高中数学高二数学文科期末测试题练习题带答案

合集下载

甘肃省天水市秦安县高中2013-2014学年高二上学期期末考试数学(文)试题Word版含答案

甘肃省天水市秦安县高中2013-2014学年高二上学期期末考试数学(文)试题Word版含答案

一、选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将正确的选项填涂在答题卡上)1.下列命题中的假命题是( ). A. 0lg ,=∈∃x R x B. 1tan ,=∈∃x R xC. 0,3>∈∀x R xD. 02,>∈∀x R x2.“0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆”的( ). A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件3. 设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为( ).A.x y 2±= B .x y 22±= C . x y 2±= D.x y 21±=4.如果方程121||22=---m y m x 表示双曲线,那么实数m 的取值范围是( ). A. 2>m B .1<m 或2>m C . 21<<-m D .11<<-m 或2>m 5.已知椭圆2222=+y x 的两焦点为21,F F ,且B 为短轴的一个端点,则21BF F ∆的外接圆方程为()A .4)1(22=+-y x B. 122=+y x C. 422=+y x D. 4)1(22=-+y x6. 已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( ). A.14B .142C .15D .1527.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .1928. 不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( ). A. 10 B. 10- C. 14 D. 14-9.设x x x f ln )(=,若2)(0='x f ,则=0x ( ). A . 2eB . eC .ln 22D .ln 210. 如图,1F 和2F 分别是双曲线12222=-b y a x (0,0>>b a )的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与该双曲线左支的两个交点,且AB F 2∆是等边三角形,则双曲线的离心率为( ) A .3B.5 C.13+ D.2511. 设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A . 1B .21C .21- D . 1- 12.函数y =3x 2+6x 2+1的最小值是( ) A .32-3 B .-3 C .6 2 D .62-3 二.填空题(每小题5分,共20分)13.抛物线281x y -=的准线方程是 ;14.函数1)(23+++=mx x x x f 是R 上的单调函数,则m 的取值范围为 ;15. 过点(1,1)M 作一直线与椭圆22194x y +=相交于B A ,两点,若M 点恰好为弦AB的中点,则AB 所在直线的方程为 ;16. 设实数,x y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则y u x =的取值范围是 .三、解答题:(本大题共6小题,共70分。

吉林长春东北师大附中2022-2023学年高二下学期期末数学试题(解析版)

吉林长春东北师大附中2022-2023学年高二下学期期末数学试题(解析版)

2022-2023学年东北师大附中(高二)年级(数学)科试卷下学期期末考试第I 卷(选择题)一、单项选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知某质点运动的位移y (单位;cm )与时间t (单位;s )之间的关系为()()ln 21y t t =+,则该质点在2s =t 时的瞬时速度为( ) A.15B.25C. 2D. 4【答案】B 【解析】【分析】对()()ln 21y t t =+求导得()221y t t ′=+,从而可求质点在2s =t 时的瞬时速度()2y ′. 【详解】因为()()ln 21y t t =+,所以()221y t t ′=+, 所以该质点在2s =t 时的瞬时速度为()2222125y ′==×+. 故选:B.2. 某中学课外活动小组为了研究经济走势,根据该市1999-2021年的GDP (国内生产总值)数据绘制出下面的散点图:该小组选择了如下2个模型来拟合GDP 值y 随年份x 的变化情况,模型一:(0,0)y kx b k x =+>>;模型二:e (0,0)x y k b k x =+>>,下列说法正确的是( ) A. 变量y 与x 负相关B. 根据散点图的特征,模型一能更好地拟合GDP 值随年份的变化情况C. 若选择模型二,e x y k b =+的图象一定经过点(),x yD. 当13x =时,通过模型计算得GDP 值为70,实际GDP 的值为71,则残差为1 【答案】D 【解析】【分析】对于AB ,由散点图的变化趋势分析判断,对于C ,由线性回归方程的性判断,对于D ,结合残差的定义判断.【详解】对于A ,由散点图可知y 随年份x 的增大而增大,所以变量y 与x 正相关,所以A 错误, 对于B ,由散点图可知变量y 与x 的变化趋向于一条曲线,所以模型二能更好地拟合GDP 值随年份的变化情况,所以B 错误,对于C ,若选择模型二:e (0,0)x y k b k x =+>>,令e x t =,则ykt b =+的图象经过点(),t y ,所以C 错误,对于D ,当13x =时,通过模型计算得GDP 值为70,实际GDP 的值为71,则残差为71701−=,所以D 正确, 故选:D 3. 函数21()ln 2f x x x =−的减区间为( ) A. (1,1)− B. (,1)−∞C. (0,1)D. (0,)+∞【答案】C 【解析】【分析】对函数求导,然后通分,进而令导函数小于0,最后求得单调递减区间. 【详解】函数()21ln 2f x x x =−的定义域为()0,∞+, 求导得()211x f x x x x =′−=−, 令()210x f x x−′=<,0x ,01x ∴<<,因此函数()21ln 2f x x x =−的减区间为()0,1. 故选:C.4. 已知随机变量X 的分布列为设23Y X =+,则()D Y 等于( )A.83B.53C.43D.173【答案】A 【解析】【分析】根据分布列求出()E X ,()D X ,再根据条件得()()4D Y D x =,计算答案即可. 【详解】由X 的分布列得()1110121333E X =×+×+×=, ()()()()22211120111213333D X =−×+−×+−×=,因为23Y X =+,则()()843D Y D X ==. 故选:A.5. 某教育局为振兴乡村教育,将5名教师安排到3所乡村学校支教,若每名教师仅去一所学校,每所学校至少安排1名教师,则不同的安排情况有( ) A. 300种 B. 210种 C. 180种 D. 150种【答案】D 【解析】【分析】根据部分均匀分组分配求解即可.【详解】由于每所学校至少安排1名教师,则不同的安排情况有2233535322C C C A 150A +=种. 故选:D .6. 已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x −+=的实数根,则10b 等于( ) A. 24 B. 32C. 48D. 64【答案】D 【解析】【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +−=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x −+=的实数根, 所以1n n n a a b ++=,12n n n a a +=, 又11a =,所以22a =; 当2n ≥时,112n n n a a −−=,所以11112n n n n n na a a a a a ++−−==, 因此4102232a a =⋅=,5111232a a =⋅= 所以101011323264b a a =+=+=. 故选:D.【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.7. 已知函数e ()xf x ax x=−,,()0x ∈+∞,当210x x >>时,不等式()()1221f x f x x x <恒成立,则实数a 的取值范围为( ) A. (,e]−∞ B. (,e)−∞C. e ,2−∞D. e ,2−∞【答案】D 【解析】【分析】根据不等式,构造函数并明确其单调性,进而可得导数的不等式,利用参数分离整理不等式,构造函数,利用导数求其最值,可得答案. 【详解】 当210x x >>时,不等式()()1221f x f x x x <恒成立,则()()1122f x x f x x <, 即函数()()2e xg x xf x ax ==−在()0,∞+上单调递增,则()e 20xg x ax ′=−≥, 整理可得2x e a x ≤,令()e x m x x =,则()()21e x x m x x−′=. 当()0,1x ∈时,()0m x ′<,()m x 单调递减,当()1,x ∈+∞时,()0m x ′>,()m x 单调递增,()()min 21e a m x m ∴≤==,e2a ∴≤. 故选:D.8. 设甲袋中有3个红球和4个白球,乙袋中有1个红球和2个白球,现从甲袋中任取1球放入乙袋,再从乙袋中任取2球,记事件A =“从甲袋中任取1球是红球”,事件B =“从乙袋中任取2球全是白球”,则下列说法正确的是( )A. 9()14=P BB. 6()7P AB =C. ()15P A B =D. 事件A 与事件B 相互独立【答案】C 【解析】分析】由古典概型概率计算公式,以及条件概率公式分项求解判断即可.【详解】现从甲袋中任取1球放入乙袋,再从乙袋中任取2球可知,从甲袋中任取1球对乙袋中任取2球有影响,事件A 与事件B 不是相互独立关系, 故D 错误; 从甲袋中任取1球是红球的概率为:()37P A =, 从甲袋中任取1球是白球的概率为:47, 所以乙袋中任取2球全是白球的概率为:()1212324312127474C C C C 125+C C C C 14714==+=P B ,故A 错误;()12321274C C 1C C 14==P AB ,故B 错误; ()()()11411455P AB P A B P B ==×=,故C 正确; 故选:C二、多项选择题:本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多项符合题目要求。

