三角法与向量法解平面几何题(正)
2025届高考数学二轮复习提升微专题几何篇第06讲怎样用向量法解三角函数问题含解析

第06讲 怎样用向量法解三角函数问题一、学问与方法本讲主要探究平面对量与三角函数以及解三角形的综合问题的命题形式与解题思路,主要体现在以下 3 个方面。
(1)题设给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量表达式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,探求值域或最值或参数的取值范围等.(3) 运用向量法解三角形主要是向量的垂直与夹角问题,一对向量垂直与向量所在直线的垂直是一样的,向量的线性运算与向量的坐标运算是求解两向量关系问题的两大途径,关于夹角问题,可以把两个向量的夹角放在三角形中,利用正余弦定理. 三角形的面积公式求解.二、典型例题【例1】(1) .在锐角ABC 中,若137,8,,cos ,sin ,22a b m A n A ⎛⎫⎛⎫====- ⎪ ⎪ ⎪⎝⎭⎝⎭, 且m ⊥n , 则ABC 的面积为().A.C. D.(2) .平面直角坐标系中,角θ满意()34sin,cos ,0,12525OA θθ=-==-,设点B 是角θ终边上一动点,则| OA OB -∣的取值范围为【分析】 第(1)问,要求三角形的面积,只需求出B ∠的正弦值,而这就要借助已知条件两个向量的垂直关系,先求出A ∠, 进而再运用正弦定理求(B ∠或其三角函数值),最终利用三角形的内角定理,找到问题的解. 第(2)问是三角函数定义、二倍角公式与用坐标运算). 两个视角各具特色,作为填空题, 从“形”的角度处理相对简捷.【解析】(1) 1,sin 02m n A A ⊥∴=, 又090,cos 0A A ∠<<∴≠则有tan A =因此60A ∠=.由正弦定理知sin sin a b A B=, 又7,8,60a b A ∠===, 843sin sin6077B ∴==又ABC 为锐角三角形,1cos 7B ∴=.()11sin sin sin cos cos sin 272714C A B A B A B =+=+=+⨯=1sin 2ABCSab C ∴==故选C . (2)【解法1】 由2247sin 2sincos,cos 2cos 12225225θθθθθ==-=-= 可得 θ 为第四象限的角,且 sin 24tan cos 7θθθ==-. ∴ 点 B 在射线 ()2407y x x =-, 即 ()24700x y x += 上运动.又 OA OB BA -=, 而点 A 到射线的距离为 725d ==, 故所求取值范围为 7,25∞⎡⎫+⎪⎢⎣⎭. 【解法2】设OB t =, 由2247sin 2sincos,cos 2cos 12225225θθθθθ==-=-=, 可得θ为第四象限的角, 324cos<,cos sin 225OA OB πθθ⎛⎫∴=-=-= ⎝⎭>⎪. 由2222248||212cos<,125OA OB OA OB OA OB t t OA OB t t -=+-⋅=+-=+>-224494925625625t ⎛⎫=-+ ⎪⎝⎭(当且仅当2425t =时等号成立),故OA OB -的取值范围为7,25∞⎡⎫+⎪⎢⎣⎭.【解法3】 由 2247sin 2sincos,cos 2cos 12225225θθθθθ==-=-=设 (0)OB t t =>, 则依据三角函数定义可得点 B 坐标为 724,2525t t ⎛⎫-⎪⎝⎭.由此可得 2222227242477||012525252525OA OB t t t ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-+=-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(当且仅当 2425t = 时等号成立).故 OA OB - 的取值范围为 7,25∞⎡⎫+⎪⎢⎣⎭.【例2】(1)已知,0,2παβ⎛⎫∈ ⎪⎝⎭, 且()3cos cos cos 2αβαβ+-+=, 求α和β的值; (2) 求246cos cos cos 777πππ++的值. 【解析】(1) 原条件可化为()3sin sin 1cos cos cos 2αβαβα+-=-. 