管式加热炉热辐射的基本概念
管式加热炉之在对流室中的辐射传热(1)

管式加热炉之在对流室中的辐射传热(1)在对流室中的辐射传热对流室中的辐射传热有两种情况:一是在对流室的人口处,即所谓遮蔽段的对流管,要接受由辐射室带人的辐射热;二是对流室的其他对流管,除主要接受烟气的对流传热外,同时还接受烟气本身的辐射热和炉墙的辐射热。
所以,在分析对流室的传热时,最好将遮蔽段与对流段分别加以讨论。
同时,将对流方式的传热量与辐射方式的传热量,一并计人对流管的管外综合传热系数h rc之中。
故在计算总传热系数k c时,式(5-11)的光管管外膜传热系数h。
,或式(5-59)中的翅片管(或钉头管)的表面膜传热系数h f,都应用h rc来代替。
由辐射段带入的辐射热一一遮蔽段的传热参见图5-18,一般为了提高对流段的传热速率,对流管多采用翅片管或钉头管,但遮蔽段的管子,则由于上述的原因,原则上不能采用翅片管和钉头管,而只能采用光管。
遮蔽管的管心距与管外径之比一般小于2,大多在1 .6~1.8之间。
例如,当管心距与管外径之比等于1.8时,查双排管的有效吸收因素α图表可知,第一排管的平均吸收因数为0.72,第二排管的平均吸收因数为0.21,两排合计为0.93,即辐射热量有93%被两排管子所吸收,剩下仅有7%的热量为后面数排管子吸收了。
所以可以认为遮蔽段只包括了两排炉管,而其余的管排则按对流段处理。
关于遮蔽管的详细计算方法,见第四章4t节,这里不再重复。
另外,还有一种简化处理法,即在计算辐射室传热量时,把遮蔽管视为一个平均吸收因数为1的当量冷平面管排,认为它是辐射吸热面的一部分;而在计算对流室传热量时,又把遮蔽管视为两排对流光管,认为它是对流吸热面的一部分。
这样计算足以保证整个炉子总吸热量的计算精度,但它不能直接反映出遮蔽管本身的详细工作状态。
化工厂加热炉知识问答

化工厂加热炉知识问答第1题传热的三种形式是什么?分别解释这三种不同的传热形式。
答:传热的三种基本形式是传导传热、对流传热、辐射传热。
传导传热:热量从一个物体的高温部位传送至其低温部位,或者两个直接接触的物体之间,热量从高温物体传送至低温物体,这种传热过程将连续地进行,直到整个物体或直接接触的两个物体的各部分的温度完全相等为止,这种传热叫热传导。
对流传热:由于流体(液体和气体)质点的移动,将热量向它所占空气的一部分带至另一部分,这种传热方式叫做对流传导。
辐射传热:物体的热不需要任何传递介质,而以辐射能的形式传递的过程,称为辐射传热。
第2题燃烧的化学反应式有哪些?答:碳的燃烧:C+O2 →CO22C+O2 →2CO氢的燃烧:2H2 +O2 →2H2O燃料中硫也能燃烧:S+O2 →SO2第3题从加热炉的烟囱排出的烟道气有哪些组成?为什么还有大量的氮和氧?答:烟道气的组成有二氧化碳、水蒸汽、二氧化硫、氧、氮以及在燃烧不完全时的一氧化碳和氢。
大量的氮和氧:氮是由燃烧所需的空气带进去的,它不参加反应,氧是过剩空气带进去的。
第4题燃烧的过程是什么?答:燃料的燃烧都是燃料中的碳和氢与空气中氧反应,产生二氧化碳和水并放出热量的过程。
第5题燃烧的三要素是什么?答:一定的温度、空气(氧气)、可燃物。
第6题什么是高发热值? 什么是低发热值?答:单位质量燃料完全燃烧后,生成的水呈汽态时,所放出的热量,即为低发热值。
单位质量燃料完全燃烧后,生成水呈液态时所放出的热量即为高发热值。
第7题什么是热负荷?答:单位时间内传给被热介质的有效热量称为热负荷。
第8题什么叫炉子的热效率?答:加热炉燃料消耗指标用全炉热效率表示,即全炉有效热负荷与燃料总发热量之比,热效率愈高说明燃料的有效利用率高,燃烧消耗就低。
