控制系统状态空间设计

合集下载

控制系统的状态空间表达式

控制系统的状态空间表达式

第一章 控制系统的状态空间表达式Chapter 1 State space representation of control systems本章内容• 状态变量及状态空间表达式 • 状态空间表达式的模拟结构图 • 状态空间表达式的建立(1) • 状态空间表达式的建立(2) • 状态矢量的线性变换 • 由传递函数求状态方程• 由状态空间表达式求传递函数阵 • 离散系统的状态空间表达式• 时变系统和非线性系统的状态空间表达式系统的动态特性由状态变量构成的一阶微分方程组来描述,能同时给出系统全部独立变量的响应,因而能同时确定系统的全部内部运动状态。

1.1 状态变量及状态空间表达式1.1 State space representation of control systems 状态变量 (State variables)状态:表征系统运动的信息和行为状态变量:能完全表示系统运动状态的最小个数的一组变量x 1(t ), x 2(t ), …, x n (t ) 状态向量(State vectors)由状态变量构成的向量 x (t )T 123()(),(),()...()n x t x t x t x t x t =⎡⎤⎣⎦状态空间 (State space) • 以各状态变量x 1(t ),x 2(t ),…… x n (t )为坐标轴组的几维空间。

•状态轨迹:在特定时刻t ,状态向量可用状态空间的一个点来表示,随着时间的推移,x (t )将在状态空间描绘出一条轨迹线。

状态方程 (State equations)• 由系统的状态变量与输入变量之间的关系构成的一阶微分方程组。

例1.1 设有一质量弹簧阻尼系统。

试确定其状态变量和状态方程。

解:系统动态方程2()().()().()()()d yF t ky t f yt m dt my t f yt ky t F t ⎧--=⎪⎨⎪++=⎩ 设1()()y t x t =,2()()yt x t = 12()()............................................(1)1()()()()........(2)x t y t f k x t y t y t F t m m m =⎧⎪⎨=--+⎪⎩12212()()1()()()()xt x t k f x t x t x t F t m m m =⎧⎪⎨=--+⎪⎩1122010()()()1()()xt x t F t f k x t x t m m m ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ = 状态方程的标准形式:()()()xt Ax t Bu t =+ (A :系统矩阵 B :输入矩阵) 输出方程 (O u t p u t e q u a t i o n )系统的输出量与状态变量之间的关系[]112()()()10 ()x t y t x t x t ⎡⎤==⎢⎥⎣⎦()()y t Cx t =(C:输出矩阵)状态方程和输出方程的总和即称为状态空间表达式。

控制系统的状态空间分析与综合

控制系统的状态空间分析与综合

第8章控制系统的状态空间分析与综合第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。

经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。

随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。

1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。

它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。

(1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。

(2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。

本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。

8.1 控制系统的状态空间描述8.1.1 系统数学描述的两种基本方法统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。

一个反映系统内部变量x和输入变量u间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量y与内部变量及输入变量间的关系,具有代数方程的形式。

外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。

8.1.2 状态空间描述常用的基本概念 1.输入和输出由外部施加到系统上的激励称为输入,若输入是按需要人为施加的,又称为控制;系统的被控量或从外部测量到的系统信息称为输出,若输出是由传感器测量得到的,又称为观测。

自动控制原理状态空间法

自动控制原理状态空间法
自动控制原理状态空间法
目录
• 引言 • 状态空间法基础 • 线性系统的状态空间表示 • 状态反馈与极点配置 • 最优控制理论 • 离散系Biblioteka 的状态空间表示01引言
状态空间法的定义
状态空间法是一种基于状态变量描述线性时不变系统的方法,通过建立系 统的状态方程和输出方程来描述系统的动态行为。
状态变量是能够完全描述系统内部状态的变量,可以是系统的物理量或抽 象的数学变量。
最优控制问题
在满足一定约束条件下,寻找一个控制输入, 使得被控系统的某个性能指标达到最优。
性能指标
通常为系统状态或输出函数的积分,如时间加 权或能量加权等。
约束条件
包括系统动态方程、初始状态、控制输入和终端状态等。
线性二次调节器问题
线性二次调节器问题是最优控制问题的一个特例, 其性能指标为系统状态向量的二次范数。
THANKS
状态方程描述了系统内部状态变量之间的动态关系,而输出方程则描述了 系统输出与状态变量之间的关系。
状态空间法的重要性
1
状态空间法提供了系统分析和设计的统一框架, 可以用于线性时不变系统的各种分析和设计问题。
2
通过状态空间法,可以方便地实现系统的状态反 馈控制、最优控制、鲁棒控制等控制策略。
3
状态空间法具有直观性和易于实现的特点,能够 直接反映系统的动态行为,便于理解和分析。
02
状态空间法基础
状态与状态变量
状态
系统在某一时刻的状态是由系统 的所有内部变量共同决定的。
状态变量
描述系统状态的变量,通常选择 系统的输入、输出和内部变量作 为状态变量。
状态方程的建立
根据系统的物理或数学模型,通过适 当的方法建立状态方程。

