高考文科数学重点题型(含解析)

合集下载

文科高考数学试卷解析

文科高考数学试卷解析

文科高考数学试卷解析
高考数学试卷解析:
一、题型和分值
1. 选择题:共8题,每题5分,总计40分。

2. 填空题:共4题,每题5分,总计20分。

3. 解答题:共6题,每题10-12分不等,总计70分。

二、考点分析
1. 选择题主要考查学生对基础知识的掌握,包括集合、函数、数列、向量等知识点。

2. 填空题涉及的知识点主要有不等式、平面几何、立体几何等。

3. 解答题则对学生的思维能力和综合运用能力提出了更高的要求,主要涉及的知识点有导数的应用、函数与方程、三角函数等。

三、考试难度分析
1. 选择题和填空题难度适中,主要考查学生对基础知识的掌握和应用。

2. 解答题难度较大,特别是最后一题,需要学生具备较强的思维能力和综合运用能力。

四、备考建议
1. 强化基础知识的学习,特别是选择题和填空题涉及的知识点。

2. 提高解题速度和准确性,特别是在选择题和填空题的解答中。

3. 加强思维训练和综合运用能力的培养,特别是对于解答题的解答。

4. 注意解题方法和技巧的掌握,如排除法、数形结合法等。

高考文科数学专题一:集合题型总结含解析

高考文科数学专题一:集合题型总结含解析

第一章 集合第一节 集合的含义、表示及基本关系练习一组1.已知A ={1, 2}, B ={}|x x A Î, 则集合A 与B 的关系为________. 解析:由集合B ={}|x x A Î知, B ={1, 2}.答案:A =B2.若{}2,|a a R x x NÆØ, 则实数a 的取值范围是________.解析:由题意知, 2x a £有解, 故0a ³.答案:0a ³3.已知集合A ={}2|21,y y x x x R =--?, 集合B ={}|28x x-#, 则集合A 与B 的关系是________.解析:y =x 2-2x -1=(x -1)2-2≥-2, ∴A ={y|y ≥-2}, ∴BA . 答案:BA4.已知全集U =R , 则正确表示集合M ={-1, 0, 1}和N ={}2|0x x x +=关系的韦恩(Venn)图是________.解析:由N={}2|0x x x +=, 得N ={-1, 0}, 则N M .答案:②5知集合A ={}|5x x >, 集合B ={}|x x a >, 若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件, 则实数a 的取值范围是________.解析:命题“x ∈A ”是命题“x ∈B ” 的充分不必要条件, ∴A B , ∴a <5. 答案:a <56.已知m ∈A , n ∈B , 且集合A ={x |x =2a , a ∈Z }, B ={x |x =2a +1, a ∈Z }, 又C ={x |x =4a +1, a ∈Z }, 判断m +n 属于哪一个集合?解:∵m ∈A , ∴设m =2a 1, a 1∈Z , 又∵n ∈B , ∴设n =2a 2+1, a 2∈Z , ∴m +n =2(a 1+a 2)+1, 而a 1+a 2∈Z , ∴m +n ∈B .练习二组1.设a , b 都是非零实数, y =a |a |+b |b |+ab |ab |可能取的值组成的集合是________. 解析:分四种情况:(1)a >0且b >0;(2)a >0且b <0;(3)a <0且b >0;(4)a <0且b <0, 讨论得y =3或y =-1.答案:{3, -1}2.已知集合A ={-1, 3, 2m -1}, 集合B ={3, m 2}.若B ⊆A , 则实数m =________. 解析:∵B ⊆A , 显然m 2≠-1且m 2≠3, 故m 2=2m -1, 即(m -1)2=0, ∴m =1.答案:1 3.设P , Q 为两个非空实数集合, 定义集合P +Q ={a +b |a ∈P , b ∈Q }, 若P ={0, 2, 5}, Q ={1, 2, 6}, 则P +Q 中元素的个数是________个.解析:依次分别取a =0, 2, 5;b =1, 2, 6, 并分别求和, 注意到集合元素的互异性, ∴P +Q ={1, 2, 6, 3, 4, 8, 7, 11}.答案:84.已知集合M ={x |x 2=1}, 集合N ={x |ax =1}, 若N M , 那么a 的值是________.解析:M ={x |x =1或x =-1}, N M , 所以N =∅时, a =0;当a ≠0时, x =1a=1或-1, ∴a =1或-1.答案:0, 1, -15.满足{1}A ⊆{1, 2, 3}的集合A 的个数是________个.解析:A 中一定有元素1, 所以A 有{1, 2}, {1, 3}, {1, 2, 3}.答案:36.已知集合A ={x |x =a +16, a ∈Z }, B ={x |x =b 2-13, b ∈Z }, C ={x |x =c 2+16, c ∈Z }, 则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4, x ∈R }, B ={x |x <a }, 则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4, 故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.设集合M ={m |m =2n , n ∈N , 且m <500}, 则M 中所有元素的和为________.解析:∵2n <500, ∴n =0, 1, 2, 3, 4, 5, 6, 7, 8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:5119.设A 是整数集的一个非空子集, 对于k ∈A , 如果k -1∉A , 且k +1∉A , 那么称k 是A 的一个“孤立元”.给定S ={1, 2, 3, 4, 5, 6, 7, 8}, 由S 的3个元素构成的所有集合中, 不含“孤立元”的集合共有________个.解析:依题可知, 由S 的3个元素构成的所有集合中, 不含“孤立元”, 这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x , xy , lg(xy )}, B ={0, |x |, y }, 且A =B , 试求x , y 的值.解:由lg(xy )知, xy >0, 故x ≠0, xy ≠0, 于是由A =B 得lg(xy )=0, xy =1.∴A ={x , 1, 0}, B ={0, |x |, 1x}. 于是必有|x |=1, 1x=x ≠1, 故x =-1, 从而y =-1.11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A , B ={x |m +1≤x ≤2m -1}, 求实数m 的取值范围;(2)若A ⊆B , B ={x |m -6≤x ≤2m -1}, 求实数m 的取值范围;(3)若A =B , B ={x |m -6≤x ≤2m -1}, 求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0}, 得A ={x |-2≤x ≤5},(1)∵B ⊆A , ∴①若B =∅, 则m +1>2m -1, 即m <2, 此时满足B ⊆A .②若B ≠∅, 则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得, m 的取值范围是(-∞, 3].