空气不够,燃烧不完全,部分燃料尚未燃烧就离开炉膛和过剩空气系数太大(就是空气量大),从烟气带出的热就多,炉子的热效率就低。
第9题什么是炉管的表面热强度? 其单位是什么?答:每小时1㎡炉管表面所吸收的热量,叫作炉管表面热强度。
管式加热炉概述

各种炉型示图一
管式加热炉的主要结构之一
燃烧器结构及作用:
燃烧器是管式加热炉的重要部件之一,加热炉所需热量是通 过燃料在燃烧器中燃烧得到的,一个完整的燃烧器包括燃料喷嘴、 配风器和燃烧道三个部分。 1、喷嘴的主要任务是燃料油雾化并形成便于与空气混合的良好条件。 2、配风器是分配和输送燃烧空气的机构,其作用是供给燃料适量的 空气,并使空气和燃料迅速完善的混合。用于烧油的配风器将供 给的空气分成一次风和二次风.一次风解决着火、稳燃和减少碳黑 生成等问题,二次风供给大量空气以保证完全燃烧。 3、燃烧道的耐火材料蓄积的热量为火焰根部提供热源,加速燃料油 的蒸发和着火,有助于形成稳定的燃烧;其次它能约束空气,迫 使其与燃料混合而不止散溢;第三是与配风气一起使气流形成理 想的流型。
1、 管式加热炉的特征:
1)被加热物料在管内流动,仅限于加热流体;而且这些流体都是易燃易爆的烃类物质, 危险性大,操作条件很苛刻; 2)加热方式为直接受火式; 3)只使用液体或气体燃料; 4)长周期连续运转,温度。 2)没有局部过热或死角的现象,防止原料油在炉管内结焦,以延长管式炉的运转周期。 3)在完成任务的前提下,尽量节省传热面积,降低金属消耗量。 4)提高炉子传热效率,减少燃料消耗量。 5)造价低和寿命长。
管式加热炉工作原理
1、管式炉的三个主要部分如图分别为:辐射室、对流室、烟囱。 2、工作原理:燃料油以雾状喷出并与空气混合后燃烧,产生高温烟 气由下至上经辐射室进入对流室与油品换热使烟气温度降低,最 后由烟囱排出。加热油品流向如下图:
原料油
烟囱
对流室
辐射室
燃料
管式加热炉的类型简介
主要类型简介:
按炉体形状划分,可以分为:箱式炉、立式炉、园筒炉和无焰炉等。 1、箱式炉有斜顶炉和方箱炉,这种炉型历史悠久,是应用较早的炉型。其 长、宽、高大致接近,辐射室和对流室用火墙隔开,火嘴装于侧壁,烟 囱设于炉外,炉管水平排列。 2、立式炉炉膛为长方形,辐射管排于炉两侧,对流管排在辐射室上部的对 流室中,炉底部设有两排火嘴,炉中间砌一堵花墙,喷火嘴在花墙两边 燃烧。 3、圆筒炉与立式炉相似,方型的对流室位于辐射室上部,烟 囱安装在对流 室的上部,并装有烟道挡板,可调节风量,火嘴在炉底中央,火焰向上 喷射。其与立式炉不同的是辐射室为圆筒式,辐射管沿圆周垂直排列成 一圈,对流管分立式和水平两种。 4、无焰炉其外型与立式炉相似,炉中间排辐射管,顶部排对流管,两侧炉 墙布满火嘴,燃烧的速度快,在燃烧道里完成燃烧的全部过程,因此没 有火焰。
管式加热炉

答:燃料性质;燃烧器的性能;炉体密封性能;加热炉的测控水平;控 制烟囱挡板。 2.正平衡法:进出加热炉的热量? 答:入炉热量:燃料燃烧放出的热量;燃料、空气、雾化蒸汽带入的显 热;
出炉热量:被加热介质吸收的有效热量,Q ;烟气离开对流室时带走 的热量,Q1;化学不完全燃烧损失的热量,Q2;机械不完全燃烧, Q3;炉子散热损失的热量,Ql. 3.影响加热炉效率的因素? 答:降低过剩空气系数;改进燃烧器;扩大对流室传热效果;减少炉壁 散热;使用空气预热器和废热锅炉;安装计算机自动控制系统。 4.加热炉热效率的标定测定需对划定体系的下列参数进行准确测量? 