状态空间分析与设计

状态空间分析与设计

状态空间分析与设计状态空间分析与设计是系统工程与控制工程中常用的分析和设计方法。

它通过建立系统的状态空间模型,对系统的动态行为进行定性和定量分析,并在此基础上进行系统设计和优化。

本文将深入介绍状态空间分析与设计的相关概念、原理和应用。

一、状态空间分析与设计概述状态空间是系统在任意时刻的状态所组成的集合。

在状态空间中,系统的每个状态都可以由一组状态变量完全描述。

因此,状态空间分析与设计的核心是建立系统的状态方程和输出方程,并利用这些方程进行性能分析和控制器设计。

二、状态方程与输出方程状态方程描述了系统状态的演变规律。

它是一个一阶微分方程,用矩阵形式表示为:x' = Ax + Bu其中,x是状态向量,A是系统的状态转移矩阵,B是输入矩阵,u 是外部输入。

状态方程描述了系统状态变量随时间的变化规律,可以用来分析系统的稳定性、响应速度等性能指标。

输出方程描述了系统输出与状态之间的关系。

它是一个线性方程,用矩阵形式表示为:y = Cx + Du其中,y是输出向量,C是输出矩阵,D是直接传递矩阵。

输出方程可以用来分析系统的可控性和可观性,以及设计满足特定输出要求的控制器。

三、状态空间分析方法1. 稳定性分析利用状态方程,可以通过特征值分析判断系统的稳定性。

对于线性时不变系统,当所有特征值的实部小于零时,系统是稳定的。

通过分析系统的特征值,可以设计出稳定性更好的控制器。

2. 响应分析利用状态方程和输出方程,可以分析系统的响应特性。

包括阶跃响应、脉冲响应、频率响应等。

通过分析系统的响应,可以评估系统的性能,并设计出满足要求的控制器。

3. 控制器设计状态空间方法可以直接用于控制器设计。

常见的控制器设计方法包括状态反馈控制、最优控制和鲁棒控制等。

这些方法都是基于状态空间模型进行的,可以根据系统的要求选择合适的控制器设计方法。

四、状态空间分析与设计应用状态空间分析与设计在工程实践中得到广泛应用。

例如,它可以用于电力系统的稳定性分析和控制、飞行器的自动控制系统设计、机械振动控制等。

控制系统的状态空间分析与设计

控制系统的状态空间分析与设计

控制系统的状态空间分析与设计控制系统的状态空间分析与设计是现代控制理论的重要内容之一,它提供了一种描述和分析控制系统动态行为的数学模型。

状态空间方法是一种广泛应用于系统建模和控制设计的理论工具,其基本思想是通过描述系统内部状态的变化来揭示系统的特性。

一、状态空间模型的基本概念状态空间模型描述了系统在不同时间点的状态,包括系统的状态变量和输入输出关系。

在控制系统中,状态变量是指影响系统行为的内部变量,如电压、速度、位置等。

通过状态空间模型,可以将系统行为转化为线性代数方程组,从而进行分析和设计。

1. 状态方程控制系统的状态方程是描述系统状态演化的数学表达式。

一般形式的状态方程可以表示为:x(t) = Ax(t-1) + Bu(t)y(t) = Cx(t) + Du(t)其中,x(t)是系统在时刻t的状态向量,A是系统的状态转移矩阵,B是控制输入矩阵,u(t)是系统的控制输入,y(t)是系统的输出,C是输出矩阵,D是直接传递矩阵。

