山大2017春季班期末考试 线性代数二(答案)

合集下载

【大学资料】线性代数期末习题库及答案

【大学资料】线性代数期末习题库及答案

� 则 �r 为秩的 A 阵矩数系 �m 为数个程方 �n 为数个量知未中 B=XA 组程方性线次齐非 �7� 。解零非有 0=XA 则�解个多穷无有 B=XA 若�D� �解零有仅 0=XA 则�解个多穷无有 B=XA 若�C� �解多穷无有 B=XA 则�解零非有 0=XA 若�B� �解一唯有 B=XA 则�解零有仅 0=XA 若�A� � � �是的确正论结
L L L L L
0 L 1 0 0
0 L 1 1 0
0 L 0 = nD 1 1
、9
1 0 L 1 1 1
L L L L L L
1 1 L 0 1 1
1 1 L 1 0 1
1 1 L 1 1 0
=
n
a −1 1− a a −1
D 、8 � =
0 1−
0 0
0 0
0 1 L ?= 1 1 1
0 0 0
能不 2β量向而�示表性线 3α�2α�1α由可 1β量向�关无性线 3α�2α�1α组量向设�11�
T T
�6�5�4�3�c+T�4�3�2�1� �D�T�5�4�3�2�c+T�4�3�2�1� �C� �A� �3�2�1�0�c+T�4�3�2�1� �B�T�1�1�1�1�c+T�4�3�2�1� � �=X 解通的
0 λ− L 0 0 L L L L L 0 0 0 0 L L 1 λ− 0 1
01 01 1− 1 1− 1+ χ 0 1− 1 1− χ 1 L = 01D � = = 4D 、3 、4 1− 1 + χ 1− 1 0 1− χ 1 1− 1
λ−
k 1 1 1 �= 1 k 1 1 1 1 k 1 1 1 1 k = 4D 、2

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

《线性代数》期末考试题及详细答案(本科试卷二)

《线性代数》期末考试题及详细答案(本科试卷二)

XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科试卷二)一、填空题(将正确答案填在题中横线上。

每小题2分,共10分);1. 若02215131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分);1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组sa a a ,,, 21课程代码:适用班级:命题教师:任课教师:线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0100100000010010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分);1. 设A 为n 阶矩阵,且2=A ,则=TA A ( )。

① n2;② 12-n ; ③ 12+n ; ④ 4;2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。

① s ααα,,, 21中任意两个向量都线性无关;② s ααα,,, 21中存在一个向量不能用其余向量线性表示; ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示; ④ s ααα,,, 21中不含零向量;3. 下列命题中正确的是( )。