答:1)用干球温度计测量环境温度,作为基准温度; 2)测量各种被加热介质(油料、过热蒸汽、余热锅炉工质等)在体系 入口的流量(包括油料气化率)、温度和压力,以计算有效热量; 3)测量燃料的低发热值,以及燃料、空气和雾化蒸汽在体系入口处的 温度、压力和流量,以计算供给热量 4)测量烟气离开体系时的温度,并进行烟气组成分析,以计算排烟损 失 5)测量炉外壁、风、烟道外壁以及空气预热器外壁的平均温度和环境 风速,以计算散热损失。 5.正平衡法 按照热效率定义来算加热炉的热效率,即被加热介质吸收的有效热量与 燃料燃烧放出热之比:Ƞ=Q/BQL; Ƞ-加热炉热效率;Q-被加热介质吸收的 有效热量KJ/h;QL-燃料低发热值KJ/Kg; B-燃料用量Kg/h;有效热量指加热 炉的热负荷
26.在受热面上沉积1mm厚的灰垢,热效率将降低1~3%,而实际使用的 炉管表面积垢往往达到2~3mm,甚至更多。 27.一般要求炉膛内的负压为-19.6~-39.2Pa; 28.管式加热炉的门类:看火门、防暴门、人孔门 1.管式加热炉所用的燃料有两种,是:液体燃料(重质油:常压重油, 减压渣油,裂化渣油),气体燃料(瓦斯等,主要成分H2和C1~C5)。 2.管式加热炉常用的热效率仪中分析烟气成分的仪表有 氧化锆测氧仪、 磁导式氧分析仪和二氧化碳测定仪
管式加热炉出口温度前馈反馈

目录一、管式加热炉的概论 (2)二、管式加热炉的意义 (3)2.1管式加热炉简介.......................................... 错误!未定义书签。
2.2设计目的及意义 (4)三、管式加热炉温度控制系统工艺流程及控制要求 (4)3.1控制系统的简介 (4)3.2管式加热炉任务 (5)3.3控制系统的构成 (6)四、各仪表的选取及元器件清单 (6)4.1温度变送器 (6)4.2温度检测元件 (7)4.3调节阀 (8)4.4保护系统 (9)五、控制算法及系统仿真 (9)5.1控制算法的选择 (9)5.2传递函数及参数确定 (9)5.3前馈反馈控制系统的参数整定和仿真 (10)六、心得体会 (11)参考文献 (12)一、管式加热炉的概论管式加热炉是一种直接受热式加热设备,主要用于加热液体或气体化工原料,所用燃料通常有燃料油和燃料气。
管式加热炉的传热方式以辐射传热为主,管式加热炉通常由以下几部分构成:辐射室:通过火焰或高温烟气进行辐射传热的部分。
这部分直接受火焰冲刷,温度很高(600-1600℃),是热交换的主要场所(约占热负荷的70-80%)。
对流室:靠辐射室出来的烟气进行以对流传热为主的换热部分。
燃烧器:是使燃料雾化并混合空气,使之燃烧的产热设备,燃烧器可分为燃料油燃烧器,燃料气燃烧器和油一气联合燃烧器。
通风系统:将燃烧用空气引入燃烧器,并将烟气引出炉子,可分为自然通风方式和强制通风方式。
管式加热炉,包括加热炉本体和余热回收系统,余热回收系统包括空气预热器,其中空气预热器由非冷凝式空气预热器和冷凝式空气预热器两段组成,余热回收系统中另设有冷凝液收集池、引风机和鼓风机,冷凝液收集池直接设在冷凝式空气预热器下方,冷凝液收集池与引风机相连接,鼓风机与冷凝式空气预热器相连。
使用本发明所提供的加热炉,其加热炉的排烟温度可降低到100℃左右,实现烟气中含酸水蒸气的部分冷凝,且在回收烟气低温显热的同时,能回收部分含酸水蒸气的汽化潜热,进一步提高加热炉热效率,节约能源。
9、炉内辐射传热计算解析

• 只有传热无燃烧,完全服从辐射传热的规律。
– 采用火焰的平均温度代替火焰的真实温度; – 用炉膛出口烟温作为定性温度; – 略去对流传热的影响; – 炉墙对辐射传热的影响放到角系数中一并考虑,略去
炉墙散热的影响(用保热系数表示)。
一、炉内辐射传热公式 • 炉内火焰和水冷壁之间的辐射传热量(1kg计算燃料
计的炉内辐射传热量)
QR
qR F Bcal
,
kJ / kg
– F炉内水冷壁的吸收表面积,m2;