(2)若A ⊆B , 则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧ m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3, 4].(3)若A =B , 则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅., 即不存在m 值使得A =B .12.已知集合A ={x |x 2-3x +2≤0}, B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集, 求a 的取值范围;(2)若B 是A 的子集, 求a 的取值范围;(3)若A =B , 求a 的取值范围.解:由x 2-3x +2≤0, 即(x -1)(x -2)≤0, 得1≤x ≤2, 故A ={x |1≤x ≤2}, 而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集, 即A B , 则此时B ={x |1≤x ≤ a }, 故a >2.(2)若B 是A 的子集, 即B ⊆A , 由数轴可知1≤a ≤2.(3)若A =B , 则必有a =2第二节 集合的基本运算练习一组1.设U =R , A ={}|0x x >, B ={}|1x x >, 则A ∩∁U B =____.解析:∁U B ={x |x ≤1}, ∴A ∩∁U B ={x |0<x ≤1}.答案:{x |0<x ≤1}2.设集合A ={4, 5, 7, 9}, B ={3, 4, 7, 8, 9}, 全集U =A ∪B , 则集合∁U (A ∩B )中的元素共有________个.解析:A ∩B ={4, 7, 9}, A ∪B ={3, 4, 5, 7, 8, 9}, ∁U (A ∩B )={3, 5, 8}.答案:33.已知集合M ={0, 1, 2}, N ={}|2,x x a a M =?, 则集合M ∩N =________.解析:由题意知, N ={0, 2, 4}, 故M ∩N ={0, 2}.答案:{0, 2}4.设A , B 是非空集合, 定义A ⓐB ={x |x ∈A ∪B 且x ∉A ∩B }, 已知A ={x |0≤x ≤2}, B ={y |y ≥0}, 则A ⓐB =________.解析:A ∪B =[0, +∞), A ∩B =[0, 2], 所以A ⓐB =(2, +∞).答案:(2, +∞)5.某班共30人, 其中15人喜爱篮球运动, 10人喜爱乒乓球运动, 8人对这两项运动都不喜爱, 则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x , 画出韦恩图得到方程15-x +x +10-x +8=30x =3, ∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.已知集合A ={x |x >1}, 集合B ={x |m ≤x ≤m +3}.(1)当m =-1时, 求A ∩B , A ∪B ;(2)若B ⊆A , 求m 的取值范围.解:(1)当1m =-时, B ={x |-1≤x ≤2}, ∴A ∩B ={x |1<x ≤2}, A ∪B ={x |x ≥-1}.(2)若B ⊆A , 则1m >, 即m 的取值范围为(1, +∞)练习二1.若集合M ={x ∈R |-3<x <1}, N ={x ∈Z |-1≤x ≤2}, 则M ∩N =________.解析:因为集合N ={-1, 0, 1, 2}, 所以M ∩N ={-1, 0}.答案:{-1, 0}2.已知全集U ={-1, 0, 1, 2}, 集合A ={-1, 2}, B ={0, 2}, 则(∁U A )∩B =________.解析:∁U A ={0, 1}, 故(∁U A )∩B ={0}.答案:{0}3.若全集U =R , 集合M ={x |-2≤x ≤2}, N ={x |x 2-3x ≤0}, 则M ∩(∁U N )=________.解析:根据已知得M ∩(∁U N )={x |-2≤x ≤2}∩{x |x <0或x >3}={x |-2≤x <0}.答案:{x |-2≤x <0}4.集合A ={3, log 2a }, B ={a , b }, 若A ∩B ={2}, 则A ∪B =________.解析:由A ∩B ={2}得log 2a =2, ∴a =4, 从而b =2, ∴A ∪B ={2, 3, 4}. 答案:{2, 3, 4}5.已知全集U =A ∪B 中有m 个元素, (∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空, 则A ∩B 的元素个数为________.解析:U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素, ∴A ∩B 中有m -n 个元素.答案:m -n6.设U ={n |n 是小于9的正整数}, A ={n ∈U |n 是奇数}, B ={n ∈U |n是3的倍数}, 则∁U (A ∪B )=________.解析:U ={1, 2, 3, 4, 5, 6, 7, 8}, A ={1, 3, 5, 7}, B ={3, 6}, ∴A ∪B ={1, 3, 5, 6, 7},得∁U (A ∪B )={2, 4, 8}.答案:{2, 4, 8}7.定义A ⊗B ={z |z =xy +x y, x ∈A , y ∈B }.设集合A ={0, 2}, B ={1, 2}, C ={1}, 则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0, 4, 5, 则(A ⊗B )⊗C 中所含的元素有0, 8, 10, 故所有元素之和为18.答案:188.若集合{(x , y )|x +y -2=0且x -2y +4=0}{(x , y )|y =3x +b }, 则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0, 2)在y =3x +b 上, ∴b =2.9.设全集I ={2, 3, a 2+2a -3}, A ={2, |a +1|}, ∁I A ={5}, M ={x |x =log 2|a |}, 则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I , ∴{2, 3, a 2+2a -3}={2, 5, |a +1|}, ∴|a +1|=3, 且a 2+2a -3=5, 解得a =-4或a =2, ∴M ={log 22, log 2|-4|}={1, 2}.答案:∅, {1}, {2}, {1, 2}10.设集合A ={x |x 2-3x +2=0}, B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A∩B={2},求实数a的值;(1)若A=∅,求实数a的取值范围;(2)若A是单元素集,求a的值及集合A;11.已知函数f(x)=6x+1-1的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B.(1)当m=3时,求A∩(∁R B);(2)若A∩B={x|-1<x<4},求实数m的值.解:A={x|-1<x≤5}.(1)当m=3时,B={x|-1<x<3},则∁R B={x|x≤-1或x≥3},∴A∩(∁R B)={x|3≤x≤5}.(2)∵A={x|-1<x≤5},A∩B={x|-1<x<4},∴有-42+2×4+m=0,解得m=8,此时B={x|-2<x<4},符合题意.。