山西师大高等代数2017-2018(1)期末试题_pdf

山西师大高等代数2017-2018(1)期末试题_pdf

院系:_____________专业:_______________班级:_________学号:___________姓名:_____________山西师范大学2017——2018学年第一学期期末考试试题(卷)密封线密封线以内不准作任何标记密封线山西师范大学期末考试试题(卷)2017—2018学年第一学期院系:数计学院专业:数学与应用数学信息与计算科学考试科目:高等代数1题号一二三四五六七八总分分数评卷人复查人一.判断题(每小题2分,共20分)1.设F 是至少包含两个数的数集,若F 中任两数的差和商(除数不为零)仍属于F ,则F 为数域.()2.若齐次线性方程组有一个非零解,则它有无穷多个解.()3.设A 为一个m n ⨯矩阵且()R A m n =<,则A 的任意一个m 级子式均不为0.()4.秩相等的两个向量组等价.()5.如果矩阵A 与B 等价,那么A 与B 的行向量组等价()6.对称矩阵的乘积未必为对称矩阵.()7.若一个复多项式有重因式,则这个复多项式一定有重根.()8.若矩阵A 的所有行向量组线性无关,则A 为满秩矩阵.()9.若n 维向量组12,,,s αααL 线性无关,则n 维向量组121,,,,,s s m ααααα+L L 也线性无关()10.矩阵的初等变换不改变矩阵的秩.()二.填空题(每空3分,共15分).1.设A 为3级方阵且||3A =,则||A *=().2.设行列式31243333,00212412D =则其第三行各元代数余子式的和为().3.设102123,014A ⎛⎫ ⎪= ⎪ ⎪⎝⎭则A 可以写成一个对称矩阵()与一个反对称矩阵()的和.4.设向量组123(,0,),(,,0),(0,,),a c b c a b ααα===线性无关,则,,a b c 必须满足关系式().三.选择题(每小题3分,共15分)1.下列矩阵不是初等矩阵的是()A.100001010⎛⎫ ⎪ ⎪ ⎪⎝⎭B.100010004⎛⎫ ⎪ ⎪ ⎪⎝⎭C.140001010⎛⎫ ⎪ ⎪ ⎪⎝⎭D.140010001⎛⎫ ⎪ ⎪ ⎪⎝⎭2.若n 级矩阵A 的秩为()43≥-n n ,则A 的伴随矩阵*A 的秩为()A 2-nB 0C1D 不确定3.要使()11,0,2ξ'=,()20,1,1ξ'=-都是线性方程组0Ax =的解,只要系数矩阵A 为()A.201011-⎛⎫ ⎪⎝⎭; B.()2,1,1-;C.102011-⎛⎫⎪-⎝⎭; D.011422011-⎛⎫ ⎪-- ⎪ ⎪⎝⎭4.设,,A B C 都是n 级方阵.若,B E AB C A CA =+=+,则B C -=()A.EB.E- C.AD.A-5.若向量组,,αβγ线性无关,,,αβδ线性相关,则()A.α必可由,,βγδ线性表出;B.β必不可由,,βγδ线性表出;C.δ必可由,,αβγ线性表出;D.δ必不可由,,αβγ线性表出;四.计算题(共30分)1.(7分)已知11(1,2,3),(1,,),23αβ==设,TA αβ=计算nA .2.计算(8分)设211024141,426112A B -⎛⎫⎛⎫ ⎪=--= ⎪ ⎪-⎝⎭ ⎪-⎝⎭.若,XA B X =+求矩阵.X 3.讨论下列方程组,当λ取何值时,方程组无解,有唯一解,有无穷多个解?并在有无穷多个解的情况下用其导出组的基础解系表示出其全部解.(15分)12312331231x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩五.证明题(每小题10分,共20分)1.设12,,,t ηηηL 是某一非齐次线性方程组的解,证明:1122t t μημημη+++L 也是该非齐次线性方程组的一个解的充要条件是121t μμμ+++=L 。

线性代数期末考试试卷+答案

线性代数期末考试试卷+答案

×××大学线性代数期末考试题、填空题(将正确答案填在题中横线上。

每小题 2分,共10分)1 -3 1P X IX 2 X 3 =02 .若齐次线性方程组 J x 1+χx 2+x 3=0只有零解,则 扎应满足X 1亠 X 2亠 X 3= 05. n 阶方阵 A 满足 A 2-3A-E = 0 ,贝U A J = _____________________ 。

、判断正误(正确的在括号内填“√”,错误的在括号内填“X” 。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则D 0。

()2. 零向量一定可以表示成任意一组向量的线性组合。

()3. 向量组a 1, a 2,…,a m中,如果a 1与a m对应的分量成比例,则向量组 a 1, a 2,…,a s线性相关。

■为可逆矩阵A 的特征值,贝U A J 的特征值为’。

()若三、单项选择题(每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题1.设A 为n 阶矩阵,且A = 2 ,则I AA T =( )。

①2n②2n'③2n1④42. n 维向量组:∙1,:-2, , :■ S ( 3 < S < n )线性无关的充要条件是()。

-0 11 0 0 0 0 04. A =0 0 0 10 1 0①:'1, :'2 ,':'S 中任意两个向量都线性无关②>1,-::S 中存在一个向量不能用其余向量线性表示③:'1, -'2 ,-■ S中任一个向量都不能用其余向量线性表示1.若0 5 -12x =0,则= —23•已知矩阵A ,B ,C = (C ij )s n ,满足AC =CB ,则A 与B 分别是 _____________ 阶矩阵。

a124 .矩阵 A= a21a 22的行向量组线性31a32丿2分,共10分)11,贝U A A =A 。

2017线性代数试题及答案

2017线性代数试题及答案

(试卷一)一、 填空题(本题总计20分,每小题2分)1. 排列7623451的逆序数是 15_______。

2. 若122211211=a aa a ,则=16030322211211a aa a 33. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。