– Bcal锅炉的计算燃料消耗量,kg/s;
qR
0 (T14
1
T24 ) , 1 1
syn 2
kW / m2
– 定义syn为火焰综合黑度。
三、炉内火焰黑度
计算火焰黑度或吸收率时,考虑烟气中三原子 气体、灰分颗粒和焦炭颗粒。
第九章 炉内辐射传热计算
四、入射辐射和有效辐射
物体的入射辐射G:半球范围内从各个方向以各种波 长进入该物体单位面积的辐射能的总合,kW/m2。
物体的有效辐射:包括物体的自身辐射和物体接受入 射辐射后的反射辐射
J Eb (1 )G, kW / m2
第九章 炉内辐射传热计算
• 炉内辐射换热就近似为两个灰体之间的辐射换热
– 包围炉膛有效容积的炉墙面,以水冷壁中心线所包围 的平面;
– 与水冷壁相切的假想平面,即火焰的辐射面,也就是 水冷壁接受火焰辐射的面积。
第九章 炉内辐射传热计算
qR
0 (T14 T24 )
1 1 1
,
1 2
kW / m2
– 设计计算:根据合理选定的炉膛出口烟温,确 定炉内所需布置的受热面积。
《管式加热炉》总结_2011

112
1 222
332
113
太阳温度为5800K,能量集中在0.2~2μm范围内, 可见光(0.38~0.76μm )占46%。
二 热辐射的吸收、反射和透过
1 = ρ+α+τ 其中,ρ——反射率(reflectivity)
α——吸收率(absorptivity) τ——透过率(transmissivity)
镜体:能以镜反射的方式全部反射辐射能的物体,ρ = 1。 白体:能以漫反射的方式全部反射辐射能的物体,ρ = 1。 透明体:对热射线完全不吸收也不反射的物体,τ = 1。 黑体:能吸收全部辐射能的物体,α = 1。 灰体:能以相同的吸收率吸收所有波长的辐射能的物体。
表面2向表面1发射的能量:
2,1
2a,1
A2a A2
2b,1
A2b A2
三 角系数的计算
计算方法
积分法 代数分析法 几何分析法(图表法)
代数分析法:利用角系数的相对性、完整性和可加性, 求解代数方程组。
平行圆盘间的辐射角系数
平行矩形间的辐射角系数
四 灰表面间的辐射换热
自身辐射:因表面具有一定温度而发射的辐射能,εE0 。 投入辐射:单位时间内投射到某一表面的单位面积上的
总辐射能。 吸收辐射:投入辐射中被表面吸收的一部分能量。 反射辐射:被表面反射的能量。 有效辐射Eef:单位时间内离开某一表面单位面积的总辐
射能。
四 灰表面间的辐射换热
n个表面构成的一个封闭系统:
有效辐射:
n
Eefi i E0i i Eefjij j 1
任一表面向外发出的净辐射能:
Qi
i i
Eef 3 3E03 3 Eef 1 31 Eef 2 32 Eef 3 33
管式加热炉56个基础知识解答与综合反平衡热效率简化计算方法

管式加热炉56个基础知识解答与综合反平衡热效率简化计算方法1、什么叫燃烧?燃烧的基本条件是什么?答:燃烧是物质相互化合而伴随发光、发热的过程。
我们通常所说的燃烧是指可燃物与空气中的氧发生剧烈的化学反应。
可燃物燃烧时需要有一定的温度,可燃物开始燃烧时所需要的最低温度叫该物质的燃点或着火点。
物质燃烧的基本条件:一是可燃物,如燃料油、瓦斯等;二是要有助燃剂,如空气、氧气;三是要有明火或足够高的温度。
三者缺一就不能发生燃烧,这就是“燃烧三条件”或“燃烧三要素”。
2、燃烧的主要化学反应是什么?燃烧产物中主要成份是什么?答:主要化学反应:C+O2→CO2+热量;2H2+O2→2H2O+热量;S+O2→SO2+热量;燃烧产物(烟气)中主要成份:二氧化碳(CO2)、一氧化碳(CO)、二氧化硫(SO2)、水蒸汽(H2O)、氮气(N2)、多余的氧(O2)。
