另一种运算,用符号☆表示为羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了.
对羊或狼,可用上面规定的运算作混合运算,混合运算的法则是从左到右,括号内先算.运算的结果是羊,或是狼.求下式的结果:
羊△(狼☆羊)☆羊△(狼△狼).
13.64=2×2×2×2×2×2表示成f(64)=6;243=3×3×3×3×3表示成g(243)=5.
试求下列的值:
(1)f(128)=_________;
(2)f(16)=g_________;
(3)f_________+g(27)=6;
(4)如果x,y分别表示若干个2的数的乘积,试证明:f(x•y)=f(x)+f(y).
14.两个不等的自然数a和b,较大的数除以较小的数,余数记为a☉b,比如5☉2=1,7☉25=4,6☉8=2.(1)求1991☉2000,(5☉19)☉19,(19☉5)☉5;
(2)已知11☉x=2,而x小于20,求x;
(3)已知(19☉x)☉19=5,而x小于50,求x.
2010年六年级奥数题:定义新运算(A)
参考答案与试题解析
一、填空题(共10小题,每小题3分,满分30分)
1.(3分)规定a☉b=,则2☉(5☉3)之值为1.
3=

故答案为:
2.(3分)(2012•成都)规定“※”为一种运算,对任意两数a,b,有a※b=,若6※x=,则x=8.
3.(3分)设a,b,c,d是自然数,定义<a,b,c,d>=ad+bc.则<<1,2,3,4>,<4,1,2,3>,<3,4,1,2>,<2,3,4,1>>=280.
4.(3分)[A]表示自然数A的约数的个数.例如,4有1,2,4三个约数,可以表示成[4]=3.计算:([18]+[22])÷[7]= 5.
5.(3分)规定新运算※:a※b=3a﹣2b.若x※(4※1)=7,则x=9.
6.(3分)两个整数a和b,a除以b的余数记为a☆b.例如,13☆5=3,5☆13=5,12☆4=0.根据这样定义的运算,(26☆9)☆4=0.
7.(3分)对于数a,b,c,d规定<a,b,c,d>=2ab﹣c+d.如果<1,3,5,x>=7,那么x=6.
8.(3分)(2012•武汉模拟)规定:6※2=6+66=72,2※3=2+22+222=246,1※4=1+11+111+1111=1234.7※5=86415.
9.(3分)规定:符号“△”为选择两数中较大数,“☉”为选择两数中较小数.例如:3△5=5,3☉5=3.那么,[(7☉3)△5]×[5☉(3△7)]=25.
10.(3分)假设式子a#a×b表示经过计算后,a的值变为原来a与b的值的积,而式子b#a﹣b表示经过计算后,b 的值为原来a与b的值的差.设开始时a=2,b=2,依次进行计算a#a×b,b#a﹣b,a#a×b,b#a﹣b,则计算结束时,a 与b的和是14.
二、解答题(共4小题,满分0分)
11.设a,b,c,d是自然数,对每两个数组(a,b),(c,d),我们定义运算※如下:(a,b)※(c,d)=(a+c,b+d);又定义运算△如下:(a,b)△(c,d)=(ac+bd,ad+bc).试计算((1,2)※(3,6))△((5,4)※(1,3)).
12.羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了.
小朋友总是希望羊能战胜狼,所以我们规定另一种运算,用符号☆表示为羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了.
对羊或狼,可用上面规定的运算作混合运算,混合运算的法则是从左到右,括号内先算.运算的结果是羊,或是狼.求下式的结果:
羊△(狼☆羊)☆羊△(狼△狼).
13.64=2×2×2×2×2×2表示成f(64)=6;243=3×3×3×3×3表示成g(243)=5.
试求下列的值:
(1)f(128)=7;
(2)f(16)=g81;
(3)f(8)+g(27)=6;
(4)如果x,y分别表示若干个2的数的乘积,试证明:f(x•y)=f(x)+f(y).
14.两个不等的自然数a和b,较大的数除以较小的数,余数记为a☉b,比如5☉2=1,7☉25=4,6☉8=2.(1)求1991☉2000,(5☉19)☉19,(19☉5)☉5;
(2)已知11☉x=2,而x小于20,求x;
(3)已知(19☉x)☉19=5,而x小于50,求x.。

相关文档
最新文档