2023年高考数学(全国甲卷)文科数学(含答案及详细解析)

2023年高考数学(全国甲卷)文科数学(含答案及详细解析)

2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。

高考文科数学热点题型02 命题及其关系、充分条件与必要条件

高考文科数学热点题型02 命题及其关系、充分条件与必要条件

1.若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的( ) A .必要不充分条件 B .充要条件 C .充分不必要条件 D .既不充分也不必要条件解析:f (x )在R 上为奇函数⇒f (0)=0;f (0)=0/⇒ f (x )在R 上为奇函数,如f (x )=x 2,故选A.答案:A2.下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2D .a 3>b 3解析:由a >b +1,得a >b +1>b ,即a >b ,而由a >b 不能得出a >b +1,因此,使a >b 成立的充分不必要条件是a >b +1,选A.答案:A3.“(m -1)(a -1)>0”是“log a m >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:B4.若集合A ={x |x 2-5x +4<0},B ={x ||x -a |<1},则“a ∈(2,3)”是“B ⊆A ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:由题意知A ={x |1<x <4},B ={x |-1+a <x <1+a },若B ⊆A ,则-1+a≥1,1+a≤4,解得2≤a ≤3,所以必要性不成立.反之,若2<a <3,则必有B ⊆A 成立,所以充分性成立,故选A.答案:A5.设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故选B.答案:B6.已知p :x ≥k ,q :x +13<1,若p 是q 的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1]解析:∵q :x +13<1,∴x +13-1<0,∴x +12-x<0. ∴(x -2)·(x +1)>0,∴x <-1或x >2.因为p 是q 的充分不必要条件,所以k >2,故选B. 答案:B7.已知a ,b 为非零向量,则“函数f (x )=(ax +b )2为偶函数”是“a ⊥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:C8.“若a ,b ∈R +,a 2+b 2<1”是“ab +1>a +b ”的( ) A .充要条件 B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件解析:a ,b ∈R +,若a 2+b 2<1,则a 2+2ab +b 2<1+2ab <1+2ab +(ab )2,即(a +b )2<(1+ab )2,所以a +b <1+ab 成立;当a =b =2时,有1+ab >a +b 成立,但a 2+b 2<1不成立,所以“a 2+b 2<1”是“ab +1>a +b ”的充分不必要条件,故选C.答案:C9.在△ABC 中,设p :sinB a =sinC b =sinA c;q :△ABC 是正三角形,那么p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:C10.以下四个命题中,真命题的个数是( )①“若a+b≥2,则a,b中至少有一个不小于1”的逆命题.②存在正实数a,b,使得lg(a+b)=lg a+lg b.③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”.④在△ABC中,∠A<∠B是sin A<sin B的充分不必要条件.A.0 B.1C.2 D.3解析:对于①,原命题的逆命题为:若a,b中至少有一个不小于1,则a+b≥2,而a=2,b=-2满足a,b中至少有一个不小于1,但此时a+b=0,故①是假命题;对于②,根据对数的运算性质,知当a=b=2时,lg(a+b)=lg a+lg b,故②是真命题;对于③,易知“所有奇数都是素数”的否定就是“至少有一个奇数不是素数”,③是真命题;对于④,根据题意,结合边角的转换,以及正弦定理,可知∠A<∠B⇔a<b(a,b为角A,B所对的边)⇔2R sin A<2R sin B(R 为△ABC外接圆的半径)⇔sin A<sin B,故∠A<∠B是sin A<sin B的充要条件,故④是假命题.选C.答案:C11.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,假命题的个数为( )A .1B .2C .3D .4 答案:B解析:原命题为真命题,从而其逆否命题也为真命题;逆命题“若a>-6,则a>-3”为假命题,故否命题也为假命题,故选B.12.命题“若x 2+y 2=0,则x =y =0”的否命题是( ) A .若x 2+y 2=0,则x ,y 中至少有一个不为0 B .若x 2+y 2≠0,则x ,y 中至少有一个不为0 C .若x 2+y 2≠0,则x ,y 都不为0 D .若x 2+y 2=0,则x ,y 都不为0 答案:B解析:否命题既否定条件又否定结论.13.若命题p 的否命题是命题q 的逆否命题,则命题p 是命题q 的( ) A .逆命题 B .