完整word版有限元分析轴对称问题

合集下载

三维问题有限元分析(包括轴对称问题)

三维问题有限元分析(包括轴对称问题)
平衡方程
建立每个有限元的平衡方程,通过求解这些方程来得到近似解。
离散化
将连续的问题离散化,将整个求解域划分为有限个小的子域(称为有限元),每个子域上定义节点。
有限元方法的基本原理
解方程
通过求解整体矩阵的方程,得到各个节点的值,从整体矩阵,用于表示整个求解域上的问题。
详细描述
三维弹性力学问题的有限元分析
总结词
详细描述了三维热传导问题有限元分析的基本原理、方法和应用。
详细描述
三维热传导问题是有限元分析的另一个重要领域,主要研究热量在物体中的传递和分布。通过将连续的物体离散化为有限个小的单元,可以建立单元之间的热量传递关系,从而得到整个物体的温度分布。这种方法广泛应用于工程领域,如传热学、热能工程等。
边界条件处理
轴对称问题的有限元方法
轴对称问题有限元分析的实现流程
建立系统方程
根据有限元近似解法,将微分方程转化为离散化的系统方程。
划分网格
根据问题的几何形状和特点,将求解区域划分为一系列离散的网格单元。
建立数学模型
根据实际问题,建立相应的数学模型,包括物理方程、边界条件和初始条件。
求解系统方程
采用适当的数值方法(如直接法、迭代法等),求解离散化的系统方程,得到每个离散单元上的近似解。
轴对称问题具有旋转对称性,即其解在绕对称轴旋转时保持不变。
轴对称问题的定义和特性
特性
定义
将连续的物理问题离散化为有限个离散的单元,每个单元具有特定的形状和大小。
离散化
在每个离散单元上,使用近似函数来逼近真实解。常用的近似函数包括多项式、样条函数等。
近似解法
对于轴对称问题,边界条件通常与对称轴相关。需要对边界条件进行特殊处理,以确保离散化后的系统方程满足原始问题的约束。

三维问题有限元分析(包括轴对称问题)

三维问题有限元分析(包括轴对称问题)
2
空间问题简介
工程实际中的很多问题难于简化为平面问题,如受任意 空间载荷作用的任意形状几何体,受对称于轴线载荷作 用的回转体,这类问题经典弹性力学往往无能为力。在 FEM中,空间问题只要求0阶连续,因此构造单元方便
➢空间问题的主要困难: (1)离散化不直观;————(网格自动生成) (2)分割的单元数量多,未知量的数目剧增。— ——— (对某些问题简化)——— ——— (轴对称问题) ➢空间分析的优点
p
s
C
(6-16)
e 1
e 1
式中
F e ——单元上集中力等效结点载荷列向量;
p
F e ——单元上表面力等效结点载荷列向量;
S
F e ——单元上体积力等效结点载荷列向量;
F e
——单元结点载荷列向量。
C
等效结点力公式为 Fe NTF p
式中
Fe SSeNTpSds
Fe VeNTpvdV
如同平面等参单元一样,需要通过雅克比矩阵来实现,由偏导法则
N i N xi x N yi y N zi z
同理可得
N i , N i
写成矩阵
Ni
x
y
z
Ni x
Ni x
Ni
x
y
z
Ni y
J
Ni y
Ni
x
y
z
Ni z
ui vi wi
(6-18)
式中
xi、yi、zi——结点i的坐标; ui、vi、wi——结点i沿x、y、z方向的位移; Ni——对应于i结点的形状函数。
在自然坐标系(局部坐标系)中,各结点的形状函数可写成如
下形式, 对于8个顶角结点( i=1,2,……,8)

第4章 空间问题有限元分析-轴对称

第4章 空间问题有限元分析-轴对称

Re N T f p
FL e 2 r0 N T 62 f p 21
圆环 2 r0 Ni f pr Ni f pz N j f pr
N j f pz
Nm f pr
T
Nm f pz
r0 -- 集中力作用点的径向坐标。
2019/10/18
第4章 空间问题有限元分析 空间轴对称问题
曹国华
2019/10/18
空间有限元分析-轴对称
1
主要内容
§ 4.1位移模式 § 4.2几何方程 § 4.3单元刚度 § 4.4等效载荷
2019/10/18
空间有限元分析-轴对称
3
1、研究对象
当弹性体的几何形状,约束情况,以及所受的外力都 轴对称于某一轴,则这种弹性体的应力分析问题称为轴对 称应力分析问题,在工程中如 活塞,压力容器等 。
空间有限元分析-轴对称
12
几何方程与物理方程
PA线应变
0,(略去高阶小量).
PB线应变
εφ