构造向量()()sin ,1cos ,sin ,cos m n ααββ=-=由m nm n ⋅得23cos sin 2αα-+解得211 cos 0,cos ,0,222πααα⎛⎫⎛⎫-=∈ ⎪⎪⎝⎭⎝⎭3πα∴=.3παββ=根据和的对称性可知(2) 如图129-所示,将边长为 1 的正七边形ABCDEFO 放人直角坐标系中,则()224466 1,0,cos ,sin ,cos ,sin ,cos ,sin 777777OA AB BC CD ππππππ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭8810101212cos ,sin,cos ,sin ,cos ,sin .777777DE EF FO ππππππ⎛⎫⎛⎫⎛⎫=== ⎪⎪⎪⎝⎭⎝⎭⎝⎭0OA AB BC CD DE EF FO ++++++=故2468101224 1coscos cos cos cos cos ,0sin sin 77777777ππππππππ⎛+++++++++ ⎝()681012sinsin sin sin 0,07777ππππ⎫+++=⎪⎭即246810121coscos cos cos cos cos 0777777ππππππ++++++=,① 86104122 coscos ,cos cos ,cos cos 777777ππππππ===由三角函数诱导公式可得 ∴①式可化为24612cos cos cos 0.777πππ⎛⎫+++= ⎪⎝⎭2461coscos cos 7772πππ∴++=-【例3】已知()()() cos ,sin ,cos ,sin ,sin 2sin ,cos 2cos a b x x c x x αααα===++,其中0x απ<<<。
高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析1.已知向量a=(2,1),b=(0,-1).若(a+λb)⊥a,则实数λ=.【答案】5【解析】因为(a+λb)⊥a,所以【考点】向量数量积2.在平面直角坐标系xOy中,已知圆C:x2+y2-6x+5=0,点A,B在圆C上,且AB=2,则的最大值是.【答案】8【解析】设AB中点为M,则.因为圆C:,AB=2,所以,因此的最大值是8.【考点】直线与圆位置关系3.设P是△ABC所在平面内的一点,,则()A.B.C.D.【答案】B【解析】∵,∴P为AC的中点,∴.【考点】向量的运算.4.已知、是两个单位向量,那么下列结论正确的是()A.=B.•=0C.•<1D.2=2【答案】D【解析】A不正确,、的方向不确定.B不正确,当、垂直时,.C不正确,尽管、的长度都是1,但它们的方向不确定,,当两向量的方向相同时,.由于单位向量的模都等于1,但它们的方向不确定,故一定有,从而2=2,故D正确.故选 D.5.设,是平面内两个不共线的向量,=(a﹣1)+,=b﹣2(a>0,b>0),若A,B,C三点共线,则+的最小值是()A.2B.4C.6D.8【答案】B【解析】∵A,B,C三点共线,∴,共线,∴存在实数λ,使得可解得,b=2﹣2a∵a>0,b>0∴0<a<1∴==当a=时,取最小值为4故选:B.6.已知直角△ABC中,AB=2,AC=1,D为斜边BC的中点,则向量在上的投影为。
【答案】【解析】在上的投影为.【考点】向量的射影问题.7.在△ABC所在的平面上有一点P满足++=,则△PBC与△ABC的面积之比是________.【答案】【解析】因为++=,所以+++=0,即=2,所以点P是CA边上的靠近A点的一个三等分点,故.8.如图,在直角梯形ABCD中,AD⊥AB,AB∥DC,AD=DC=1,AB=2,动点P在以点C为圆心,且与直线BD相切的圆上或圆内移动,设=λ+μ (λ,μ∈R),则λ+μ的取值范围是 ().A.(1,2)B.(0,3)C.[1,2]D.[1,2)【答案】C【解析】以A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,则B(2,0),D(0,1),C(1,1),设P(x,y),则(x,y)=λ(0,1)+μ(2,0)=(2μ,λ),即令z=λ+μ=+y.由圆C与直线BD相切可得圆C的半径为.由于直线y=-+z与圆C有公共点,所以,解得1≤z≤2.9.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.10.已知点,点,向量,若,则实数的值为()A.5B.6C.7D.8【答案】C【解析】由已知得,又,所以存在实数,使,即,解得,所以正确答案为C.【考点】平行向量11.已知向量a,若向量与垂直,则的值为()A.B.7C.D.【答案】A【解析】由已知得,,又这两个向量垂直,所以,解得,所以正确答案为A.【考点】向量的运算与垂直关系12.直线与抛物线:交于两点,点是抛物线准线上的一点,记,其中为抛物线的顶点.(1)当与平行时,________;(2)给出下列命题:①,不是等边三角形;②且,使得与垂直;③无论点在准线上如何运动,总成立.其中,所有正确命题的序号是___.【答案】;①②③【解析】由抛物线方程知,焦点,准线为。