否命题C .逆否命题D .p 与q 是同一命题 答案:A解析:设p :若A ,则B ,则p 的否命题为若綈A ,则綈B ,从而命题q 为若B ,则A ,则命题p 是命题q 的逆命题,故选A.14.下列命题中为真命题的是( )A .命题“若x>y ,则x>|y|”的逆命题B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a>b ,则a 1<b 1”的逆否命题答案:A15.A ,B ,C 三个学生参加了一次考试,A ,B 的得分均为70分,C 的得分为65分.已知命题p :若及格分低于70分,则A ,B ,C 都没有及格.在下列四个命题中,为p 的逆否命题的是( )A .若及格分不低于70分,则A ,B ,C 都及格 B .若A ,B ,C 都及格,则及格分不低于70分C .若A ,B ,C 至少有一人及格,则及格分不低于70分D .若A ,B ,C 至少有一人及格,则及格分高于70分 答案:C解析:根据原命题与它的逆否命题之间的关系,命题p :“若及格分低于70分,则A ,B ,C 都没有及格”的逆否命题是“若A ,B ,C 至少有一人及格,则及格分不低于70分”.故选C.16. “x 1>1”是“e x -1<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案:A解析:∵x 1>1,∴x ∈(0,1).∵e x -1<1,∴x<1. ∴“x 1>1”是“e x -1<1”的充分不必要条件.17.在△ABC 中,“sinB =1”是“△ABC 为直角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案:A18.若“x>1”是“不等式2x>a -x 成立”的必要而不充分条件,则实数a 的取值范围是( ) A .a>3 B .a<3 C .a>4 D .a<4答案:A解析:若2x>a -x ,即2x+x>a.设f(x)=2x+x ,则函数f(x)为增函数.由题意知“2x+x>a 成立,即f(x)>a 成立”能得到“x>1”,反之不成立.因为当x>1时,f(x)>3,∴a>3.19.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:p ⇒q ,而q p ,∴选A.20.若不等式31<x<21的必要不充分条件是|x -m|<1,则实数m 的取值范围是( ) A .[-34,21] B .[-21,34] C .(-∞,21) D .(34,+∞) 答案:B解析:由|x -m|<1,解得m -1<x<m +1.因为不等式31<x<21的必要不充分条件是|x -m|<1,所以≤m +1,1且等号不能同时取得,解得-21≤m ≤34,故选B.21.已知函数f(x)=x 2-2x +3,g(x)=kx -1,则“|k|≤1”是“f(x)≥g(x)在R 上恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A22.已知集合A ={x|a -2<x<a +2},B ={x|x ≤-2或x ≥4},则A ∩B =∅的充要条件是________.答案:0≤a ≤2解析:A ∩B =∅⇔a -2≥-2a +2≤4,⇔0≤a ≤2.23.如果对于任意实数x ,〈x 〉表示不小于x 的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x -y |<1”是“〈x 〉=〈y 〉”的________条件.解析:可举例子,比如x =-0.5,y =-1.4,可得〈x 〉=0,〈y 〉=-1;比如x =1.1,y =1.5,〈x 〉=〈y 〉=2,|x -y |<1成立.因此“|x -y |<1”是“〈x 〉=〈y 〉”的必要不充分条件.答案:必要不充分24.集合A =<0x -1,B ={x ||x -b |<a }.若“a =1”是“A ∩B ≠∅”的充分条件,则实数b 的取值范围是________.答案:(-2,2)25.已知A 为xOy 平面内的一个区域. 命题甲:点(a ,b )∈{(x ,y )|3x +y -6≤0x≥0,}; 命题乙:点(a ,b )∈A .如果甲是乙的充分条件,那么区域A 的面积的最小值是________.解析:设3x +y -6≤0x≥0,所对应的区域如右图所示的阴影部分PMN 为集合B .由题意,甲是乙的充分条件,则B ⊆A ,所以区域A 面积的最小值为S △PMN =21×4×1=2.答案:226.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程m -1x2+2-m y2=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,则a 的取值范围是________.解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a , 即命题p :3a <m <4a ,a >0.由m -1x2+2-m y2=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0, 解得1<m <23,即命题q :1<m <23. 因为p 是q 的充分不必要条件,所以 23或,3解得31≤a ≤83,所以实数a 的取值范围是[31,83]. 答案:[31,83]。

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。

高考文科数学重点题型(含解析)(优选.)