PB PB PB

(u
φ
uφ φ
d φ)
u
ρdφ

1 uφ ; ρ φ
PA转角
α

DA

uφ ρ
d
ρ


,
PA d ρ ρ
2019/10/18
空间有限元分析-轴对称
空间有限元分析-轴对称
28
等效载荷
r Niri N j rj Nmrm
2、体积力移置
FFGee 2 [N] f rdrdz
若体积力为重,则单位体积 的力为

f
=-0

(完整word版)有限元分析大作业报告要点

(完整word版)有限元分析大作业报告要点

有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。

该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。

二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。

因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。

(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。

(6)模型施加约束:约束采用的是对底面BC 全约束。

大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。

以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。

空间与轴对称问题有限元分析课件

空间与轴对称问题有限元分析课件

02
CATALOGUE
有限元分析基础
有限元分析的基本概念
有限元分析是一种数值分析方法,通过将复杂 的物理系统离散化为有限个简单元(或称为元 素)的组合,以求解复杂系统的物理行为。
它基于变分原理和加权余量法,通过数学模型 将实际工程问题转化为数学问题,从而得到近 似的数值解。
有限元分析广泛应用于工程领域,如结构分析 、流体动力学、电磁场等。
求解线性方程组
通过求解线性方程组得到每个节 点的位移和应力等物理量。
有限元分析的常用软件
ANSYS
功能强大的有限元分析软件,适用于各种工 程领域。
COMSOL Multiphysics
多物理场有限元分析软件,适用于模拟复杂 的多物理场耦合问题。
ABAQUS
专业的有限元分析软件,广泛应用于结构分 析、流体动力学等领域。
空间与轴对称问题有限元分析的优缺点
01
数值误差
有限元分析依赖于离散化的网格 ,存在数值误差,可能影响结果 的精度。
建模难度
02
03
计算资源需求
对于复杂问题的建模,需要较高 的专业知识和技巧,建模难度较 大。
对于大规模问题,有限元分析需 要大量的计算资源,如内存和计 算时间。
未来发展方向与挑战
优化算法
建筑领域
建筑设计中的对称和均衡问题需要考虑空间对称 性,以提高建筑的美观性和稳定性。
机械工程领域
机械零件的形状和结构需要考虑轴对称性,以确 保零件的稳定性和可靠性。
空间与轴对称问题的解析方法
解析法
通过数学公式和定理推导出问题的解 ,适用于简单的问题和特定条件下的 求解。
有限元法
将问题分解为有限个小的单元,通过 求解每个单元的近似解来逼近原问题 的解,适用于复杂的问题和不规则区 域的处理。

(完整word版)北京科技大学《工程中的有限元方法》-上课笔记

(完整word版)北京科技大学《工程中的有限元方法》-上课笔记

肯定有bug。

仅供参考。

1401052200隐式方法与显式方法:==静态隐式方法:不适用于短时高速下的大变形。

基于虚功原理,一般需要迭代(除迭代法外还有直接法)。

可能遇到迭代过程不收敛,以及方程组病态无确定解的问题。

ANSYS默认使用的方法。

动态显式方法:可用于短时、高速下的大变形。

基于动力学方程,每步计算形成新的刚度矩阵,无需迭代,不存在收敛性问题。

LS-DYDA模块(ANSYS中也包含)默认使用。

如何判断有限元的分析结果是正确的?1.有限元分析的结果能否与模型简化后存在的解析解对应;2.有限点处的计算结果与实验结果吻合;3.结果收敛;4.与实际经验吻合;……【结合书上P168】力学应力、温度热学分析提倡使用对称性,但不是所有的情况都能使用对称性,比如结构件的振动。