3、什么是辐射传热、对流传热?答:辐射传热是一种由电磁波来传递能量的过程,所传递的能量叫做辐射能,辐射具有微粒性(光子)和波动性(电磁波)两重性质。
对流传热是液体或气体质点互相变动位置的方法将热量自空间的一部分传递到其他部分。
4、什么叫管式加热炉?它有哪些特性?答:管式加热炉是石油炼制、石油化工和化学、化纤工业中使用的工艺加热炉,它具有其它工业炉所没有的若干特点。
其基本特点:具有用耐火材料包围的燃烧室,利用燃料燃烧产生的热量将物质加热的一种设备。
管式加热炉特性:1)被加热物质在管内流动,故仅限于加热气体或液体;2)加热方式为直接受火式;3)只烧液体或气体燃料;4)长周期连续运转,不间断操作。
5、管式加热炉的工作原理是什么?答:管式加热炉的工作原理是:燃料在管式加热炉的辐射室(极少数在单独的燃烧室)内燃烧,释放出的热量主要通过辐射传热和对流传热传递给炉管,再经过传导传热和对流传热传递给被加热介质,这就是管式加热炉的工作原理。
6、管式加热炉的主要特点是什么?答:与炼油装置的其他设备相比,管式加热炉的特殊性在于直接用火焰加热;与一般工业炉相比,管式加热炉的炉管承受高温、高压和介质腐蚀;与锅炉相比,管式加热炉内的介质不是水和蒸汽,而是易燃、易爆、易裂解、易结焦和腐蚀性较强的油和气,这就是管式加热炉的主要特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.3 兰贝特(Lambert)定律-余弦定率
1.2.1 普朗克(Planck)定律:
黑体的单色辐射能力与波长及温度的定量关系:
E0
C
5
1
eC2 / T 1
式中:λ-黑体辐射的波长,m; T-黑体的绝对温度,K; C1、C2-普朗克常数,C1=3.743×10-
1.2.3 兰贝特定律—余弦定律:
说明了黑体表面向它上面的半球空间不同方向 上的辐射能量与法线方向上的辐射能量的关系 内容: I0 I0n cos
I0n—黑体的微元面积dA在法线方向上 的辐射强度,W/(m2·sr);
Φ—给定方向与法线方向的夹角,sr
说明:
①兰贝特定律又称余弦定律;
②当φ=0时,Iφ=0=I0n,辐射强度最大; 当φ=90º时,Iφ=90º=0;
c.定义:镜反射;漫反射
d.ρ=1,α=τ=0:全反射体,又称绝对白体或镜体 如理想的金属镜面;
τ=1,α=ρ=0:透明体,如空气; α=1,ρ=τ=0:黑体
1.1.3 黑体的定义:
黑表面:能全部吸收投射到它表面上的热辐射的表面
黑体:具有黑表面的物体,称为绝对黑体,或简称 黑体,用下标“0”表示
说明:①自然界中并不存在真正的绝对黑体; ②黑体模型:
波长/μm
热射线
宇宙射线 伽马射线 伦琴射线 紫外线 可见光 红外线 无线电波
<1×10-7 1×10-7~1×10-5 1×10-5~2×10-2
2×10-2~0.38 0.38~0.76 0.76~1×103 1×103~2×1010
注:固体液体的光谱连续;气体光谱不连续
1.1.2 热辐射的吸收、反射和透过:
16W·m2; C2=1.4387×10-2m·K;
E0λ-黑体的单色辐射能力,W/m2。
讨论:
①黑体的E0λ与表面形状无 关,E0λ=f(λ,T); ②如图:当λ→0或λ→∞
时,Eoλ→0;同一波长下, T有且只有一个最大值:
微分,令:
mT 2.910 3m • K
③I0和E0的关系:
2
E0 I0n 0
d
2 sin coss
0
I0n
上式说明:E0为Ion的π倍;
④遵循兰贝特定律的表面称为兰贝特表面,黑体表 面就是一个兰贝特表面;
⑤以上三个定律只适用于黑体。
1.3 实际物体的热辐射