辽宁高二高中数学期末考试带答案解析

辽宁高二高中数学期末考试带答案解析

辽宁高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.已知数列的前项和为,则()A.7B.9C.11D.122.已知命题,则()A.B.C.D.3.设,则下列不等式成立的是()A.B.C.D.4.数列、满足,则“数列是等差数列”是“数列是等比数列”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也必要条件5.在直角坐标平面内,满足方程的点所构成的图形为()A.抛物线及原点B.双曲线及原点C.抛物线、双曲线及原点D.两条相交直线6.设公差不为零的等差数列的前项和为,若,则()A.B.C.7D.147.函数的图象在点处的切线方程是()A.B.C.D.8.若正实数满足不等式,则的取值范围是()A.B.C.D.9.已知点为抛物线上一点,记到此抛物线准线的距离为,点到圆上点的距离为,则的最小值为()A.6B.1C.5D.310.设各项均为正数的数列的前项之积为,若,则的最小值为().A.7B.8C.D.11.已知的图像关于原点对称,且当时,(其中是的导函数),,,则下列关系式正确的是()A.B.C.D.12.设双曲线的左、右焦点分别为,点在双曲线的右支上,且,则此双曲线的离心率的取值范围为()A.B.C.D.二、填空题1.已知双曲线的渐近线方程为,且经过点,则该双曲线的方程为________.2.已知关于的不等式的解集为,则关于的不等式的解集为________.3.已知集合,设集合,则集合所对应的平面区域的面积为________.4.设是定义域上的增函数,,且,记,则数列的前项和________.三、解答题1.已知条件使不等式成立;条件有两个负数根,若为真,且为假,求实数的取值范围.2.已知函数.(1)讨论函数的单调性;(2)求函数在区间上的最小值.3.已知数列的前项和满足,其中.(1)求数列的通项公式;(2)设,数列的前项和为,若对恒成立,求实数的取值范围.4.已知圆,经过椭圆的右焦点及上顶点,过圆外一点倾斜角为的直线交椭圆于两点.(1)求椭圆的方程;(2)若右焦点在以线段CD为直径的圆的内部,求的取值范围.5.已知函数(为常数,无理数是自然对数的底数),曲线在点处的切线方程是.(1)求的值;(2)证明不等式.6.已知双曲线的左、右两个顶点分别为.曲线是以两点为短轴端点,离心率为的椭圆.设点在第一象限且在曲线上,直线与椭圆相交于另一点.(1)设点的横坐标分别为,证明:;(2)设与(其中为坐标原点)的面积分别为与,且,求的最大值.辽宁高二高中数学期末考试答案及解析一、选择题1.已知数列的前项和为,则()A.7B.9C.11D.12【答案】B【解析】因为数列的前项和为,所以,故B为正确答案.【考点】数列的前项和.2.已知命题,则()A.B.C.D.【答案】C【解析】全称命题的否定是特称命题,结论也得否定;所以命题,故C为正确答案.【考点】命题的否定.3.设,则下列不等式成立的是()A.B.C.D.【答案】A【解析】可用特殊值法:令,经检验B、C、D都不正确,只有A正确,所以A为正确答案.【考点】不等关系与不等式.4.数列、满足,则“数列是等差数列”是“数列是等比数列”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也必要条件【答案】C【解析】当数列是公差为的等差数列时,,所以数列是等比数列;当数列是公比为的等比数列时,,所以数列是等差数列;因此“数列是等差数列”是“数列是等比数列”的充要条件.【考点】1、等差数列的定义;2、等比数列的定义;3、逻辑关系.5.在直角坐标平面内,满足方程的点所构成的图形为()A.抛物线及原点B.双曲线及原点C.抛物线、双曲线及原点D.两条相交直线【答案】D【解析】方程,得,化简得,所以满足方程的点所构成的图形为两条相交直线.【考点】1、轨迹问题;2、方程的解.6.设公差不为零的等差数列的前项和为,若,则()A.B.C.7D.14【答案】C【解析】根据等差数列的性质,化简得,所以,故C为正确答案.【考点】1、等差数列的通项公式;2、等差数列的前项和.7.函数的图象在点处的切线方程是()A.B.C.D.【答案】A【解析】由函数知,,所以,在点处的切线方程是,化简得.【考点】1、导数的运算;2、导数的几何意义.8.若正实数满足不等式,则的取值范围是()A.B.C.D.【答案】B【解析】由正实数满足不等式,得到如下图阴影所示的区域:当过点时,,当过点时,,所以的取值范围是.【考点】线性规划问题.9.已知点为抛物线上一点,记到此抛物线准线的距离为,点到圆上点的距离为,则的最小值为()A.6B.1C.5D.3【答案】D【解析】连接抛物线的焦点与圆心,由抛物线的定义知这两点连线的长度减去圆的半径即为所求的最小值,因为抛物线的焦点为,圆心为,半径为2,所以的最小值为.考点,1、抛物线的定义;2、圆的方程.10.设各项均为正数的数列的前项之积为,若,则的最小值为().A.7B.8C.D.【答案】A【解析】由题意知,所以,所以,构造对勾函数,该函数在上单调递减,在上单调递增,在整数点时取到最小值7,所以当时,的最小值为7.【考点】1、数列的通项公式;2、函数性质与数列的综合.11.已知的图像关于原点对称,且当时,(其中是的导函数),,,则下列关系式正确的是()A.B.C.D.【答案】A【解析】由得,即当时,单调递减;又函数的图像关于原点对称,所以是偶函数,且当时,单调递增;,∴,因此.【考点】1、函数的单调性;2、导函数;3、函数的奇偶性.【技巧点晴】本题主要考查的是利用导数研究函数的单调性、函数的奇偶性、比大小的综合应用,属于难题;本题应先根据已知条件得到函数的单调性和奇偶性,碰到比较三个数大小的问题,常见的解决方法有:作差、作商、借助中间量、单调性等,本题是利用函数的单调性和奇偶性,从而比较出几个数的大小,判断单调性是本题的关键.12.设双曲线的左、右焦点分别为,点在双曲线的右支上,且,则此双曲线的离心率的取值范围为()A.B.C.D.【答案】B【解析】由点在双曲线的右支上和双曲线的定义得,而,所以;在中,任意两边之和大于第三边得,,而双曲线的,所以,故B为正确答案.【考点】1、双曲线的性质;2、双曲线的定义;3、离心率的求法.【思路点晴】本题主要考查的是双曲线的简单性质、双曲线的定义等,属于中档题;选择题和填空题中对圆锥曲线的考查,往往和离心率结合;本题先根据已知条件和双曲线的定义,表示出,再利用三角形的了任意两边之和大于第三边,得到关于离心率的表达式,即可求出此双曲线的离心率的取值范围.二、填空题1.已知双曲线的渐近线方程为,且经过点,则该双曲线的方程为________.