高三数学平面向量的几何运算试题答案及解析

高三数学平面向量的几何运算试题答案及解析1.在平面直角坐标中,的三个顶点A、B、C,下列命题正确的个数是()(1)平面内点G满足,则G是的重心;(2)平面内点M满足,点M是的内心;(3)平面内点P满足,则点P在边BC的垂线上;A.0B.1C.2D.3【答案】B【解析】对(2),M为的外心,故(2)错.对(3),,所以点P在的平分线上,故(3)错.易得(1)正确,故选B.【考点】三角形与向量.2.如图所示,、、是圆上的三点,的延长线与线段交于圆内一点,若,则()A.B.C.D.【答案】C【解析】由于、、三点共线,设,则,由于、、三点共线,且点在圆内,点在圆上,与方向相反,则存在,使得,因此,,所以,选C.【考点】1.共线的平面向量;2.平面向量的线性表示3. [2014·牡丹江模拟]设e1,e2是两个不共线的向量,且a=e1+λe2与b=-e2-e1共线,则实数λ=()A.-1B.3C.-D.【答案】D【解析】∵a=e1+λe2与b=-e2-e1共线,∴存在实数t,使得b=ta,即-e2-e1=t(e1+λe2),- e2-e1=te1+tλe2,由题意,e1,e2不共线,∴t=-1,tλ=-,即λ=,故选D.4.在平行四边形中,,,为中点,若,则的长为.【答案】6【解析】根据题意可得:,则,化简得:,解得:.【考点】向量的运算5.若向量=(1,2),=(1,﹣1),则2+与的夹角等于()A.﹣B.C.D.【答案】C【解析】∵=(1,2),=(1,﹣1),∴2+=(3,3)=(0,3)则(2+)•()=9|2|=,||=3∴cosθ==∴θ=故选C6.在△ABC中,过中线AD中点E任作一条直线分别交边AB、AC于M、N两点,设=x,=y (xy≠0),则4x+y的最小值是________.【答案】【解析】因为D是BC的中点,E是AD的中点,所以== ( +).又=,=,所以=+.因为M、E、N三点共线,所以=1,所以4x+y=(4x+y)7.已知=(2,0),,的夹角为60°,则.【答案】【解析】.【考点】向量的基本运算.8.在所在的平面内,点满足,,且对于任意实数,恒有,则()A.B.C.D.【答案】C【解析】过点作,交于,是边上任意一点,设在的左侧,如图,则是在上的投影,即,即在上的投影,,令,,,,故需要,,即,为的中点,又是边上的高,是等腰三角形,故有,选C.【考点】共线向量,向量的数量积.9.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则=()A.B.C.D.【答案】D【解析】在方格纸上作出,如下图,则容易看出,故选D.【考点】1.向量的加法运算.10.在中,已知是边上的一点,若,,则()A.B.C.D.【答案】A【解析】,即,解得,,故选A.【考点】平面向量的线性表示11.设点为三角形ABC的外心,则.【答案】【解析】出边AB,AC的垂线,利用向量的运算将用表示,利用向量的数量积的几何意义将向量的数量积表示成一个向量与另个向量的投影的乘积.解:过O作OS⊥AB,OT⊥AC 垂足分别为S,T 则S,T分别是AB,AC的中点,则=【考点】向量的运算法则点评:本题考查向量的运算法则、向量数量积的几何意义.12.的外接圆的圆心为,半径为,且,则向量在上的射影的数量为()A.B.C.D.【答案】A【解析】解:由题意因为△ABC的外接圆的圆心为O,半径为2,OA + AB + AC =" 0" 且| OA |="|" AB |,对于 OA + AB + AC =" 0" ⇔ OB =" CA" ,所以可以得到图形为:因为 CA =" OB" ,所以四边形ABOC为平行四边形,又由于| OA |="|" AB |,所以三角形OAB为正三角形且边长为2,所以四边形ABOC为边长为2且角ABO为60°的菱形,所以向量 CA 在 CB 方向上的投影为:| CA |cos< CA , CB >=2×cos30°= 故选:A13.设向量,若a//b,则实数t的值是_______.【答案】 9【解析】考查平面向量的坐标运算及共线性质。
人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

反思 感悟
用向量法求长度的策略 (1)根据图形特点选择基底,利用向量的数量积转化,用公式 |a|2=a2求解. (2)建立坐标系,确定相应向量的坐标,代入公式:若a=(x,y), 则|a|= x2+y2.