2. 状态空间矩阵状态空间矩阵包括系统的状态转移矩阵A、控制输入矩阵B、输出矩阵C和直接传递矩阵D。

通过这些矩阵,可以准确描述系统的状态变化与输入输出之间的关系。

3. 系统的可控性和可观性在状态空间分析中,可控性和可观性是评估系统控制性能和观测性能的重要指标。

可控性是指通过调节控制输入u(t),系统的状态可以在有限时间内从任意初始状态x(0)到达任意预期状态x(t)。

可控性可以通过系统的状态转移矩阵A和控制输入矩阵B来判定。

可观性是指通过系统的输出y(t)可以完全确定系统的状态。

可观性可以通过系统的状态转移矩阵A和输出矩阵C来判定。

二、状态空间分析方法状态空间分析方法包括了系统响应分析、系统稳定性分析和系统性能指标分析。

1. 系统响应分析系统的响应分析可以通过状态方程进行。

主要分析包括零输入响应和零状态响应。

零输入响应是指当控制输入u(t)为零时,系统的输出y(t)变化情况。

2019-§2控制系统的状态空间模型-文档资料

2019-§2控制系统的状态空间模型-文档资料
弹簧平移运动是一个二阶线性系统。
(3)定义状态向量、控制向量和输出向量
x1 y
d2y dy m d2tfd tk yF i
x2 y x1
uFi ,
yy,
整理(2-2-2)式
mdd dxd2t 2yt2 f dxd2 ytkxy1 F u i (2-2-2)
(4)可将2阶微分方程表示的系统写成2个一阶微分
(2)状态变量可以测量或不可测量。
2.2 状态空间方程的建立
例2-2-1 力学系统 弹簧-质量-阻尼器系统如图示。 列出以拉力Fi为输入,以质量单元的位移y为输出的 状态方程。
k
M
y Fi
Ff Fk
M
y Fi
图 2-5 弹簧-质量-阻尼器系统
(1)确定输入变量:
系统入: Fi, 出:y
(2)基本定理:
§2 控制系统的状态空间模型
微分方程 → 单输入、单输出线性定常系统 状态空间方程 → 多变量系统,现代控制理 论的数学描述方法
两种表示方法可以互相转换。
2.1 状态空间的基本概念
被控对象的变量可以分为三类:
n 输入变量(控制变量和干扰变量)
u[u1,u2 ur]T
n 输出变量(被控变量)
y[y1,y2,ym]T


0
1
m
u

y1
0

x1 x2

得到
0 xm k
1m f xx1 2m 1 0u
y 1
0

x1 x2

状态方程 xAxBu 输出方程
y Cx
系数矩阵
0 1
A

1.控制系统的状态空间模型

Chapter1控制系统的状态空间模型1.1 状态空间模型在经典控制理论中,采用n 阶微分方程作为对控制系统输入量)(t u 和输出量)(t y 之间的时域描述,或者在零初始条件下,对n 阶微分方程进行Laplace 变换,得到传递函数作为对控制系统的频域描述,“传递函数”建立了系统输入量)]([)(t u L s U =和输出量)]([)(t y L s Y =之间的关系。

传递函数只能描述系统的外部特性,不能完全反映系统内部的动态特征,并且由于只考虑零初始条件,难以反映系统非零初始条件对系统的影响。

现代控制理论是建立在“状态空间”基础上的控制系统分析和设计理论,它用“状态变量”来刻画系统的内部特征,用“一阶微分方程组”来描述系统的动态特性。

系统的状态空间模型描述了系统输入、输出与内部状态之间的关系,揭示了系统内部状态的运动规律,反映了控制系统动态特性的全部信息。

1.1.1 状态空间模型的表示法例1-1(6P 例1.1.1) 如下面RLC (电路)系统。

试以电压u 为输入,以电容上的电压C u 为输出变量,列写其状态空间表达式。

例1-1图 RLC 电路图解:由电路理论可知,他们满足如下关系⎪⎩⎪⎨⎧==++)(d )(d )()()(d )(d t i t t u C t u t u t Ri t t i L C C 经典控制理论:消去变量)(t i ,得到关于)(t u C 的2=n 阶微分方程:)(1)(1d )(d d )(d 22t u LCt u LC t t u L R t t u C C C =++ 对上述方程进行Laplace 变换:)()()2(20202s U s U s s C ωωζ=++得到传递函数:202202)(ωζω++=s s s G ,LC10=ω,L R 2=ζ 现代控制理论:选择⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛)()(21t u t i x x C 流过电容的电流)(t i 和电容上的电压)(t u C 作为2个状态变量,2=n (2个储能元件);1个输入为)(t u ,1=m ;1个输出C u y =,1=r 。