【答案】【解析】双曲线的渐近线方程为,所以;把点代入双曲线方程得,所以该双曲线的方程为.【考点】1、双曲线的方程;2、渐近线.2.已知关于的不等式的解集为,则关于的不等式的解集为________.【答案】【解析】由题意可得,不等式即,所以,化简得.【考点】1、含参不等式;2、二次不等式的解法.3.已知集合,设集合,则集合所对应的平面区域的面积为________.【答案】16【解析】如下图所示:集合表示图中红线围成的正方形区域,集合表示黑色形成的角形曲线,所以集合所对应的平面区域即为图中的阴影区域,其面积为.【考点】1、线性规划;2、集合的运算.【技巧点晴】本题主要是以集合的运算为依托,考查线性规划问题,属于中档题;求限制条件(一般用不等式组来表示)所表示平面区域的面积,一般分为如下步骤:①化简不等式;②分析不等式表示的平面区域;③画出草图分析可行域;④结合平面几何的知识求出面积.4.设是定义域上的增函数,,且,记,则数列的前项和________.【答案】【解析】令,则,得;令,则,而,所以数列是以为首项,以为公差的等差数列,因此数列的前项和.【考点】1、抽象函数;2、等差数列的判定;3、等差数列的前项和.【思路点晴】本题主要考查的知识点是函数的性质、等差数列的判定、等差数列的前项和公式等,属于中档题;本题由抽象函数得到该数列是等差数列是解题的关键,对于抽象函数问题,赋值是关键,通过几次赋值,得到,证明该数列是等差数列,代入等差数列的前项和公式求解即可.三、解答题1.已知条件使不等式成立;条件有两个负数根,若为真,且为假,求实数的取值范围.【答案】实数的取值范围是或.【解析】因为为真,为假,所以一真一假;分若真假和假真两种情况讨论即可.试题解析:∵为真,为假,∴一真一假.由题设知,对于条件,∵,∴,∵不等式成立,∴,解得对于条件∵有两个负数解,∴,∴,若真假,则;若假真,则,∴的取值范围是:或【考点】1、逻辑与命题;2、含参的二次方程的解法.2.已知函数.(1)讨论函数的单调性;(2)求函数在区间上的最小值.【答案】(1)函数的单调性为:当时,的增区间为;减区间为;当时,只有增区间;当时,的增区间为;减区间为;(2)函数在区间上的最小值为.【解析】(1)先对函数求导,根据结果分、、三种情况,令导函数等于0,分别求出每种情况的单调区间即可;(2)结合第一问的单调性,分和两种情况,分别讨论每一段的最小值即可.试题解析:(1)定义域为,∵,•当时,令,解得;令,解得.‚时,恒成立,所以只有增区间.ƒ当时,令,解得;令,解得,综上:当时,的增区间为;减区间为;当时,只有增区间;当时,的增区间为;减区间为(2)∵,∴时,解得.∵,∴,由(1)可知①当,即时,在区间上单调递增.∴;②当,即时,在区间上单调递减,在区间上单调递增.∴综上:∴,【考点】1、函数的单调性;2、最值问题.3.已知数列的前项和满足,其中.(1)求数列的通项公式;(2)设,数列的前项和为,若对恒成立,求实数的取值范围.【答案】(1)数列的通项公式为;(2)实数的取值范围是.【解析】(1)已知数列的前项和满足,利用,求出数列是等比数列,然后求出通项公式即可;(2)根据第一问的结论,先表示出,因此对都成立,即,解出实数的取值范围即可.试题解析:(1)∵,①当,∴,当,∵,②①-②:,即:又∵,∴对都成立,所以是等比数列,∴(2)∵,∴,∴,∴,∵,∴对都成立∴,∴或,∴实数的取值范围为【考点】1、数列通项公式的求法;2、恒成立问题.4.已知圆,经过椭圆的右焦点及上顶点,过圆外一点倾斜角为的直线交椭圆于两点.(1)求椭圆的方程;(2)若右焦点在以线段CD为直径的圆的内部,求的取值范围.【答案】(1)椭圆的方程为;(2)的取值范围是.【解析】(1)因为圆经过点,求出的坐标,代入椭圆方程即可;(2)设直线的方程为,与椭圆方程联立,令判别式大于0,得到一个关于的不等式;结合韦达定理和已知条件,表示出,又点在圆的内部,所以,又得到一个关于的不等式,联立即可.试题解析:(1)∵圆经过点.∴,∴,∴.故椭圆的方程为,(2)设直线的方程为.由消去得,设,则,∴.∵∴∵点在圆的内部,∴,即,解得,由,解得.又,∴,【考点】1、椭圆的方程;2、直线与椭圆的位置关系.5.已知函数(为常数,无理数是自然对数的底数),曲线在点处的切线方程是.(1)求的值;(2)证明不等式.【答案】(1)的值为;(2)证明过程详见试题解析.【解析】(1)先由已知条件求出,根据导数的几何意义求出切线的斜率,得到的关系;把点代入切线方程即可求出的值;(2)构造函数,利用导数工具求出该函数的最大值,所以;再构造函数,根据函数的单调性证得,联立即可证明.试题解析:解:(1)由得.由已知得,解得.又,即∴,(2)证明:令,∴,.易得当时,,即单调递增;当时,,即单调递减.所以的最大值为,故.①设,则,因此,当时,单调递增,.故当时,,即.②由①②得【考点】1、导数的几何意义;2、最值的求法;3、构造函数.【思路点晴】本题主要考查的知识点是利用导数研究函数的单调性、最值等问题,属于难题;利用导数的几何意义求出在某点处的斜率,根据点斜式得到切线方程,从而可以求出参数的值;本题证明过程中构造函数是关键,把证明不等式成立转化为最值问题,是函数证明类问题的有效解决方法.6.已知双曲线的左、右两个顶点分别为.曲线是以两点为短轴端点,离心率为的椭圆.设点在第一象限且在曲线上,直线与椭圆相交于另一点.(1)设点的横坐标分别为,证明:;(2)设与(其中为坐标原点)的面积分别为与,且,求的最大值.【答案】(1)证明过程详见试题解析;(2)的最大值为.【解析】(1)依题意先求出椭圆的方程,设直线的程为,联立方程组整理得,表示出解点的横坐标,同理表示出点的横坐标,即可证明;(2)先表示出,根据,整理得;又点在第一象限且在曲线上,所以;所以,由(1)知,,结合函数的性质即可求出最大值.试题解析:(1)依题意可得.设椭圆的方程为,因为椭圆的离心率为,所以,即,所以椭圆的方程为,证法1:设点,直线的斜率为,则直线的方程为,联立方程组,整理得,解得或.所以,同理可得,…所以.证法2:设点,则,因为,所以,即.因为点和点分别在双曲线和椭圆上,所以,即.所以,即,所以.(2)解:设点,则,因为,所以,即.因为点在双曲线上,则,所以,即,因为点是双曲线在第一象限内的一点,所以.因为,所以,由(1)知,,设,则,,因为在区间上单调递增,,所以,即当时,,【考点】1、圆锥曲线的性质;2、直线与圆锥曲线的位置关系;3、面积问题.【易错点晴】本题主要考查的是椭圆方程的求法、椭圆和双曲线的性质、直线与圆锥曲线的位置关系、函数最值等,属于综合性较强的难题;本题中第一个易错点是直线与圆锥曲线的联立,化简时一定要细心;第二个易错点是取值范围,时刻要注意,根据取值范围把面积乘积的最大值问题,转化为函数在某个区间上的最值问题.。