高考文科数学重点题型(含解析)(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改高考最有可能考的50题(数学文课标版)(30道选择题+20道非选择题)一.选择题(30道)1.集合}032|{2<--=x x x M ,{|220}N x x =->,则N M 等于 A .(1,1)- B .(1,3) C .(0,1) D .(1,0)-2.知全集U=R ,集合}{|A x y ==,集合{|0B x =<x <2},则()U C A B ⋃=A .[1,)+∞B .()1+∞,C .[0)∞,+D .()0∞,+3.设a 是实数,且112a ii +++是实数,则a = A.1 B.12 C.32D.24. i 是虚数单位,复数1i z =-,则22z z+= A .1i -- B .1i -+ C .1i +D .1i -5. “a=-1”是“直线2a x y 60-+=与直线4x (a 3)y 90--+=互相垂直”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 C.既不充分也不必要条件6.已知命题p :“βαsin sin =,且βαcos cos =”,命题q :“βα=”。

则命题p 是命题q 的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分与不必要条件7.已知a R ∈,则“2a >”是“22a a >”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既非充分也非必要条件8.执行如图所示的程序框图,若输出的结果是9,则判断框内m 的取值范围是 (A )(42,56] (B )(56,72] (C )(72,90] (D )(42,90)9.如图所示的程序框图,若输出的S 是30,则①可以为 A .?2≤n B .?3≤n C .?4≤n D .?5≤n10.在直角坐标平面内,已知函数()log (2)3(0a f x x a =++>且1)a ≠的图像恒过定点P ,若角θ的终边过点P ,则2cos sin 2θθ+的值等于( )A .12-B .12 C. 710 D .710-11.已知点M ,N 是曲线x y πsin =与曲线x y πcos =的两个不同的交点,则|MN|的最小值为( ) A .1 B .2 C .3D .212.如图所示为函数()()2sin f x x ωϕ=+(0,0ωϕπ>≤≤)的部分图像,其中,A B 两点之间的距离为5,那么()1f -=( ) A .2 B 3C .3- D .2-xy O22-AB13.设向量a 、b 满足:1=a ,2=b ,()0⋅-=a a b ,则a 与b 的夹角是( )A .30︒B .60︒C .90︒D .120︒14.如图,D 、E 、F 分别是ABC ∆的边AB 、BC 、CA 的中点,则AF DB -=( )DA .FDB .FCC .FED .BE15.一个体积为123的正三棱柱的三视图如图所示, 则该三棱柱的侧视图的面积为( ) (A )6 3 (B )8 (C )8 3 (D )1216.,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==则该球的体积为( )A .323πB . 48πC . 643πD . 163π17. A a x a x x A ∉⎭⎬⎫⎩⎨⎧<+-=1,0若已知集合,则实数a 取值范围为( )A ),1[)1,(+∞⋃--∞B [-1,1]C ),1[]1,(+∞⋃--∞D (-1,1]18.设233yx M +=,()xyyx P N 3,3==+(其中y x <<0),则,,M N P 大小关系为( )A .P N M << B .M P N <<C .N M P <<D .M N P <<19.若a 是从集合{0,1,2,3}中随机抽取的一个数,b 是从集合{0,1,2}中随机抽取的一个数,则关于x 的方程2220x ax b ++=有实根的概率是( )A .56B .23C .712D .3420.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( )(注:标准差222121[()()()]n s x x x x x x n=-+-++-,其中x 为12,,,n x x x 的平均数)(A )12x x >,12s s > (B )12x x >,12s s < (C )12x x <,12s s < (D )12x x <,12s s >21.设S n 是等差数列{}n a 的前n 项和,若 45710,15,21S S S ≥≤≥,则7a 的取值区间为( )A. ,7]-∞(B. [3,4]C. [4,7]D. [3,7]22.若等比数列}{n a 的前n 项和23-⋅=nn a S ,则=2aA.4B.12C.24D.3623.抛物线y 2=2px (p >0)的焦点为F ,点A 、B 在此抛物线上,且∠AFB =90°,弦AB的中点M 在其准线上的射影为M ′,则|MM ′||AB |的最大值为( )(A )22 (B )32(C )1 (D ) 324.已知双曲线1222=-y x 的焦点为21,F F ,点M 在双曲线上,且120MF MF ⋅=,则点M 到x 轴的距离为( )A .3B .332 C .34D .3525.若直线2x y -=被22:()4C x a y -+=所截得的弦长为,则实数a 的值为( )A.1-B.1或3C.2-或6D.0或426.设函数21()8(0)()3(0)1x x f x x x x -<=≥⎧⎪⎨⎪+-⎩,若f (a )>1,则实数a 的取值范围是( )A.(2,1)-B.(,2)-∞-∪(1,)+∞C.(1,+∞)D.(,1)-∞-∪(0,+∞)27.定义在R 上的函数(1)y f x =-的图像关于(1,0)对称,且当(),0x ∈-∞时,()()0f x xf x '+<(其中()f x '是()f x 的导函数),若()()()()0.30.333,log 3log 3,a f b f ππ=⋅=⋅3311log log 99c f ⎛⎫⎛⎫=⋅⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( )A. a b c >>B. c b a >>C. c a b >>D. a c b >>28.曲线2xy e x =+在点(0,1)处的切线方程为( )A .1y x =+B .1y x =-C .31y x =+D .1y x =-+29.函数sin xy x=,()(),00,x ππ∈-的图像可能是下列图像中的( )A .B .C .D .30.设()f x 在区间(,)-∞+∞可导,其导数为'()f x ,给出下列四组条件( ) ①()p f x :是奇函数,':()q f x 是偶函数②()p f x :是以T 为周期的函数,':()q f x 是以T 为周期的函数③()p f x :在区间(,)-∞+∞上为增函数,':()0q f x >在(,)-∞+∞恒成立④()p f x :在0x 处取得极值,'0:()0q f x =A .①②③B .①②④C .①③④D .②③④二.填空题(8道)31.已知一组抛物线211,2y ax bx =++其中a 为2、4中任取的一个数,b 为1、3、5中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x=l 交点处的切线相互平行的概 率是 。