控制系统的状态空间描述

解: 方法一、直接根据微分方程求解
03
方法二、根据传递函数求解
状态方程的标准形式
状态方程的定义 状态方程 所谓状态方程,就是描述系统的状态之间以及输入和状态之间动态关系的一阶微分方程组。
3.2.2 状态空间表达式
向量矩阵形式为
状态向量
输入向量
维的函数向量
3、线性定常系统的状态方程
向量矩阵形式为
维的系数矩阵
维的系数矩阵
输出方程
输出方程的标准形式
解:列写回路的电压方程和节点的电流方程
选取 为状态变量,输出 ,得系统的状态空间表达式为
消去 并整理得
设初始条件为零,对上式两端进行拉普拉斯变换,得
写成向量矩阵形式为
其中
输入变量的Laplace变换象函数
2)数目最小的含义:是指这个变量组中的每个变量都是相互独立的。
二、状态向量
若一个系统有n个状态变量: ,用这n个状态变量作为分量所构成的向量 ,就称为该系统的状态向量,用 表示。
例 试建立下图所示电路网络的状态方程和输出方程。
01
考虑标量的一阶微分方程
02
用拉氏变换解有:
3.2.2 状态微分方程的解
定义矩阵指数函数为:
上式也经常写做状态转移矩阵的形式
系统的零输入响应为:
1.3 传递函数矩阵
例:系统如下图所示,输入为 和 ,输出为 。
较之传递函数,状态空间描述的优点有:
3、状态空间分析是一种时域分析方法,可用计算机直接在时域中进行数值计算。
2、由前面的分析可以看出,对于不同维数的系统,可以采用同一表达方式来进行描述,由此可见从低维系统得到的结论可以方便地推广到高维系统,只是计算复杂一些而已。

第9章 控制系统的状态空间描述


第9章 控制系统的状态空间描述
2.状态变量 能够完全表征系统运动状态的最小变量组中的每个变量 xi(t)(i=1,2,…,n)称为状态变量。 3.状态向量 系统有n 个状态变量x1(t),…,xn(t),用这n 个状态变量作为 分量所构成的向量(通常以列向量表示)称为系统的状态向 量:x(t)=(x1(t)…xn(t))T。
第9章 控制系统的状态空间描述 和
第9章 控制系统的状态空间描述
将上两式用矩 阵方程的形式表示, 可得出线性时变系 统的状态空间表达 式为
第9章 控制系统的状态空间描述 或者,状态空间表达式也可以表示为
式中,A(t)为n×n 系统矩阵,即
第9章 控制系统的状态空间描述 B(t)为n×r 输入矩阵,即
第9章 控制系统的状态空间描述
图9-3 系统结构图
第9章 控制系统的状态空间描述 (1)输入引起系统内部状态发生变化,其变化方程式称为
状态方程,其一般形式为
(2)系统内部状态及输入变化引起系统输出的变化,其变 化方程式称为输出方程,其一般形式为
第9章 控制系统的状态空间描述
பைடு நூலகம்
第9章 控制系统的状态空间描述
第9章 控制系统的状态空间描述
第9章 控制系统的状态空间描述
9.1 控制系统中状态的基本概念 9.2控制系统的状态空间表达式 9.3根据系统的物理机理建立状态空间表达式 9.4根据系统的微分方程建立状态空间表达式 9.5根据系统的方框图或传递函数建立状态空 间表达式 9.6从状态空间表达式求取传递函数矩阵 9.7系统状态空间表达式的特征标准型
状态方程和输出方程组合起来,构成对系统动态行为的 完整描述,称为系统的状态空间表达式,又称动态方程,其一般 形式为

现代控制理论-第二章 控制系统的状态空间描述

12 中南大学信息学院自动化系
DgXu
2.2.1.由物理机理直接建立状态空间表达式: 例2.2.1 系统如图所示
L
R2
u
iL
R1
uc
选择状态变量:
x1 iL , x2 uC ,
13 中南大C diL 1 iL (u L ) C dt R1 dt duC diL L uC C R2 u dt dt
y(s) [C(sI A) B D]U (s)
1
1