黑龙江高二高中数学期末考试带答案解析

黑龙江高二高中数学期末考试带答案解析

黑龙江高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1..“p或q是假命题”是“非p为真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知为偶函数且,则等于 ( )A.0B.4C.8D.16 3.观察下列式子: <2,<3,<4,….归纳出的结论是 ( )A.B.C.D.以上都不对4.命题:“对任意一个实数,均有”,则为()A.存在,使得B.对任意,均有C.存在,使得D.对任意,均有5.直线过椭圆左焦点F1和一个顶点B,则该椭圆的离心率为 ( ) A. B. C. D.6.已知是两条不同的直线,是两个不同的平面,有下列命题:①若,则;②若;③若;④若,则;其中真命题的个数是()A.1个B.2个C.3个D.4个7.若命题的否命题为,命题的逆命题为,则是的逆命题的 ( )A.逆否命题B.否命题C.逆命题D.原命题8..若函数的导函数在区间(-∞,4)上是减函数,则实数的取值范围是()A.B.C.D.9..已知双曲线的一个焦点与抛物线的焦点重合,且双曲线的离心率等于,则该双曲线的方程为()A.B.C.D.10.设函数A.B.C.D.211.已知抛物线,过点向抛物线引两条切线,A、B为切点,则线段AB的长度是()A.B.C.D.12.已知双曲线方程为,过点作直线与双曲线交于两点,记满足的直线的条数为,则的可能取值为()A.B.C.D.二、填空题1.,则a=________.2..已知数列,…,计算得,….由此可猜测=3..直线与函数的图象有相异的三个公共点,则a的取值范围是______.4..已知平面,空间任意三条两两平行且不共面的直线,若直线与,与,与确定的平面分别为,则平面内到平面距离相等的点的个数可能为__三、解答题1.(本小题满分10分)用平行于四面体的一组对棱、的平面截此四面体(如图).(1)求证:所得截面是平行四边形;(2)如果.求证:四边形的周长为定值.2..(本小题满分12分)已知函数(1)讨论函数的单调区间;(2)求函数在[0,2]上的最大值和最小值.3.本小题满分12分)如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为棱AB 和BC 的中点,EF 交BD 于H 。

湖北省普通高中高二下学期期末模拟考试文科数学试题含答案

湖北省普通高中高二下学期期末模拟考试文科数学试题含答案

湖北省普通高中高二下学期期末模拟考试数学(文科)试题(考试范围:选修1-1、不等式选讲;考试时间:120分钟)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题(50分)1.观察下图,可推断出“?”应该填的数字是 ( )?8164247594716531 A .19 B .192 C .117D .1182.函数x x x f 3cos )(=的导数是( )(A ) x x 3sin 33cos + (B ) x 3sin 31- (C) x x x 3sin 33cos - (D)x x x 3sin 3cos -3.下列说法正确的是 ( ) A .命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ” B .a ∈R,“1a<1”是“a>1”的必要不充分条件 C .“p q ∧为真命题”是“q p ∨为真命题”的必要不充分条件 D .命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题4.已知实数4,,9m 构成一个等比数列,则圆锥曲线221x y m+=的离心率为 ( )630.A 7.B 7630.或C765.或D 5.抛物线212y x =-的准线与双曲线22193x y -=的两渐近线围成的三角形的面积为 ( ) A.3 B. 23 C. 2 D.336.直线01:1=+-y x l 关于直线2:=x l 对称的直线2l 方程为( )A .012=--y xB .072=-+y xC .042=--y xD .05=-+y x7.一质点沿直线运动,如果由始点起经过t 秒后的位移为t t t s 833123+-=,那么速度为零的时刻是( ) A .1秒B .1秒末和2秒末C .4秒末D .2秒末和4秒末8.如下图,三棱锥P -ABC 中,三条侧棱两两垂直,且长度相等,点E 为BC 中点,则直线AE 与平面PBC 所成角的余弦值为 ( )A .33B .36C .31D .329.曲线2)(3-+=x x x f 上点0P 处的切线垂直于直线x y 41-=,则点P 0的坐标是( ) A .)0,1(-B .)2,0(-C .)4,1(--或)0,1(D .)4,1(10.已知(0,)x ∈+∞,观察下列各式:21≥+x x ,3422422≥++=+xx x x x ,4273332733≥+++=+x x x x x x ,...,类比有n xa x n ≥+(n ∈N *),则=a ( ) A .n B .2nC .2nD .n n二、填空题(35分)11.空间任一点O 和不共线三点A 、B 、C ,则)1(=++++=z y x OC z OB y OA x OP 是P ,A ,B ,C 四点共面的充要条件.在平面中,类似的定理是 . 12.已知复数z 的实部为2-,虚部为1,则225z i = .13.直线x y =是曲线kx y sin =的一条切线,则符合条件的一个实数k 值为 .14.若幂函数)(x f 的图象经过点)21,41(A ,则该函数在点A 处的切线方程为 . 15.设函数)12ln()(-++=x a x x f 是奇函数的充要条件是a= .16.命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围为 .17.当两个集合中一个集合为另一集合的子集时称这两个集合之间构成“全食”,当两个集合有公共元素,但互不为对方子集时称两集合之间构成“偏食”.对于集合⎩⎨⎧⎭⎬⎫-=1,21,1A ,⎭⎬⎫⎩⎨⎧≥==0,12a ax x B ,若A 与B 构成“全食”,或构成“偏食”,则a 的取值集合为三、解答题(65分)18.(满分12分)已知动点P 到定点()2,0F的距离与点P 到定直线l :22x =的距离之比为22.(1)求动点P 的轨迹C 的方程;(2)设M 、N 是直线l 上的两个点,点E 与点F 关于原点O 对称,若0EM FN =,求MN 的最小值.19.(满分12分)函数f (x )是由向量集A 到A 的映射f 确定, 且f (x )=x -2( x ·a ) a , 若存在非零常向量a 使f [ f (x ) ]= f (x )恒成立.(1) 求|a |;(2) 设AB =a , A (1, -2), 若点P 分AB 的比为-31, 求点P 所在曲线的方程.20.(满分13分)如图,在长方体1111D C B A ABCD -中,11==AD AA ,E 为CD 中点。