有限元方法:求解偏微分方程,基础为加权残值法。

求解有限元方程本质为解线性方程组。

ADD:要求所ADD的为同一种材料。

低阶单元:只有角节点,没有边中点或面内点的单元。

(目前已不使用面内点)高阶单元:不但有角节点,还有边中点或面内点的单元。

静态小变形使用高阶单元。

动态大变形使用低阶单元。

连续介质单元:求解得到位移。

结构单元:求解得到位移和转角。

求解结果的位移精度大于应力精度。

网格类型:三角形,四边形;四面体(三棱锥),五面体(三棱柱),六面体。

根据自由度关系,单元节点间存在铰接(自由度不同)和刚接(自由度相同)的关系。

连续介质单元也有一维单元(如接触关系)。

工字钢既可以使用梁单元,也可以使用连续介质单元。

对于直接法的求解效率:带宽解法:ANSYS的默认求解法;尽量减小单元内节点号差值从而减小带宽。

波阵解法:ABAQUS的默认求解法;尽量减小绕一节点所连接的单元号的差值从而减小波阵宽。

节点编号,从角节点开始,逆时针。

==使用子结构,可减少对内存的占用,但会增加时间消耗。

连续介质单元剖分后,只在节点上存在关系,公共边上位移相同,不出现重叠或分离。

第四章轴对称问题

第四章轴对称问题
第四章 轴对称问题的有限单元法
主要内容: 4-1轴对称问题有限单元法 4-2空间问题常应变四面体单元
轴对称结构体可以看成由任意
一个纵向剖面绕着纵轴旋转一周而 形成。此旋转轴即为对称轴,纵向 剖面称为子午面,如图4-1表示一 圆柱体的子午面abcd被分割为若干 个三角形单元,再经过绕对称轴旋 转,圆柱体被离散成若干个三棱圆 环单元,各单元之间用圆环形的铰 链相连接。对于轴对称问题,采用 圆柱坐标较为方便。以弹性体的对 称轴为z轴,其约束及外载荷也都 对称于z轴,因此弹性体内各点的 各项应力分量、应变分量和位移分 量都与环向坐标θ无关,
zi , z j , zm, ri , rj , rm 及结点位移ui , uj , um, wi , w j , wm代入式(4-4)中,可以 解出六个待定系数 1, 2, 。,再6 将这些待定系数回代到式 (4-4)中,就可以得到由结点位移和形函数所表示的单元内任 一点的位移表达式
u Ni ui N j u j Nmum w Ni wi N j w j Nmwm
bi A1 fi
Si
2 A3 A
A1
bi
A1bi A2ci
fi fi
A1ci
ci
i, j, m
A1ci A2bi
返回
其中
u A1 1 u

1 2u
A2 21 u

1 uE A3 41 u1 2u
从(4-14)式可知,只有剪应力在单元中是常数,而其他 三个正应力在单元中都不是常数,与坐标r和z有关。同样 采用形心坐标和来代替,每个单元近似地被当作常应力单 元,所求得的应力是单元形心处的应力近似值。
e1
e1
这就是求解结点位移的方程组,写成标准形式

(完整word版)与轴对称相关的最值问题

(完整word版)与轴对称相关的最值问题

图(5)CEDPBA 与轴对称相关的最值问题【典型题型一】:如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P,使PA+PB 最小.【典型题型二】如图,直线l 和l 的同侧两点A 、B,在直线l 上求作一点P ,使PA+PB 最小。

【练习】1、(温州中考题)如图(5),在菱形ABCD 中,AB=4a ,E 在BC 上,EC=2a ,∠BAD=1200,点P 在BD 上,则PE+PC 的最小值是( )解:如图(6),因为菱形是轴对称图形,所以BC 中点E 关于对角线BD 的对称点E 一定落在AB 的中点E 1,只要连结CE 1,CE 1即为PC+PE 的最小值。

这时三角形CBE 1是含有300角的直角三角形,PC+PE=CE 1=23a 。

所以选(D )。

2、如图(13),一个牧童在小河南4英里处牧马,河水向正东方流去,而他正位于他的小屋B 西8英里北7英里处,他想把他的马牵到小河边去饮水,然后回家,他能够完成这件事所走的最短距离是( )(A ) 4+185英里 (B ) 16英里(C ) 17英里 (D) 18英里3.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD,ED ⊥BD,连接AC 、EC 。

已知AB=5,DE=1,BD=8,设CD=x.请问点C 满足什么条件时,AC +CE 的值最小?4.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上 一动点,则EC +ED 的最小值为_______。

即是在直线AB 上作一点E ,使EC+ED 最小作点C 关于直线AB 的对称点C ’,连接DC'交 AB 于点E,则线段DC ’的长就是EC+ED 的最小值。

在直角△DBC'中DB=1,BC=2, 根据勾股定理可得,DC'=错误!5.如图,等腰Rt △ABC 的直角边长为2,E 是斜边AB 的中点,P 是AC 边 上的一动点,则PB+PE 的最小值为 即在AC 上作一点P ,使PB+PE 最小 作点B 关于AC 的对称点B',连接B ’E ,交AC 于点P,则B’E = PB'+PE = PB+PE B ’E 的长就是PB+PE 的最小值 在直角△B'EF 中,EF = 1,B'F = 3根据勾股定理,B'E = 错误!6.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内, 在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .2错误! B .2错误! C .3 D .错误!即在AC 上求一点P ,使PE+PD 的值最小点D 关于直线AC 的对称点是点B ,连接BE 交AC 于点P,则BE = PB+PE = PD+PE ,BE 的长就是PD+PE 的最小值BE = AB = 2 37.如图,若四边形ABCD 是矩形, AB = 10cm,BC = 20cm ,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC+PD 的最小值; 作点C 关于BD 的对称点C ’,过点C',作C ’B ⊥BC ,交BD 于点P ,则C ’E 就是PE+PCFP B'EACBC'DACBEPE BCD A H PEC'D ACB的最小值直角△BCD 中,CH = 错误!错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考题
5-1 轴对称问题的定义
答:工程中又一类结构,其几何形状、边界条件、所受载荷都对称于某一轴线,这种情况下结构再载荷作用下位移、应变和应力也对称于这个轴线,这种问题成为轴对称问题。