9
G(s) C (sI A) B D
命题得证
中南大学信息学院自动化系
1
DgXu
例2.1.3
已知系统的状态空间描述为
x1 0 1 0 x1 0 x 0 1 1 x 1 u 2 2 x3 0 0 3 x3 1
28 中南大学信息学院自动化系
DgXu
故有(n-1) 个状态方程:
对xl求导数且考虑式 (2.3.12),经整理有:
则式 (2.3.12) bn=0 时的动态方程为:
(2.3.16)
式中:
29 中南大学信息学院自动化系
DgXu
30 中南大学信息学院自动化系
DgXu
3)
化输入-输出描述为状态空间描述
11 中南大学信息学院自动化系
DgXu
2.3. 线性定常连续系统状态空间表达式的建立
建立状态空间表达式的方法主要有两种: 一是直接根据系统的机理建立相应的微分方程或差分方 程,继而选择有关的物理量作为状态变量,从而导出其状态 空间表达式; 二是由已知的系统其它数学模型经过转化而得到状态达 式。由于微分方程和传递函数是描述线性定常连续系统常用 的数学模型,故我们将介绍已知 n 阶系统微分方程或传递函 数时导出状态空间表达式的一般方法,以便建立统一的研究 理论,揭示系统内部固有的重要结构特性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图9-45 跟踪误差 的内模设计响应, 输入为单位阶跃响 应,初始跟踪误差 非零
2016年4月20日
跟 踪 误 差
时间(s)
19
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
其次,考虑参考输入为斜坡信号的内模 设计问题。单位斜坡参考输入信号为r(t)=t, 由下列系统生成:
0 1 r Ar xr x xr 0 0 r d r xr 1 0xr
控制系统状态空间设计
设计实例
内模控制器 自动检测系统
2016年4月20日
2
例9-43 内模控制器 在许多实际场合,状态变量反馈方法并 不是一种改善系统性能的实用方法。其主要 原因为: 其一,状态变量反馈往往要求用具有无 限带宽的PD控制器或PID控制器来实现,但 实际部件和控制器都只有有限的带宽; 其二,实际应用中通常无法测量和反馈 所有的状态变量,除了设置状态观测器以外, 实用的状态反馈综合装置只能依赖于系统的 输出、输入和少量的可测量的状态变量,从 而影响系统综合的效果。
2016年4月20日 3
内模控制器是另一类校正控制器,能以 零稳态误差渐近跟踪各类参考输入信号,如 阶跃信号、斜坡信号及正弦信号等。众所周 知,在经典控制理论中,对于阶跃输入信号, Ⅰ型系统可以实现零稳态误差跟踪。如果在 校正控制器中引入参考输入的内模,则可以 在状态空间设计法中推广这一结论。采用类 似的内模控制器方法,可以在更多的情况下 实现零稳态误差跟踪。
Y ( s)
k2
图9-43 阶跃输入的内模设计
2016年4月20日
x
10
R(s)
+
e -
k1
1 s
-
u
对象G(s)
1 s 2 2s 2
Y ( s)
k2
x
由图可见,在校正控制器中,除包含有 状态变量反馈外,还包含了参考阶跃输入的 内模(图中积分器环节),故称为内模控制 器。 下例为一个具体系统的单位阶跃输入内 模控制器的设计过程。
由于可控性矩阵 0 1 2 0 cb cAb 1 2 6 3 rank rank 2 b Ab A b 2 6 8 满秩,增广系统可控,
2016年4月20日 13
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
s (k2 2k3 2) s (k1 2k2 k3 ) s 4k1 0
3 2
s 12s 22s 20 0
3 2
令上述两个特征方程式的对应项系数相等, 解得 k1=-5,k2=7.83,k3=1.09 或者 k1=-5,k2=2.17,k3=3.91 则由式(9-419)得到内模控制律为
2016年4月20日 11
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
设有
1 0 1 (t ) x x (t ) u (t ) 2 2 2 y (t ) 1 0x (t )
要求系统输出能以零稳态误差跟踪单位 阶跃参考输入信号。
1 0 0
0 e 0 c e 0 w A z b
若系统(9-420)可控,即
0 rank 0 b
w k1
2016年4月20日
0 cb Ab
cb cAb A2 b
cAb 2 cA b n 2 A3 b
u(t ) 5 e( )d 7.83x1 (t ) 1.09 x2 (t )
0
t
相应的单位阶跃输入内模控制系统的结构图 如图9-44所示。
2016年4月20日 17
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。 1.09