黑龙江高二高中数学期末考试带答案解析

黑龙江高二高中数学期末考试带答案解析

黑龙江高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.若全集U=,集合A=,集合B=,则等于( )B. C. D.2.已知,则的表达式为()B. C. D.3.函数的定义域为()B. C. D.4.集合,集合Q=,则P与Q的关系是()P=Q B.P Q C. D.5.已知函数,且,那么等于()A 10 B.-10 C.-18 D.-266.下列函数中在其定义域内即是增函数又是奇函数的是()A.B.C.D.7.若向量=(x,3)(x R)则“x=4"是“=5”的()充分不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.已知则方程的实数根的个数是()A.0B.1C.2D.39.已知命题P:,命题Q:若“P且Q"为真命题,则实数的取值范围是()或 B.或 C. D.10.定义在R上的偶函数在上是增函数,且具有性质:,则该函数()A.在上是增函数B.在上是增函数在上是减函数C.在上是减函数D.在上是减函数在上是增函数11.设是函数的导函数,将和的图象画在同一直角坐标系中,其中不正确的是()12.设分别是定义在R上的奇函数和偶函数,当时,且,则不等式的解集()A.B.C.D.二、填空题1.函数的单调增区间是___________2.偶函数在上是减函数,若,则实数的取值范围是__________3.曲线的切线的倾斜角的取值范围是________4.已知函数在R上可导,函数给出以下四个命题:(1) (2) (3) (4)的图象关于原点对称,其中正确的命题序号有__________三、解答题1.命题P:,命题Q:,若是的必要不充分条件,求实数的取值范围2.已知集合A=B=(1)若,求实数m的值(2)若A,求实数m取值范围3.已知关于x的二次方程(1)若方程有两根,其中一根在区间内,另一根在区间内,求m的取值范围(2)若方程两根均在区间内,求m的取值范围4.已知是函数的一个极值点,其中(1)求m与n的关系表达式。

高二(下)期末数学复习试卷三(文科)

高二(下)期末数学复习试卷三(文科)