5-2 轴对称问题一般采用的坐标系?作图说明每个坐标分量的物理意义
答:在描述轴对称弹性体问题的应力及变形时常采用圆柱坐标r,θ,z。

各位移分量是那几个自变量的函轴对称问题中每个点有几个位移分量? 5-3 数?的函数,与θ无关。

都只是rz答:位移分量u, w,
轴对称问题中的每个点有哪几个应力分量?是那几个自变量的函数。

5-4
4答:个应力分量;
5-5 轴对称问题中的每个点有哪几个应变分量?是那几个自变量的函数
答:4个应变分量
轴对称问题是三维问题?二维问题?最简单的轴对称单元是哪种单5-6
元?作图说明等于零。

因此轴对称问题是二维问v答:由于轴对称,沿θ方向的环向(周向)位移平面(子午面)正交的截面r z题;三角形环单元。

(三角形轴对称单元,这些圆环单元与是三角形)
写出三角形环单元的位移函数。

满足完备性要求吗?5-7
答:满足完备性要求。

三角形环单元形函数的表达式?指出形函数的性质。

5-8
三角形环单元的应力和应变的特点。

其单元刚度矩阵是几阶的?5-9
个正应力分量均随位置变化;答:应力分量:剪应力为常量,其他3个应变分量为常量,环向应变不是常应变,而是与单应变分量:面内(子五面)3 元中各点的位置有关。

单元刚度矩阵为六阶。

有限元方法求解对称问题的基本步骤?5-10
结构离散化:对整个结构进行离散化,将其分割成若干个单元,单元间彼此通过节点相1. 连;
{F}(e){Φ}(e)[K](e) 2.求出各单元的刚度矩阵:[K](e)是由单元节点位移量求单元节点力向量的转移矩阵,其关系式为:{F}(e)= [K](e) {Φ}(e);{Φ}集成总体刚度矩阵 3.[K]并写出总体平衡方程:总体刚度矩阵[K]是由整体节点位移向量求整体节点力向量,此即为总体平衡方程。

{F}= [K] {Φ} 的转移矩阵,其关系式为沿某个方向n4.引入支撑条件,求出各节点的位移:节点的支撑条件有两种:一种是节点沿某个方向的位移为一给定值。

的位移为零,另一种是节点n 求出各单元内的应力和应变 5. 对于有限元方法,其基本思路和解题步骤可归纳为:建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边
值(1)
问题等价的积分表达式,这是有限元法的出发点。

区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连(2)
接、不重叠的单元。

区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时.
还需要列出自然边界和本质边界的节点序号和相应的边界值。

确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件(3)
具有规则的插值函数作为单元基函数。

有限元方法中的基函数是在单元中选取的,由于各单元的几何形状,在选取基函数时可遵循一定的法则。

单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近(4)
的参数即单元中各节点(似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数值)的代数方程组,称为单元有限元方程。

总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行(5) 累加,形成总体有限元方程。

、)(狄里克雷边界条件(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件。

对于自然边界条件,一般在积分)(柯西边界条件、混合边界条件自然边界条件(黎曼边界条件)则对总体有限元方表达式中可自动得到满足。

对于本质边界条件和混合边界条件,需按一定法
程进行修正满足。

解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方(7)
程组,采用适当的数值计算方法求解,可求得各节点的函数值。

5-11 与平面问题比较,有限元方法求解轴对称问题,相同的地方?不同的地方?
答:轴对称问题简单三角形单元的形函数虽与平面问题简单三角形单元相同,但其应
,而且单元应变变、应力则是不相同的,这里不仅多出了一个环向应变及环向应力和应力分布规律也是不相同的,对平面问题,此种单元内应变应力均为常量,而对轴对称的函数。

问题,此种单元内应力、应变非常值,是r、z轴对称问题单元刚度矩阵与平面问题单元刚度矩阵的推导过程及基本原5-12
理一样吗?答:一样;虚功原理。

轴对称问题和平面问题的单元刚度矩阵公式一样吗?计算过程有什么不5-13
同?答:与平面问题相同,仍用虚功原理来建立单元刚度矩阵,其积分式为:
只要单元尺寸不太大,经过这样处理引起的误差也不大。

被积函数又成为常数,可以提出到积分号外面:
有限元分析中,轴对称位移边界条件如何考虑?举例说明?5-14
)没有沿对称面法向的移动位移分量;1答:()没有绕平行于对称面轴的转动位移分量。

2(。

相关文档
最新文档