高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。

题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。

这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。

题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。

这类题目需要熟练掌握各种诱导公式,以及灵活应用。

题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。

需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。

题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。

需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。

题型五:三角函数的周期性这类题目要求确定三角函数的周期。

需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。

题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。

需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。

题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。

需要掌握各种三角函数的恒等式,以及灵活应用。

2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。

2023年高考真题及答案解析《数学文》(全国乙卷)

2023年高考真题及答案解析《数学文》(全国乙卷)

A .24B .264.在ABC 中,内角,,A B C 的对边分别是()A .10πB .5π5.已知e ()e 1xax x f x =-是偶函数,则a(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥-P 20.已知函数()(1ln 1f x a x ⎛⎫=++ ⎪⎝⎭(1)当1a =-时,求曲线()y f x =在点(2)若函数()f x 在()0,∞+单调递增,求21.已知椭圆2222:1(C b b x a a y +>=(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线线段MN 的中点为定点.【选修4-4】(10分)该几何体的表面积和原来的长方体的表面积相比少7.C【分析】根据题意分析区域的几何意义,结合几何概型运算求解【详解】因为区域(){}22,|14x y x y ≤+≤表示以的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,结合对称性可得所求概率π2142π4P ⨯==.故选:C.8.B【分析】写出2()3f x x a '=+,并求出极值点,转化为极大值大于【详解】3()2f x x ax =++,则f '若()f x 要存在3个零点,则()f x 令2()30f x x a '=+=,解得x =-且当,,33a ax ⎛⎫⎛⎫--∈-∞-+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 当,33a a x ⎛⎫--∈- ⎪ ⎪⎝⎭,()0f x '<,故()f x 的极大值为3f a ⎛⎫⎪ ⎪-⎭-⎝,极小值为若()f x 要存在3个零点,则f f ⎧⎛-⎪ ⎪⎝⎨⎛⎪ ⎪ ⎝⎩故选:B.9.A【分析】根据古典概率模型求出所有情况以及满足题意得情况,即可得到概率【详解】甲有6种选择,乙也有6若甲、乙抽到的主题不同,则共有则其概率为305366=,故选:A.16.2【分析】先用正弦定理求底面外接圆半径,再结合直棱柱的外接球以及求的性质运算求解【详解】如图,将三棱锥S ABC -转化为直三棱柱设ABC 的外接圆圆心为1O ,半径为r ,则3223sin 32AB r ACB ===∠,可得3r =,设三棱锥S ABC -的外接球球心为O ,连接OA 因为22211OA OO O A =+,即21434SA =+,解得故答案为:2.【点睛】方法点睛:多面体与球切、接问题的求解方法(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点或线作截面,把空间问题转化为平面问题求解;来源:高三答案公众号(2)若球面上四点P 、A 、B 、C 构成的三条线段b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,根据61=3320.(1)()ln 2ln 20x y +-=;(2)1|2a a ⎧⎫≥⎨⎬⎩⎭.【分析】(1)由题意首先求得导函数的解析式,点坐标,最后求解切线方程即可;(2)原问题即()0f x '≥在区间(0,()()()21ln 10g x ax x x x =+-++≥【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,些变量)无关;也可令系数等于零,得出定值;(3)得出结论.22.(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),022,-∞+∞-;23.(1)[2,2](2)6.【分析】(1)分段去绝对值符号求解不等式作答(2)作出不等式组表示的平面区域,再求出面积作答由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -所以ABC 的面积12ABC S =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考最有可能考的50题(数学文课标版)(30道选择题+20道非选择题)一.选择题(30道)1.集合}032|{2<--=x x x M ,{|220}N x x =->,则N M 等于 A .(1,1)- B .(1,3) C .(0,1) D .(1,0)-2.知全集U=R ,集合}{|A x y ==,集合{|0B x =<x <2},则()U C A B ⋃=A .[1,)+∞B .()1+∞,C .[0)∞,+D .()0∞,+3.设a 是实数,且112a ii +++是实数,则a = A.1 B.12 C.32D.24. i 是虚数单位,复数1i z =-,则22z z+= A .1i -- B .1i -+ C .1i +D .1i -5. “a=-1”是“直线2a x y 60-+=与直线4x (a 3)y 90--+=互相垂直”的 A.充分不必要条件 B.必要不充分条件C.充要条件 C.既不充分也不必要条件6.已知命题p :“βαsin sin =,且βαcos cos =”,命题q :“βα=”。