高二(下)期末数学复习试卷三(文科)一、选择题(每小题5分,共60.0分)1.设复数z满足(1+i)z=2i,则|z|=()A. 12B. √22C. √2D. 22.用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是( )A. 有两个内角是钝角B. 有三个内角是钝角C. 至少有两个内角是钝角D. 没有一个内角是钝角3.设函数y=√4−x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A. (1,2)B. (1,2]C. (−2,1)D. [−2,1)4.设i为虚数单位,m∈R,“复数m(m−1)+i是纯虚数”是“m=1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5.执行如图所示的程序框图,如果运行结果为720,那么判断框中可以填入( )A. k<6?B. k<7?C. k>6?D. k>7?6.设某中学的高中女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,3,…,n),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是()A. y与x具有正线性相关关系B. 回归直线过样本的中心点(x,y)C. 若该中学某高中女生身高增加1cm,则其体重约增加0.85kgD. 若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg7.函数f(x)=ln|x+1|x+1的大致图象为()A. B.C. D.8.用二分法求方程近似解的过程中,已知在区间[a,b]上,f(a)>0,f(b)<0,并计算得到f(a+b2)<0,那么下一步要计算的函数值为()A. f(3a+b4) B. f(a+3b4) C. f(a+b4) D. f(3a+3b4)9.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气达标天数的比重下降了 ③8月是空气质量最好的一个月 ④6月份的空气质量最差.A. ①②③B. ①②④C. ①③④D. ②③④10. 下列说法错误的是()A. 在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B. 在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好C. 线性回归方程对应的直线y ̂=b ̂x +a ̂至少经过其样本数据点中的一个点D. 在回归分析中,相关指数R 2越大,模拟的效果越好 11. 若函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A. 1<a ≤2B. a ≥4C. a ≤2D. 0<a ≤312. 已知定义在R 上的函数y =f (x )对任意的x 满足f (x +1)=−f (x ),当−1≤x <1,f (x )=x 3.函数g(x)={|log a x|,x >0−1x,x <0,若函数h (x )=f (x )-g (x )在[-6,+∞)上恰有6个零点,实数a 的取值范围是( )A. (0,17)⋃(7,+∞)B. [19,17)⋃(7,9]C. (19,17]⋃[7,9)D. [19,1)⋃(1,9]二、填空题(本大题共4小题,每题5分,共20.0分)13. 函数f (x )=ax 3+3x 2+2,若f ′(-1)=6,则a 的值等于______ . 14. ln1=0,ln (2+3+4)=2ln3,ln (3+4+5+6+7)=2ln5,ln (4+5+6+7+8+9+10)=2ln7,……则根据以上四个等式,猜想第n 个等式是______.(n ∈N *) 15. 已知函数f(x)={3x −1,x >0−2x 2−4x,x ≤0,若方程f(x)=m 有3个不等的实根,则实数m 的取值范围是________.16. 已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =f ˈ(x )图象如图所示.下列关于f (x )的命题:X -1 0 4 5 f (x )1221①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a有4个零点.其中正确命题的序号是__________.三、解答题(本大题共7小题,共84.0分)17.已知命题p:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,命题q:函数y=log a(1-2x)在定义域上单调递增,若“p∨q”为真命题且“p∧q”为假命题,求实数a的取值范围.18.已知函数f(x)=(a2-3a+3)a x是指数函数.(1)求f(x)的表达式;(2)判断F(x)=f(x)-f(-x)的奇偶性,并加以证明;(3)解不等式:log a(1-x)>log a(x+2).19.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.050.01k 3.841 6.635.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)20. 中国"一带一路"战略构思提出后,某科技企业为抓住"一带一路"带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x台,需另投入成本c (x )(万元),当年产量不足80台时,c (x )=12x 2+40x(万元);当年产量不小于80台时,c (x )=101x +8100x−2180(万元).若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?21. 已知函数f (x )=x •ln x .(Ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程; (Ⅱ)求f (x )的单调区间;(Ⅲ)若对于任意x ∈[1e ,e],都有f (x )≤ax -1,求实数a 的取值范围.四、选考题(本题满分10,请在22题23题任选一题作答,多答则以22题计分,解答应写出文字说明、证明过程或演算步骤.)[选修4-4:坐标系与参数方程]22. 已知曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,有曲线C 2:ρ=2cosθ-4sinθ (1)将C 1的方程化为普通方程,并求出C 2的平面直角坐标方程 (2)求曲线C 1和C 2两交点之间的距离.23. 已知函数f (x )=|2x +1|-|x -m |(m ∈R ).(1)当m =1时,解不等式f (x )≥2;(2)若关于x 的不等式f (x )≥|x -3|的解集包含[3,4],求m 的取值范围.答案和解析1.【答案】C2.【答案】C3.【答案】D4.【答案】B5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】A 10.【答案】C 11.【答案】A 12.【答案】B【解析】解:∵对任意的x 满足f (x+1)=-f (x ),∴f (x+2)=-f (x+1)=f (x ),即函数f (x )是以2为周期的函数,画出函数f (x )、g (x )在[-6,+∞)的图象,由图象可知:在y 轴的左侧有2个交点,只要在右侧有4个交点即可,则即有,故7<a≤9或≤a <.13.【答案】4 14.【答案】15.【答案】(0,2) 16.【答案】①②【解析】由导函数的图象可知:当x ∈(-1,0),(2,4)时,f′(x )>0, 函数f (x )增区间为(-1,0),(2,4); 当x ∈(0,2),(4,5)时,f′(x )<0, 函数f (x )减区间为(0,2),(4,5). 由此可知函数f (x )的极大值点为0,4,命题①正确; ∵函数在x=0,2处有意义,∴函数f (x )在[0,2]上是减函数,命题②正确; 当x ∈[-1,t]时,f (x )的最大值是2,那么t 的最大值为5,命题③不正确; 2是函数的极小值点,若f (2)>1,则函数y=f (x )-a 不一定有4个零点,命题④不正确. ∴正确命题的序号是①②. 故答案为:①②.17.【答案】解:不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立.当a =2时不等式等价为-4<0成立,当a ≠2时,可得{a −2<0∆=4(a −2)2+16(a −2)<0,解得-2<a <2,综上-2<a ≤2.即p :-2<a ≤2,函数y =log a (1-2x )在定义域上单调递增,可得0<a <1,即q :0<a <1,若“p ∨q ”为真命题且“p ∧q ”为假命题,则p ,q 为一真一假,若p 真q 假,则{−2<a ≤2a ≥1或a ≤0即1≤a ≤2或-2<a ≤0,若p 假q 真,则{a >2或a ≤−20<a <1,此时无解,故实数a 的取值范围是1≤a ≤2或-2<a ≤0. 18.【答案】解:(1)∵函数f(x)=(a 2−3a +3)a x 是指数函数,a >0且a ≠1, ∴a 2-3a +3=1,可得a =2或a =1(舍去),∴f (x )=2x ;(2)由(1)得F (x )=2x -2-x ,∴F (-x )=2-x -2x ,∴F (-x )=-F (x ), ∴F (x )是奇函数;(3)不等式:log 2(1-x )>log 2(x +2),以2为底单调递增, 即1-x >x +2>0,∴-2<x <-12,解集为{x |-2<x <-12}.19.【答案】解:(Ⅰ)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完2×2…(分)将列联表中的数据代入公式计算,得: K 2=100×(30×10−45×15)275×25×45×55=10033≈3.030 因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(6分)(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}其中a i 表示男性,i =1,2,3,b i 表示女性,i =1,2.Ω由10个等可能的基本事件组成.…(9分)用A 表示“任选2人中,至少有1个是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) },事件A 由7个基本事件组成.∴P (A )=710 (12)20.【答案】解:(1)∵当0<x <80时,∴y =100x −(12x 2+40x)−500=−12x 2+60x −500,∵当x ≥80时,∴y =100x −(101x +8100x−2180)−500=1680−(x +8100x),∴y ={−12x 2+60x −500,0<x <801680−(x +8100x),x ≥80; (2)∵由(1)可知当0<x <80时,y =−12(x −60)2+1300,∴此时当x =60时y 取得最大值为1300(万元),∵当x ≥80时,y =1680−(x +8100x)≤1680−2√x ·8100x=1500,∴当且仅当x =8100x,即x =90时,y 取最大值为1500(万元),∴综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.21.【答案】解:(Ⅰ)因为函数f (x )=x lnx ,所以f′(x)=lnx +x ⋅1x =lnx +1,f '(1)=ln1+1=1.又因为f (1)=0,所以曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(Ⅱ)函数f (x )=x lnx 定义域为(0,+∞),由(Ⅰ)可知,f '(x )=ln x +1. 令f ′(x )=0,解得x =1e .所以,f (x )的单调递增区间是(1e ,+∞),f (x )的单调递减区间是(0,1e ). (Ⅲ)当1e ≤x ≤e 时,“f (x )≤ax -1”等价于“a ≥lnx +1x ”.令g(x)=lnx +1x ,x ∈[1e,e],g′(x)=1x−1x 2=x−1x 2,x ∈[1e ,e].当x ∈(1e ,1)时,g '(x )<0,所以以g (x )在区间(1e ,1)单调递减.当x ∈(1,e )时,g '(x )>0,所以g (x )在区间(1,e )单调递增.而g(1e )=−lne +e =e −1>1.5,g(e)=lne +1e =1+1e <1.5.所以g (x )在区间[1e ,e]上的最大值为g(1e )=e −1.所以当a ≥e -1时,对于任意x ∈[1e ,e],都有f (x )≤ax -1.22.【答案】解:(1)曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),消去参数t 可得普通方程:y =2x -1.由曲线C 2:ρ=2cosθ-4sinθ,即ρ2=ρ(2cosθ-4sinθ),可得直角坐标方程:x 2+y 2=2x -4y .(2)x 2+y 2=2x -4y .化为(x -1)2+(y +2)2=5.可得圆心C 2(1,-2),半径r =√5. 圆心C 2(1,-2)到直线y =2x -1的距离为d =√12+22∴曲线C 1和C 2两交点之间的距离=2√5−(√12+22)2=8√55. 23.【答案】解:(1)当x ≤−12时,f (x )=-2x -1+(x -1)=-x -2,由f (x )≥2解得x ≤-4,综合得x ≤-4;当−12<x <1时,f (x )=(2x +1)+(x -1)=3x ,由f (x )≥2解得x ≥23,综合得23≤x <1;当x ≥1时,f (x )=(2x +1)-(x -1)=x +2,由f (x )≥2解得x ≥0,综合得x ≥1.所以f (x )≥2的解集是(−∞,−4]∪[23,+∞).(2)∵f (x )=|2x +1|-|x -m |≥|x -3|的解集包含[3,4],∴当x ∈[3,4]时,|2x +1|-|x -m |≥|x -3|恒成立原式可变为2x +1-|x -m |≥x -3,即|x -m |≤x +4,∴-x -4≤x -m ≤x +4即-4≤m ≤2x +4在x ∈[3,4]上恒成立,显然当x =3时,2x +4取得最小值10,即m 的取值范围是[-4,10].。