4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 R(A)=R(A,b)=n_5.设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。

6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是R (A ) < n 8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 09. 向量α=(2,1,0,2)T-的模(范数)______________。

10.若()Tk 11=α与()T121-=β正交,则=k 1 1-2k+1=0二、选择题(本题总计10分,每小题2分) 1. 向量组rααα,,,21 线性相关且秩为s ,则(D)A.s r = B.s r ≤ C.r s ≤ D.r s <2. 若A 为三阶 方阵,且043,02,02=-=+=+E A E A E A ,则=A (A )A.8 B.8-C.34 D.34- 3.设向量组A 能由向量组B 线性表示,则( D )A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。

C)(A *kA )(B *A k n)(C *-A k n 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是B _____。

线性代数课后习题答案山大

线性代数课后习题答案山大

线性代数课后习题答案山大
《线性代数课后习题答案山大》
在学习线性代数课程的过程中,课后习题是巩固知识、提高能力的重要环节。

为了帮助学生更好地掌握线性代数的知识,我们整理了一些课后习题的答案,
以便同学们在学习中进行参考和对比。

1. 矩阵A与B的乘积AB存在的充要条件是什么?如果AB存在,它的秩是多少?答:矩阵A的列数等于矩阵B的行数时,AB存在。

如果AB存在,它的秩等于
矩阵A的秩。

2. 设A为n阶方阵,证明:A与A'的秩相等。

答:A与A'的秩相等是因为A与A'的秩都等于A的秩。

3. 设A为n阶方阵,证明:A与A'的行秩相等。

答:A与A'的行秩相等是因为A与A'的行空间相同。

4. 设A为n阶方阵,证明:A与A'的列秩相等。

答:A与A'的列秩相等是因为A与A'的列空间相同。

5. 设A为n阶方阵,证明:A与A'的零空间维数之和等于n。

答:A与A'的零空间维数之和等于n是因为A与A'的秩加上零空间维数等于n。

通过以上习题答案的整理,我们可以更好地理解线性代数中的一些概念和定理。

希望同学们在学习线性代数的过程中,能够加深对知识点的理解,提高解题能力,为今后的学习和工作打下坚实的基础。

线性代数(经济数学2)-习题集(含答案)

线性代数(经济数学2)-习题集(含答案)

《线性代数(经济数学2)》课程习题集一、计算题11. 设三阶行列式为231021101--=D 求余子式M 11,M 12,M 13及代数余子式A 11,A 12,A 13.2. 用范德蒙行列式计算4阶行列式12534327641549916573411114--=D3. 求解下列线性方程组:⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++---1111322112132222111321211n n n n n n n n n x a x a x a x x a x a x a x x a x a x a x其中 ),,2,1,,(n j i j i a a j i =≠≠4. 问λ, μ取何值时, 齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?5. 问λ取何值时, 齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?二、计算题26. 计算6142302151032121----=D 的值。