r
e
5
1 s
u
2
2 1 x2 x 1 1 x1=y x
2016年4月20日 8
当增广系统可控时,即
0 cb cAb cAn2b rank n 1 2 n 1 Ab A b b Ab
总可以找到反馈信号
w(t ) k1e(t ) k2 z(t )
使该系统渐近稳定。这表明跟踪误差e(t)是 渐近稳定的,因此系统输出能以零稳态误 差跟踪参考输入信号。
(t ),w(t ) u (t ) z (t ) x (t ) Ax (t ) bu (t ) (t ) z x Az(t ) bw(t )
2016年4月20日
7
(t ) (t ) y (t ) cx e (t ) Az(t ) bw(t ) z
则式(9-414)与式(9-415)构成如下增广系统方程
0 c e 0 e w z 0 A z b
当增广系统可控时,即
0 cb cAb cAn2b rank n 1 2 n 1 Ab A b b Ab
2016年4月20日 9
w(t ) k1e(t ) k2 z(t )
对式(9-418)求积分,可得系统内部的反馈 控制信号为 t
与此对应的框图模型如图9-43所示。
R(s)
+
u(t ) k1 e( )d k2 x(t )
0
e -
k1
1 s
-
u
对象G(s)
1 s 2 2s 2
2016年4月20日
e k3 z1 z 2
14
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
0 1 0 0 e z 1 0 0 1 1 k k 1 2 0 2 2 2 z 2
其中,初始条件未知。
2016年4月20日
r (t ) d r xr (t )
5
此外,参考输入r(t)的生成系统也可以等 效为
r (t ) n1r
(n)
( n 1)
(t ) n2 r
( n2)
(t )
(t ) 0 r (t ) 1r
首先考虑参考输入r(t)为单位阶跃信号时 的内模控制器设计。此时,r(t)可由下列方程 生成:
r (t ) 0,r (t ) xr (t ) x
或等价为
2016年4月20日
(t ) 0 r
6
定义跟踪误差
e(t ) r (t ) y(t )
于是有
(t ) (t ) y (t ) cx e
现在,引入两个中间变量z(t)和w(t),其 定义为:
故有
2016年4月20日 20
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
设单输入-单输出系统的状态空间表达式为
(t ) Ax (t ) bu (t ) x
r (t ) n1r (t ) n2 r (t ) 0 r (t ) 1r
(n) ( n 1)
e k3 z1 z 2
如果要求闭环极点为s1,2=-1±j,s3=-10,则希 望特征方程为
( s 1 j )( s 1 j )( s 10) 3 2 s 12s 22s 20
0
2016年4月20日 15
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
y (t ) cx (t )
( n2)
(t )
单位斜坡参考输入信号为r(t)=t 且有 r(t ) 0,则对于单输入 单输出系统
(9 409),定义跟踪误差e r y,有
(t ) (t ) (t ) c e y x
2016年4月20日 21
0 1 0 0 e z 1 0 0 1 1k1 k 2 0 2 2 2 z 2
e k3 z1 z 2
2016年4月20日
0 e 0 c e 0 w (9-420) A z b
22
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
e 0 e 0 z 0
而实际特征方程为
1 0 s det k s k k 1 2 3 1 2k1 2(1 k 2 ) s 2 2k3 s 3 (k 2 2k3 2) s 2 (k1 2k 2 k3 ) s 4k1 0
2016年4月20日 16
2016年4月20日
12
要求系统输出能以零稳态误差跟踪单位阶跃参考输入信号。
由式(9-416) 0 c e 0 e w z 0 A z b
0 1 0 e 知增广系统方程为 0 0 1 z 0 2 2 0 e z 1 w 2
故通过状态反馈
e w k k1e k 2 z1 k3 z2 z
式中k=[k1 k2 k3],可任意配置闭环增广系统 的极点。
0 1 0 0 e z 1 0 0 1 1 k k 1 2 0 2 2 2 z 2
2016年4月20日 4
设单输入-单输出系统的状态空间表达式为
(t ) Ax (t ) bu (t ) x y (t ) cx (t )
其中,x∈Rn为状态向量,u为标量输入,y 为标量输出,A、b和c维数适当。 生成参考输入信号r(t)的线性系统为
相关文档
最新文档