黑龙江高二高中数学期末考试带答案解析

黑龙江高二高中数学期末考试带答案解析

黑龙江高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.如果命题“且”是假命题,“非”是真命题,那么()A.命题一定是真命题B.命题一定是真命题C.命题一定是假命题D.命题可以是真命题也可以是假命题2.下列数字特征的估计值来自于样本频率分布直方图中的最高矩形底边中点的横坐标的是()A.平均数B.中位数C.众数D.标准差3.从装有个红球和个黒球的口袋内任取个球,那么成为互斥且不对立的两个事件是()A至少有一个黒球与都是黒球B至多有一个黒球与都是黒球C至少有一个黒球与至少有个红球D恰有个黒球与恰有个黒球4.如下图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是( )A.B.C.D.5.抛掷两个骰子,则两个骰子点数之和不大于4的概率为()A.B.C.D.6.已知是两条不同的直线,是两个不同的平面,给出下列命题:①若,∥,则;②若∥,,则∥③若,,,则;④若,,,则其中正确的命题的个数为()A.1B.2C.3D.47.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A.B.C.D.无法确定8.已知与之间的一组数据:则与的线性回归方程为必过点()A.(2,2)B.(1.5,0)C.(1,2)D.(1.5,4)9.某校对高二年级的学生进行体检,现将高二男生的体重(单位:kg)数据进行整理后分成五组并绘制频率分布直方图(如图所示).根据一般标准,高二男生的体重超过65kg属于偏胖,低于55kg属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25、0.20、0.10、0.05,第二小组的频数为400,则该校高二年级的男生总数和体重正常的频率分别为()A.1000, 0.50B.800, 0.50C.800, 0.60D.1000, 0.6010.如果下边程序框图的输出结果18,那么在判断框中①表示的“条件”应该是()A.B.C.D.11.若是两条异面直线外的任意一点,则下列命题正确的是()A.过点有且仅有一条直线与都平行B.过点有且仅有一条直线与都垂直C.过点有且仅有一条直线与都相交D.过点有且仅有一条直线与都异面12.如图,已知六棱锥的底面是正六边形,,则下列结论正确的是()A.PB⊥ADB.平面PAB⊥平面PBCC.直线BC∥平面PAED.直线PD与平面ABC所成的角为45°二、填空题1.已知某台纺纱机在一小时内发生0次、1次、2次断头的概率分别为0.8,0.12,0.05,则这台纺纱机在一小时之内断头超过2次的概率为2.已知圆O1是半径为R的球O的一个小圆,且圆O1的面积与球O的表面积的比值为,则线段OO1与R的比值为3.在区间上随机取两个数,则关于的一元二次方程的有实数根的概率为4.已知是的充分条件而不是必要条件,是的必要条件,是的充分条件,是的必要条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学(文)期末测试题带答案一、选择题:(本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.点()4,1到直线4320x y -+=的距离等于( )A. 1B. 2C. 3D. 4 2. 下下下下下下下下下 下A. 下下下下下下下下B. 下下下下下下下下下下C. 下下下下下下下下下D. 平面α和平面β有不同在一条直线上的三个交点 3.“3k =”是“两直线和2670kx y +-=互相垂直”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件320kx y --= D. 既不充分也不必要条件 4.已知圆()()22122x y -+=+与圆O '关于x 轴对称,则圆O '的方程是( ) A ()()22211x y -++= B. ()()22122x y -+-= C. ()()22212x y -+-=D. ()()22212x y ++-=5.若直线//l 平面α,直线a α⊂,则l 与a 的位置关系是( ) A. l a // B. l 与a 异面 C. l 与a 相交 D. l 与a 没有公共点6.圆222270x y x y +-+-=截直线0x y -=所得的弦长等于( )B.D. 7.一个平面四边形斜二测画法的直观图是一个边长为1的正方形,则原平面四边形的面积等于( )A.B. C.3D. 8.若过点()1,3-有两条直线与圆22210x y x y m +-+++=相切,则实数m 的取值范围是( ) A. (),1-∞-B. ()4,-+∞C. 14,4⎛⎫- ⎪⎝⎭D. ()1,1- 9.已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB的距离为4,那么tan θ的值等于 A.34B.35C.7D.710.直线10x y --=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y ++=上,则ABP ∆面积的取值范围是( )A. 15,22⎡⎤⎢⎥⎣⎦ B. []2,6 C. ,22⎣⎦D. ⎡⎣的11.如图,直三棱柱ABC A B C '-''的体积为V ,点,P Q 分别在侧棱AA '和CC '上,AP C Q =',则四棱锥B APQC -的体积为( )A.2V B.3V C. 4V D.5V 12.若圆M :224210x y x y ++++=上的任意一点()P m n ,关于直线l :2390ax by ++=对称的点仍在圆M 上,则()()22m a n b -+-的最小值为( )A. 1B. 2C. 3D. 4二、填空题:(本大题共4小题,每小题5分,共20分.) 13.以点()2,3P --为圆心,并且与y 轴相切的圆的方程是______.14.两圆222x y r +=与()()()222310x y r r -++=>外切,则r 的值是_________. 15.已知命题“0x R ∃∈使得02cos 0x a -≥”是假命题,则实数a 的取值范围是______. 16.如果三棱锥A BCD -的底面BCD 是正三角形,顶点A 在底面BCD 上的射影是BCD ∆的中心,则这样的三棱锥称为正三棱锥.给出下列结论: ①正三棱锥所有棱长都相等;②正三棱锥至少有一组对棱(如棱AB 与CD )不垂直;③当正三棱锥所有棱长都相等时,该棱锥内任意一点到它的四个面的距离之和为定值;④若正三棱锥所有棱长均为12π. ⑤若正三棱锥A BCD-侧棱长均为2,一个侧面的顶角为50︒,过点B 的平面分别交侧棱AC ,AD 于M ,N .