跟踪训练2 在△ABC中,已知A(4,1),B(7,5),C(-4,7),则BC边上的 中线AD的长是
∴A→B=-32C→D,∴A→B与C→D共线. 又|A→B|≠|C→D|,∴该四边形为梯形.
12345
4.当两人提起重量为|G|的旅行包时,两人用力方向的夹角为θ,用力大
小都为|F|,若|F|=|G|,则θ的值为
A.30°
B.60°
C.90°
√D.120°
解析 作O→A=F1,O→B=F2,O→C=-G(图略), 则O→C=O→A+O→B,
答案 物理中的向量:①物理中有许多量,比如力、速度、加速度、位 移都具有大小和方向,因而它们都是向量. ②力、速度、加速度、位移的合成就是向量的加法,因而它们也符合向 量加法的三角形法则和平行四边形法则;力、速度、加速度、位移的分 解也就是向量的分解,运动的叠加也用到了向量的加法. ③动量mv是数乘向量. ④力所做的功就是作用力F与物体在力F的作用下所产生的位移s的数量积.
解析 对于 A,A→B-A→C=C→B,故 A 中结论错误; 对于 B,设 θ 为向量A→B与B→C的夹角, 因为A→B·B→C=A→B·B→C·cos θ,而 cos θ<1, 故A→B·B→C<A→B·B→C,故 B 中结论正确; 对于 C,A→B+A→C·A→B-A→C=A→B2-A→C2=0, 故A→B=A→C,所以△ABC 为等腰三角形,故 C 中结论正确;
A.v1-v2
√B.v1+v2
专题5:向量法做立体几何的线面角问题(解析版)

专题5:理科高考中的线面角问题(解析版)求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u ϕθ⋅== 1.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =,且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.【答案】(1)见解析(2)22 【分析】(1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证. (2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m ADm AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD 与平面BCD 所成角的正弦值.【详解】解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得3AC =.因为ABC 是等边三角形,则AC AB =,所以3AB =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得3BD =, 因为6BD =所以2AD =. 又222BD AB AD =+,所以2AB =. 则23AE =,6ED =. 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -, 则6D ⎛⎫ ⎪ ⎪⎝⎭,3A ⎛⎫ ⎪ ⎪⎝⎭,向量361AD ⎛⎫=- ⎪ ⎪⎝⎭, 平面BCD 的一个法向量为(0,0,1)m =,设直线AD 与平面BCD 所成的角为θ,则2cos ,221m ADm AD m AD ⋅〈〉===-⨯,2sin |cos ,|2m AD θ=〈〉= 所以直线AD 与平面BCD 所成角的正弦值为22. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.2.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.【答案】(1)见解析(2)105 【分析】要证线面平行,先证线线平行建系,利用法向量求解。
高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析1.已知向量,,则()A.B.C.D.【答案】B【解析】由题意得,故选B.【考点】本题考查平面向量的坐标运算,属于容易题.2.在△ABC中,M是BC的中点,AM=1,点P在AM上且满足=2,则·(+)=________.【答案】【解析】由=2知,P为△ABC的重心,所以+=2,则·(+)=2·=2||||cos 0°=2×××1=.3.连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,则的概率是()A.B.C.D.【答案】C【解析】由题意知本题是一个古典概型,试验发生包含的所有事件数6×6,∵m>0,n>0,∴=(m,n)与=(1,﹣1)不可能同向.