则命题p 是命题q 的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分与不必要条件7.已知a R ∈,则“2a >”是“22a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件8.执行如图所示的程序框图,若输出的结果是9,则判断框内m 的取值范围是 (A )(42,56] (B )(56,72] (C )(72,90] (D )(42,90)9.如图所示的程序框图,若输出的S 是30,则①可以为 A .?2≤n B .?3≤n C .?4≤n D .?5≤n10.在直角坐标平面内,已知函数()log (2)3(0a f x x a =++>且1)a ≠的图像恒过定点P ,若角θ的终边过点P ,则2cos sin 2θθ+的值等于( ) A .12- B .12 C. 710 D .710-11.已知点M ,N 是曲线x y πsin =与曲线x y πcos =的两个不同的交点,则|MN|的最小值为( ) A .1 B .2 C .3D .212.如图所示为函数()()2sin f x x ωϕ=+(0,0ωϕπ>≤≤)的部分图像,其中,A B 两点之间的距离为5,那么()1f -=( )xy O22-ABA .2B .3C .3-D .2-13.设向量a 、b 满足:1=a ,2=b ,()0⋅-=a a b ,则a 与b 的夹角是( )A .30︒B .60︒C .90︒D .120︒14.如图,D 、E 、F 分别是ABC ∆的边AB 、BC 、CA 的中点,则AF DB -=( )D A .FDB .FCC .FED .BE15.一个体积为123的正三棱柱的三视图如图所示, 则该三棱柱的侧视图的面积为( ) (A )6 3 (B )8 (C )8 3 (D )1216.,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==则该球的体积为( )A .323πB . 48πC . 643πD . 163π17. A a x a x xA ∉⎭⎬⎫⎩⎨⎧<+-=1,0若已知集合,则实数a 取值范围为( ) A ),1[)1,(+∞⋃--∞ B [-1,1] C ),1[]1,(+∞⋃--∞ D (-1,1]18.设233yx M +=,()xyyx P N 3,3==+(其中y x <<0),则,,M N P 大小关系为( )A .P N M <<B .M P N <<C .N M P <<D .M N P <<19.若a 是从集合{0,1,2,3}中随机抽取的一个数,b 是从集合{0,1,2}中随机抽取的一个数,则关于x 的方程2220x ax b ++=有实根的概率是 ( )A .56B .23C .712 D .3420.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( ) (注:标准差222121[()()()]n s x x x x x x n=-+-++-,其中x 为12,,,n x x x 的平均数)(A )12x x >,12s s > (B )12x x >,12s s < (C )12x x <,12s s < (D )12x x <,12s s >21.设S n 是等差数列{}n a 的前n 项和,若 45710,15,21S S S ≥≤≥,则7a 的取值区间为( ) A. ,7]-∞( B. [3,4] C. [4,7] D. [3,7]22.若等比数列}{n a 的前n 项和23-⋅=nn a S ,则=2aA.4B.12C.24D.3623.抛物线y 2=2px (p >0)的焦点为F ,点A 、B 在此抛物线上,且∠AFB =90°,弦AB 的中点M 在其准线上的射影为M ′,则|MM ′||AB |的最大值为( )(A )22 (B )32(C )1 (D ) 324.已知双曲线1222=-y x 的焦点为21,F F ,点M 在双曲线上,且120MF MF ⋅=,则点M 到x 轴的距离为( )A .3B .332 C .34 D .3525.若直线2x y -=被22:()4Cx a y -+=所截得的弦长为则实数a的值为( )A.1-B.1或3C.2-或6D.0或426.设函数21()8(0)()3(0)1x x f x x x x -<=≥⎧⎪⎨⎪+-⎩,若f (a )>1,则实数a 的取值范围是( )A.(2,1)-B.(,2)-∞-∪(1,)+∞C.(1,+∞)D.(,1)-∞-∪(0,+∞)27.定义在错误!未找到引用源。