则BMN ∆周长的最小值等于 以上结论正确的是______(写出所有正确命题的序号).三、解答题:(本大题共6小题,其中17小题10分,18-22小题每小题12分;解答应写出文字说明,证明过程或演算步骤.)17.一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域.18.已知直线l 经过点()1,3P .(1)点()1,3Q --到直线l 的距离为2,求直线l 的方程. (2)直线l 在坐标轴上截距相等,求直线l 的方程.的19.如图,在多面体ABCDE 中,AEB ∆为等边三角形,//AD BC ,BC AB ⊥,2BC AD =,点F 为边EB 的中点.(1)求证://AF 平面DEC(2)在BC 上找一点G 使得平面//AFG 平面DCE ,并证明.20.已知点()3,1M --,直线40ax y --=及圆()()22124x y +++=. (1)求过M 点的圆的切线方程.(2)若直线40ax y --=与圆相切,求a 的值.(3)若直线40ax y --=与圆相交于A 、B 两点,且弦AB的长为a 的值21.如图,在以P圆锥中,底面圆O 的直径长为2,点C 在圆O 所在平面内,且AC 是圆O 的切线,BC 交圆O 于点D ,连接PD ,OD .(1)求证:PB ⊥平面PAC ; (2)若AC =,求点O 到平面PBD 的距离.22.已知圆M :()()22454x y -+-=,圆N 与圆M 关于直线l :20x y +-=对称. (1)求圆N 的方程;(2)过直线l 上的点P 分别作斜率为14-,4的两条直线1l ,2l ,求使得1l 被圆M 截得的弦长与2l 被圆N 截得的弦长相等时点P 的坐标.的高二数学(文科)答案一、选择题:CCABDD BCDABD二、填空题:13、()()22234x y +++= 14、215、2a > 16、③④ 三、解答题:17、解:如图,设所截等腰三角形的底边边长为xcm ,在正四棱锥E ﹣ABCD 中,底面ABCD 是边长为x 的正方形,F 是BC 的中点,EF⊥BC,EF =5,则四棱锥的高EO==,其中0<x <10,∴四棱锥的体积V=111326x x ⨯=0,10).18、解:(1)当直线l 斜率不存在时,即1x =符合要求, 当直线l 斜率存在时,设直线l 的方程为()31y k x -=-, 整理得30kx y k --+=,点()1,3Q --到l 的距离,2d ===,解得43k =,得4350x y -+=,即直线l 的方程为1x =,4350x y -+=.(2)由题知,直线l 斜率一定存在且0k ≠,直线30kx y k --+=, 当0x =时,3y k =-+,当0y =时,3k x k-=, ∴33k k k--+=,解得3k =或1k =-. 即直线l 的方程为30x y -=或40x y +-=.19、解:(1)取EC 中点M ,连接FM ,DM , ∵////AD BC FM ,12AD BC MF ==, ∴ADMF 是平行四边形,∴//AF DM ,∵AF ⊄平面DEC ,DM ⊂平面DEC ,∴//AF 平面DEC .(2)点G 为BC 的中点. 证:连接FG ,AG ,因为G 、F 分别是BC ,BE 的中点,所以//GF CE ,又GF ⊄平面DCE ,CE ⊂平面DCE ,所以//GF 平面DCE , 又因为//AD BC ,12AD BC =,所以//AD GC 且AD GC =, 即四边形ADCG 是平行四边形,所以//DC AG , 因为AG ⊄平面DCE ,所以//AG 平面DCE . 又因为AGGF G =,所以平面//AFG 平面DCE .20、解:(1)因为圆()()22124x y +++=的圆心为()1,2C --,半径2r ,当直线的斜率不存在时,过()3,1M --点的切线方程为3x =-.当直线斜率存在时,设所求直线方程为()13y k x +=+,即310kx y k -+-=. 因为直线310kx y k -+-=与圆()()22124x y +++=相切, 所以圆心到直线的距离等于半径,2=,解得34k =,所以方程为()3134y x +=+,即3450x y -+=; 因此,过M 点的圆的切线方程为3x =-或3450x y -+=; (2)因为直线40ax y --=与圆()()22124x y +++=相切,2=,解得0a =或43a =; (3)由点到直线距离公式可得:圆心()1,2C --到直线40ax y --=,又直线40ax y --=与圆相交于A 、B 两点,且弦AB的长为所以2242⎛⎫+= ⎪ ⎪⎝⎭,解得34a =-.21、解:(1)因为AB 是圆O 的直径,AC 与圆O 切于点A ,所以AC AB ⊥. 又在圆锥中,PO 垂直底面圆O ,所以PO AC ⊥,而PO AB O ⋂=, 所以AC ⊥平面PAB ,从而AC PB ⊥.在三角形PAB 中,222PA PB AB +=,所以PA PB ⊥,又PA AC A =所以PB ⊥平面PAC . (2)因为2AB =,AC =AC AB ⊥,所以在直角ABC ∆中, 6ABC π∠=.又1OD OB PO ===,则OBD ∆是等腰三角形,所以BD =,1211sin 23OBDSπ=⨯⨯⨯=.又PB PD ==1224PBDS==设点O 到平面PBD 的距离为d ,由P OBD O PBD V V --=,即1133OBDPBDSPO S d ⋅=⋅,所以5d =. 22、解:(1)设(),N a b ,因为圆M 与圆N 关于直线l :20x y +-=对称,()4,5M , 则直线MN 与直线l 垂直,MN 中点在直线l 上,得514452022b a a b -⎧=⎪⎪-⎨++⎪+-=⎪⎩,解得32a b =-⎧⎨=-⎩,所以圆N :()()22324x y +++=.(2)设(),2P m m -,1l 的方程为()()124y m x m --=--,即()4380x y m ++-=; 2l 的方程为()()24y m x m --=-,即()4250x y m -+-=.因为1l 被圆M 截得的弦长与2l 被圆N 截得的弦长相等,且两圆半径相等, 所以M 到1l的距离与N 到2l=,所以4m =或3m =-.由题意,M 到直线1l的距离1616233d m ---+=≤⇒≤≤, 所以4m =不满足题意,舍去, 故3m =-,点P 坐标为()3,5-.。

相关文档
最新文档