1.3.1 实际物体与黑体的区别与联系 1.3.2 克希霍夫(Kirchhoff)定律 1.3.3 灰体
1.2.2 斯蒂芬-波尔兹曼
(Stefan-Boltzman)定律:
黑体的全波长辐射能力 :
E0 0 E0 d 0
e
C
C2 /
5
1
T
1
d
积分后:
E0
0T 4
C0
T 100
4
式中:σ0-黑体辐射常数, σ0=5.67×10-8W/(m2·K4) C0=5.67
故:E0∝T4,高温时不能忽略辐射传热。
⒉单色辐射能力Eλ:
定义:物体在λ至λ+Δλ的波段内的辐射能力
E
lim
0
E
dE
d
W/(m2·μm)或 W/m3
说明:①Eλ反映了物体的辐射能力随λ(0-∞)的
分布情况:
E 0 E d
②Eλ≠E0λ, Eλ=f(波长,T)
1.1.4 物体的辐射能力、辐射强度:
⒊立体角和辐射强度:
立体角:以物体表面上的一点对辐射面所张开的角度
第七章 管式加热炉
第1节 热辐射的基本概念
1.1 基本概念 1.2 黑体辐射的基本定律 1.3 实际物体的热辐射 1.4 气体的辐射与吸收
1.1 基本概念
1.1.1 热辐射的特性 1.1.2 热辐射的吸收、反射和透过 1.1.3 黑体的定义 1.1.4 物体的辐射能力、辐射强度
1.1.1 热辐射的特性:
1.3.1 实际物体与黑体的区别与联系
⒈实际物体的辐射能力不服从斯蒂芬-波尔 兹曼定律
自然界一切物体的辐射能力均小于同温度下黑体的 辐射能力; 引入相对辐射能力:ε=E/ E0,又称黑度,发射率 影响因素:①ε它与物体温度和表面性质(表面温 度、表面状况等)有关;
②ε恒小于1。
1.3.1 实际物体与黑体的区别与联系
1.1.4 物体的辐射能力、辐射强度:
⒈物体的辐射能力E:
定义:物体单位表面积、单位时间向半球空间所有 方向发射的全部波长(λ=0~∞)的总辐射能,又称 半球辐射能力、自身辐射
E d 2Q
W/m2
dAd
说明:①E与表面的性质、温度有关:T↑→E↑;
②相同的温度下,黑体的辐射能力最大。
1.1.4 物体的辐射能力、辐射强度:
--维恩(Wien)位移定律
故:黑体单色辐射能力的最大值随着其温度的升高向波长
较短的一边移动。
可凭借火焰的颜色来判断火焰的温度:
温度 ℃
火焰 颜色
700 暗红
900
樱桃 红
1100 橙黄
>1400
白色 炽热体
温度>1400℃,可见光范围; 太阳表面:T≈6000K,可见光范围; 工业温度(约2000℃):集中在λ=0.8~10μm的红外线 波段内。
Q= Qα+ Qρ+ Qτ 或 Qα/Q + Qρ/Q + Qτ/Q=1
⒈吸收率α、反射率ρ和透过率τ:
定义:α= Qα/Q 吸收率 ρ= Qρ/Q 反射率 τ= Qτ/Q 透过率
⒉说明:
a. 凡是善于反射的物体就一定不能很好的吸收热 辐射; b.α、ρ= f(物体性质、T、辐射波长λ);
对热射线的反射和吸收有重大影响的,不是表面的 颜色,而是表面的状况;
定义:用电磁波传递能量的过程 特点:①在传递过程中不需要任何介质;
②热辐射过程中不仅有热量的转移过程,而 且还有能量形式的转换;
③任何物质,只要T>0K,均可辐射热量;
微粒性:发射和吸收时-光子-光子能量E
特性:
波动性:传播时-电磁波-波长λ或频率υ
E = hν λ=C/ν
电磁辐射波谱:
辐射线名称
辐射强度:物体单位表面积、单位时间内向空间单位
立体角所发射的全部波长的辐射能
I
d 3Q
dAdd
dE
d
W/(m2·sr)
说明:①dω-物体向给定方向发射能量所占据的立
体角,sr(球面度);
②E与I的关系为: E
2
Id
0
1.2 黑体辐射的基本定律
1.2.1 普朗克(Planck)定律- 黑体辐射能力按波长的分布规律