7. 计算行列式5241421318320521------=D 的值。

8. 计算0111101111011110=D 的值。

9. 计算行列式199119921993199419951996199719981999的值。

10. 计算4124120210520117的值。

11. 求满足下列等式的矩阵X 。

2114332X 311113---⎛⎫⎛⎫-=⎪ ⎪----⎝⎭⎝⎭12. A 为任一方阵,证明T A A +,T AA 均为对称阵。

13. 设矩阵⎪⎪⎭⎫⎝⎛-=212321A ⎪⎪⎪⎭⎫⎝⎛-=103110021B 求AB .14. 已知⎪⎪⎭⎫⎝⎛--=121311A ⎪⎪⎪⎭⎫ ⎝⎛--=212211033211B 求T )(AB 和T T A B15. 用初等变换法解矩阵方程 AX =B 其中⎪⎪⎪⎭⎫ ⎝⎛--=011220111A ⎪⎪⎪⎭⎫⎝⎛-=121111B16. 设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛--=2100430000350023A求1-A17. 求⎪⎪⎪⎭⎫⎝⎛=311121111A 的逆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数二
一.单选题.
1. 若)541()1(l k N -55
443211a a a a a l k 是五阶行列式ij a 的一项,则k 、l 的值及该项符号为( A ). (A )2=k ,3=l ,符号为负; (B) 2=k ,3=l 符号为正;
(C) 3=k ,2=l ,符号为负; (D) 1=k ,2=l ,符号为正.
2. 下列行列式( A )的值必为零.
(A) n 阶行列式中,零元素个数多于n n -2个;
(B) n 阶行列式中,零元素个数小于n n -2个;
(C) n 阶行列式中,零元素个数多于n 个;
(D) n 阶行列式中,零元素的个数小于n 个.
3. 设A ,B 均为n 阶方阵,若()()2
2B A B A B A -=-+,则必有( D ). (A )I A =; (B)O B =; (C)B A =; (D)BA
AB =. 4. 设A 与B 均为n n ⨯矩阵,则必有( C ).
(A )B A B A +=+;(B )BA AB =;(C )BA AB =;(D )()111
---+=+B A B A . 5. 如果向量β可由向量组s ααα,....,,21线性表出,则( D )
(A) 存在一组不全为零的数s k k k ,....,,21,使等式
s s k k k αααβ+++=....2211成立 (B) 存在一组全为零的数s k k k ,....,,21,使等式
s s k k k α
ααβ+++=....2211成立 (C) 对β的线性表示式不唯一 (D) 向量组s αααβ,....,,,21线性相关
6. 齐次线性方程组0=Ax 有非零解的充要条件是( C )
(A)系数矩阵A 的任意两个列向量线性相关
(B) 系数矩阵A 的任意两个列向量线性无关
(C )必有一列向量是其余向量的线性组合
(D)任一列向量都是其余向量的线性组合
7. 设n 阶矩阵A 的一个特征值为λ,则(λA -1)2+I 必有特征值( C )
(a)λ2+1 (b)λ2-1 (c)2 (d)-2
8. 已知 ⎪⎪⎪⎭
⎫ ⎝⎛-=00000
123a A 与对角矩阵相似,则a =( A ) (a) 0 ; (b) -1 ; (c) 1 ; (d) 2
9. 设A ,B ,C 均为n 阶方阵,下面( D )不是运算律.
(A )()A B C C B A ++=++)( ; (B )BC
AC C B A +=+)(; (C ))()(BC A C AB =; (D )B
AC C AB )()(=. 10. 下列矩阵( B )不是初等矩阵.
(A)⎪⎪⎪⎭⎫ ⎝⎛001010100
;(B )⎪⎪⎪⎭⎫ ⎝⎛010000001
;(C )⎪⎪⎪⎭⎫ ⎝⎛1000
20
001
;(D )⎪⎪⎪


⎝⎛-100210001

二.计算题或证明题(
1. 已知矩阵A ,求A 10。

其中⎪⎪⎭⎫
⎝⎛-=210
1A
参考答案:
10101010122A ⎛⎫= ⎪-⎝⎭
2. 设A 为可逆矩阵,λ是它的一个特征值,证明:λ≠0且λ-1是A -1的一个特征值。

参考答案:
3. 当a 取何值时,下列线性方程组无解、有唯一解、有无穷多解?有解时,求其解.
⎪⎩⎪⎨⎧-=++-=++-=++2
23
32`1321321ax x x x ax x a x x ax
参考答案:
当1,2a ≠-时有唯一解:12313
3
,,222a x x x a a a --
-=-==+++
当1a =时,有无穷多解:112
2132
2x k k x
k x k =---⎧⎪=⎨⎪=⎩
当2a =-时,无解。

4. 求向量组的秩及一个极大无关组,并把其余向量用极大无关组线性表示.
⎪⎪
⎪⎪



⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛
=⎪⎪⎪⎪⎪⎭⎫
⎝⎛=2001,1211,1111,43214321αααα
参考答案:
极大无关组为:234,,a a a ,且1234a a a a =++
5. 若A 是对称矩阵,T 是正交矩阵,证明AT T 1-是对称矩
阵.。

相关文档
最新文档