∴夹角θ≠0.∵θ∈(0,】•≥0,∴m﹣n≥0,即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1;当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1.∴满足条件的事件数6+5+4+3+2+1∴概率P==.故选C.4.已知向量,,若与垂直,则实数 ( )A.B.C.D.【答案】A【解析】由题意,因为与垂直,则,解得.【考点】平面向量垂直的充要条件.5.在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为______.【答案】5【解析】建立如图所示的直角坐标系,设DC=m,P(0,t),t∈[0,m],由题意可知,A(2,0),B(1,m),=(2,-t),=(1,m-t),+3=(5,3m-4t),|+3|=≥5,当且仅当t=m时取等号,即|+3|的最小值是5.6.如图,在△ABC中,O为BC的中点,若AB=1,AC=3,〈,〉=60°,则||=________.【答案】【解析】因为〈,〉=60°,所以·=||||·cos 60°=3×=,又=(+),所以=(+)2=,即2= (1+3+9)=,所以||=.7.设P是△ABC所在平面内的一点,,则()A.B.C.D.【答案】B【解析】,故选B.【考点】向量的加减法,加法运算要首尾相接,减法运算要同起点.8.已知A、B、C是直线l上的三点,向量满足,则函数的表达式为.【答案】【解析】这题涉及到向量的一个性质(课本上有一个习题有类似的结论),不在直线上,,则三点共线.利用这个结论本题就有,两边对求导数得:,因此,从而,所以.【考点】三点共线的性质,导数.9.已知向量.(1)若,求;(2)求的最大值.【答案】(1)(2)【解析】(1)由向量垂直的充要条件:,这样就可得到关于的函数 ,化简得的值,结合题中所给的范围,不难确定出的的值; (2)由已知的坐标,可求出的坐标,在根据向量求模的公式由出题中的模的表达式,由三角函数的图象和性质,分析得由的范围求出的范围,进而得出的范围,即可求出的最大值.试题解析:解(1)若,则 3分即而,所以 6分(2) 12分当时,的最大值为 14分【考点】1.向量的运算;2.三角函数的图象和性质10.已知向量,的夹角为,且,则向量在向量方向上的投影是________.【解析】依题意,设,,如图,则,,由于,是直角三角形,且,故向量在向量方向上的投影是0.【考点】平面向量的夹角、模,一个向量在另一个向量上的投影.11.如图,已知圆:,为圆的内接正三角形,为边的中点,当正绕圆心转动,同时点在边上运动时,的最大值是。
平面向量的三角形法则

平面向量的三角形法则平面向量是解决几何和物理问题中常用的数学工具之一。
通过平面向量的运算和性质,我们可以方便地描述物理系统的位移、力和速度等概念。
其中,平面向量的三角形法则是非常重要的基础知识。
本文将详细介绍平面向量的三角形法则以及其应用。
一、平面向量的定义在平面直角坐标系中,平面向量可以表示为一个有方向的线段。
根据平面向量的定义,我们可以用其起点和终点的坐标表示一个平面向量。
例如,对于平面向量AB,其起点为A坐标(x1, y1),终点为B坐标(x2, y2),我们可以表示为向量AB = (x2 - x1, y2 - y1)。
二、平面向量的三角形法则平面向量的三角形法则是指当三个平面向量相互作用时,可以将它们的起点放在同一个点,然后将它们的终点连接起来形成一个三角形。
这个三角形的对角线是第三个平面向量的和向量。
具体来说,对于平面向量AB和AC,它们的和向量是平面向量AD,即AB + AC = AD。
三、平面向量的运算规则1. 平面向量的加法平面向量的加法满足交换律和结合律。
换言之,对于任意平面向量AB,AC和AD,满足AB + AC = AC + AB,以及(AB + AC) + AD =AB + (AC + AD)。
2. 平面向量的乘法平面向量的乘法有数量积和向量积两种形式。
(1)数量积数量积也称为点积,表示为AB · AC。
数量积的计算方法是将AB的横坐标与AC的横坐标相乘,再将AB的纵坐标与AC的纵坐标相乘,然后将两个结果相加。
即AB · AC = ABx * ACx + ABy * ACy。
其中,ABx为AB的横坐标,ACx为AC的横坐标,ABy为AB的纵坐标,ACy为AC的纵坐标。
(2)向量积向量积也称为叉积,表示为AB × AC。
向量积的计算方法是将AB的横坐标与AC的纵坐标相乘,再将AB的纵坐标与AC的横坐标相乘,然后根据坐标轴的正负关系确定结果的方向。
用向量解决解析几何中角的有关问题.