上的函数错误!未找到引用源。

的图像关于错误!未找到引用源。

对称,且当错误!未找到引用源。

时,错误!未找到引用源。

(其中错误!未找到引用源。

是错误!未找到引用源。

的导函数),若错误!未找到引用源。

错误!未找到引用源。

,则错误!未找到引用源。

的大小关系是( )A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

28.曲线2xy e x =+在点(0,1)处的切线方程为( )A .1y x =+B .1y x =-C .31y x =+D .1y x =-+29.函数sin xy x=,()(),00,x ππ∈-的图像可能是下列图像中的( )A .B .C .D .30.设()f x 在区间(,)-∞+∞可导,其导数为'()f x ,给出下列四组条件( )①()p f x :是奇函数,':()q f x 是偶函数②()p f x :是以T 为周期的函数,':()q f x 是以T 为周期的函数③()p f x :在区间(,)-∞+∞上为增函数,':()0q f x >在(,)-∞+∞恒成立④()p f x :在0x 处取得极值,'0:()0q f x =A .①②③ B.①②④ C.①③④ D.②③④二.填空题(8道)31.已知一组抛物线211,2y ax bx =++其中a 为2、4中任取的一个数,b 为1、3、5中任 取的一个数,从这些抛物线中任意抽取两条,它们在与直线x=l 交点处的切线相互平行的概 率是 。

32.已知双曲线的两条渐近线均和圆C :x 2+y 2-6x+5=0相切,且双曲线的右焦点为抛物线x y 122=的焦点,则该双曲线的标准方程为 .33.一个几何体的三视图如图所示,则这个几何体的表面积与其外接球面积之比为________.34.函数f (x )=x 3+ax (x ∈R )在x =l 处有极值,则曲线y = f (x )在原点处的切线方程是_____35.△ABC 中,若∠A、∠B、∠C 所对的边a ,b ,c 均成等差数列,△ABC的面积为正视图侧视图俯视图那么b= 。

36.若⎩⎨⎧≥≤||1x y y ,则y x 3+的最大值是_________.37.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注 射疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注 射了疫苗的鸡的数量平均为 万只。

38.记123k k k k k S n =+++⋅⋅⋅+, 当123k =⋅⋅⋅, , , 时,观察下列等式:211122S n n =+, 322111326S n n n =++, 4323111424S n n n =++, 5434111152330S n n n n =++-, 6542515212S An n n Bn =+++,⋅⋅⋅ 可以推测,A B -= .三.解答题(12道)39.已知函数.(1)求函数的最小值和最小正周期; (2)设的内角的对边分别为且,,若,求的值.40.已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列.(1)求数列{a n }的通项公式; (2)设T n 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,若T n ≤λa n +1对∀n ∈N *恒成立,求实数λ的最小值.41.衡阳市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为113.⑴请完成上面的列联表;⑵根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”; ⑶若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:))()()(()(22d b c a dc b a bc ad n K ++++-=.42.某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.43.如图四棱锥P ABCD -中,底面ABCD 是平行四边形,090ACB ∠=,PA ⊥平面ABCD ,1PA BC ==,AB =F 是BC 的中点.(Ⅰ)求证:DA ⊥平面PAC ;(Ⅱ)试在线段PD 上确定一点G ,使CG ∥平面PAF ,并求三棱锥A -CDG 的体积.44.已知椭圆C 的方程为:()222102x y a a +=>,其焦点在x 轴上,离心率2e =.(1)求该椭圆的标准方程;(2)设动点()00,P x y 满足2OP OM ON =+,其中M ,N 是椭圆C 上的点,直线OM 与ON 的斜率之积为12-,求证:22002x y +为定值. (3)在(2)的条件下,问:是否存在两个定点,A B ,使得PA PB +为定值?若存在,给出证明;若不存在,请说明理由.ADCFPB(第45题)45.本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力:如图,在平面直角坐标系xOy 中,抛物线的顶点在原点,焦点为F (1,0).过抛物线在x 轴上方的不同两点A 、B 作抛物线的切线AC 、BD ,与x 轴分别交于C 、D 两点,且AC 与BD 交于点M ,直线AD 与直线BC 交于点N .(1)求抛物线的标准方程; (2)求证:MN ⊥x 轴;(3)若直线MN 与x 轴的交点恰为F (1,0) 求证:直线AB 过定点.46.已知2()ln ,()3f x x x g x x ax ==-+-. (1) 求函数()f x 在[,2](0)t t t +>上的最小值;(2) 对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,求实数a 的取值范围; (3) 证明:对一切(0,)x ∈+∞,都有12ln x x e ex>-成立.47.已知函数()x e af x x-=,()ln g x a x a =+(1)1a =时,求()()()F x f x g x =-的单调区间;(2)若1x >时,函数()y f x =的图象总在函数()y g x =的图像的上方,求实数a 的取值范围.48.如图,⊙O 1与⊙O 2相交于A 、B 两点,过点A 作⊙O 1的切线交⊙O 2于点C ,过点B 作两圆的割线,分别交⊙O 1、⊙O 2于点D 、E ,DE 与AC 相交于点P . (1)求证:AD//EC ;(2)若AD 是⊙O 2的切线,且PA=6,PC =2,BD =9,求AD 的长。

相关文档
最新文档