用向量解决解析几何中“角”的有关问题同济二附中 钱嵘向量(vector )又称矢量,即既有大小又有方向的量叫做向量。
希腊的亚里士多德(前384-前322)已经知道力可以表示成向量,德国的斯提文(1548?-1620?)在静力学问题上,应用了平行四边形法则。
伽利略(1564-1642)清楚地叙述了这个定律。
稍后丹麦的未塞尔(1745-1818),瑞士的阿工(1768-1822)发现了复数的几何表示,德国高斯(1777-1855)建立了复平面的概念,从而向量就与复数建立了一一对应,这不但为虚数的现实化提供了可能,也可以用复数运算来研究向量。
向量是高中数学新教材与高中数学课程标准中新增内容,向量的应用是一种新的思想方法,由于常规视角的转变,形成了新的探索途径,容易激发并凝注学生的参与,探索新的解题途径,展示各自的思维能力和创新意识。
向量具有代数与几何形式的双重身份,它可以作为新旧知识的一个重要的交汇点,成为联系这些知识的桥梁,因此,向量与解析几何或三角的交汇是当今高考命题的必然趋势.本文主要从“角”的角度关注了一些近年来与向量相关的高考题,浅析了一些命题趋势,希望为向量教学或复习带来一些帮助。
一.用来证明直线间的垂直关系例题1. (2004湖南文)如图,过抛物线24x y =的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A ,B 两点,点Q 是点P 关于原点的对称点.设点P 分有向线段AB 所成的比为λ,证明:()QP QA QB λ⊥-;解:依题意,可设直线AB 的方程为 ,m kx y +=代入抛物线方程y x 42=得.0442=--m kx x ①设A 、B 两点的坐标分别是 ),(11y x 、22(,),x y12,x x 则是方程①的两根.所以 .421m x x -=由点P (0,m )分有向线段所成的比为λ, 得.,012121x xx x -==++λλλ即又点Q 是点P 关于原点的对称点,故点Q 的坐标是(0,-m ),从而)2,0(m =.1122(,)(,)QA QB x y m x y m λλ-=+-+1212(,(1)).x x y y m λλλ=--+-])1([2)(21m y y m λλλ-+-=-⋅221212122212144)(2])1(44[2x m x x x x m n x x x x x x m +⋅+=++⋅+=.0444)(2221=+-⋅+=x mm x x m 所以 ).(λ-⊥二、用来求直线间的夹角例题2. (2004年全国卷Ⅱ第21题)给定抛物线C :24y x =,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27讲 三角法与向量法解平面几何题相关知识在ABC ∆中,R 为外接圆半径,r 为内切圆半径,2a b cp ++=,则 1,正弦定理:2sin sin sin a b cR A B C===, 2,余弦定理:2222cos a b c bc A =+-,2222cos b a c ac B =+-,2222cos c a b ab C =+-. 3,射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+. 4,面积:211sin 2sin sin sin 224a abc S ah ab C rp R A B C R===== = (sin sin sin )rR A B C ++2221(cot cot cot )4a Ab Bc C =++. A 类例题例1.在ΔABC 中,已知b =asinC ,c =asin (900-B ),试判断ΔABC 的形状。
分析 条件中有边、角关系, 应利用正、余弦定理, 把条件统一转化为边或者是角的关系, 从而判定三角形的形状。
解 由条件c = asin (900- B ) = acosB = cb c a ac b c a a 22222222-+=-+22222c b c a =-+⇒ 是直角A b c a ⇒+=⇒2221sin sin sin =⇒=A A C cA a 是直角⎫⎬⎭C a c Cca sin sin=⇒=⇒. C a b sin =⇒=⇒c b ΔABC 是等腰直角三角形。
例2.(1)在△ABC 中,已知cosA =135,sinB =53,则cosC 的值为( )A .6516B .6556C .65566516或D . 6516-解 ∵C = π - (A + B ),∴cosC = - cos (A + B ),又∵A ∈(0, π),∴sinA = 1312,而sinB =53显然sinA > sinB ,∴A > B , ∵A 为锐角, ∴B 必为锐角, ∴ cosB = 54∴cosC = - cos (A + B ) = sinAsinB - cosAcosB =651654135531312=⨯-⨯.选A . 说明 △ABC 中,sinA > sinB ⇔A > B . 根据这一充要条件可判定B 必为锐角。
(2)在Rt △ABC 中,C =90°,A =θ,外接圆半径为R ,内切圆半径为r ,当θ为 时,Rr 的值最小。
解答 由题意,R =2c ,r =2a b c+-.(其中a 、b 、c 为Rt △ABC 的三条边长,c 为斜边长)∴Rr =c a b c +-=1sin cos 1θθ+-=12sin()14πθ+-.∵sin (α+4π)≤1,∴Rr ≥121-=2+1. 当且仅当θ=4π时,Rr的最小值为2+1。
例3 在△ABC 中,tan tan tan tan A B A B -+=c bc-,求证:B 、A 、C 成等差数列。
分析 由于条件等式是关于三角形的边、角关系,而要证的结论只有角的关系,故应运用正弦定理将边转化为角。
而B 、A 、C 成等差数列的充要条件是A =60°,故应证A =60°。
证明 由条件得sin()sin()A B A B -+=sin sin sin C BC-.∵sin (A +B )=sinC ,∴sin (A -B )=sinC -sinB ,∴sinB =sin (A +B )-sin (A -B )=2cosAsinB . ∵sinB ≠0,∴cosA =12,A =60°.∴B 、A 、C 成等差数列。
例4 ∆ABC 中,三个内角A 、B 、C 的对边分别为c b a 、、,若222a cb ac +=+,:31):2a c =+且,求角C 的大小。
解 由212222222=-++=+ac b c a ac b c a 可得=cosB ,故B =60,A +C =120. 由正弦定理有:213sin sin +==c a C A ,31sin sin ,2A C ∴= 又sinA =sin (120-C )=C C sin 21cos 23+,于是=+C C sin 21cos 2331sin ,2C ∴sinC =cosC ,∴tanC =1, ∴C =45。
∴A +C =120,31sin sin ,2A C =要求C 需消去A 。
说明 解本题时首先要运用正弦定理将边的关系转化为角的关系,从而得关于A 、C 的两个方程链接1.利用正弦定理,可以解决以下两类有关三角形的问题: (1)己知两角和任一边,求其它两边和一角;(2)己知两边和其中一边的对角,求另一边的对角(从而进一步求出其它的边和角)。
己知两边和其中一边的对角解三角形,有一解或两解。
2.利用余弦定理,可以解决以下两类有关三角形的问题: (1)己知三边,求三个角;(2)己知两边和它们的夹角,求第三边和其它两个角。
3.解斜三角形:要明确三角形的六个元素(三条边、三个内角)中己知什么,求什么。
再运用三角形内角和定理、正弦定理与余弦定理解题。
4.研究三角形的边角关系和判断三角形的形状:运用三角形内角和、正弦定理与余弦定理及三角变换公式,灵活进行边角转换。
三角形中的边角关系式和三角形形状的判断证明,都可归入条件恒等式证明一类,常用到互补、互余角的三角函数关系。
情景再现1 △ABC 的三个内角A 、B 、C 的对边分别是a 、b 、c ,如果a 2=b (b +c ),求证:A =2B . 2.∆ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知a 、b 、c 成等比数列,且3cos 4B =(1)求cot cot A C +的值(2)设32BA BC ⋅=,求a c +的值3 已知A 、B 、C 是△ABC 的三个内角,y =cot A +)(C B A A-+cos cos sin 2.(1) 若任意交换两个角的位置,y 的值是否变化?试证明你的结论.(2)求y 的最小值.B 类例题例5 如图,某园林单位准备绿化一块直径为BC 的半圆形空地,△ABC 外的地方种草,△ABC 的内接正方形PQRS 为一水池,其余的地方种花.若BC=a ,∠ABC=θ,设△ABC 的面积为S 1,正方形的面积为S 2.(1)用a ,θ表示S 1和S 2;(2)当a 固定,θ变化时,求21S S 取最小值时的角θ。
解(1)22111sin ,cos sin cos sin 224AC a AB a S a a θθθθθ==∴==设正方形边长为x ,则cot ,tan cot tan BQ x RC x x x x a θθθθ==∴++=2sin cos sin 2cot tan 11sin cos 2sin 2a a a x θθθθθθθθ===++++22222sin 2sin 22sin 24sin 24sin 2a a S θθθθθ⎛⎫∴== ⎪+++⎝⎭(2)当a 固定,θ变化时,1214sin 244sin 2S S θθ⎛⎫=++ ⎪⎝⎭令1211sin 2,44S t t S t θ⎛⎫==++ ⎪⎝⎭则()10,0 1.2t f t t tπθ<<∴<≤=+令,用导数知识可以证明:函数()1f t t t=+在(]0,1是减函数,于是当1t =时,12S S 取最小值,此时4πθ=。
说明 三角函数有着广泛的应用,本题就是一个典型的范例。
通过引入角度,将图形的语言转化为三角的符号语言,再将其转化为我们熟知的函数()tt t f 1+=。
三角函数的应用性问题是历年高考命题的一个冷点,但在复习中应引起足够的关注。
例6如图,A 、B 是一矩 OEFG 边界上不同的两点,且∠AOB=45设∠AOE=α.(1)写出△AOB 的面积关于α的函数关系式f(α); (2)写出函数f(x)的取值范围。
解:(1)∵OE=1,EF=3∴∠EOF=60°当α∈[0,15°]时,△AOB 的两顶点A 、B 在E 、F 上, 且AE=tan α,BE=tan(45°+α)∴f(α)=S △AOB =21[tan(45°+α)-tan α] =)45cos(·cos 245sin α+︒︒α=2)452cos(22+︒+α 当a ∈(15°,45°]时,A 点在EF 上,B 点在FG 上,且OA=αcos 1,OB=)45cos(3α-︒ ∴)(αf =S △AOB =21OA ·OB ·sin45°=αcos 21·)45cos(3α-︒·sin45°=2)24cos(26+-απ综上得:f(α)= ⎪⎪⎪⎩⎪⎪⎪⎨⎧∈+-∈++]4,12(2)42cos(26]12,0[2)42cos(22ππαππαπ α α(2)由(1)得:当α∈[0,12π]时 f(α)= 2)42cos(22++πα∈[21,3-1]且当α=0时,f(α)min =21;α=12π时,f(α)max =3-1;当α∈]4,12(ππ时,-12π≤2α-4π≤4π,f (α)=2)42cos(26+-πα∈[6-3,23] 且当α=8π时,f(α) min =6-3;当α=4π时,f(α) max =23所以f(x) ∈[21,23]。
说明 三角函数与其他数学知识有着紧密的关系,它几乎渗透了数学的每一个分支。
注意三角函数的综合应用。
例7 海中相距2海里的A 、B 两岛,分别到海岸线l(直线)的距离AC=BD =P ,使∠APB 最大,求点P 的位置,且求∠APB 的最大值。
解 如图,过P 作l 的垂线PQ 交AB 于Q ,,AC l BD l AC PQ DB ⊥⊥∴、,设,,APQ BPQ APB αβαβ∠=∠=∴∠=+,且,CAP DBP αβ∠=∠=,在直角梯形ABDC中,2,ACBD AB CD ===∴=A 作'AA BD ⊥于','A BA ∴=在'K R AA B ∆中求出'AA =,设CP t =(0t ≤≤tan tan tan tan()01tan tan αβαβαβαβ∴==+∴+===>-⋅(0,),tan()2παβαβ∴+∈∴+有最大值时,αβ+也有最大值。
令20,1)40y yt t y =>∴-++=0,y t ⎡>∈⎣20,1)4(40y y ∆∴≥∴+--≥,即21410y --≤142y ∴-≤≤∴≤又y>0,0<y 2max 2y ∴=时,122t y +⎡==+=⎣ ∴当t =y 有最大值,即tan()αβ+有最大值,其值为1,APB αβ∴∠=+的最大值为4π,点P 在点D 时,APB ∠最大,最大值为4π。