流体输送机械
化工原理第二章 流体输送机械

3、适应被输送流体的特性
二、 流体输送机械的分类
输送液体——泵
1、流体根据输送介质不同
输送气体——风机或压缩机
动力式
2、根据工作原理不同 容积式
流体作用式
离心泵的外观
第一节 离心泵
一、 离心泵的工作原理和基本结构
1、离心泵的主要构造: (1)叶轮 ——叶片(+盖板)
1)叶轮
a)叶轮的作用 将电动机的机械能传给液体,使液体的动能有所提高。
一般都采用后弯叶片。2=25-30o
(4)理论流量
当离心泵确定,其β2、b2、D2一定,
当转速一定时,理论压头和流量呈直 线关系,
H A BqT
采用后弯叶片。2<90o,B>0,因此,H随q增大而减小。
3、实际压头
离心泵的实际压头与理论压头有较大的差异,原因在于流 体在通过泵的过程中存在着压头损失,它主要包括: 1)叶片间的环流 2)流体的阻力损失 3)冲击损失
H e K Bqv2 ——管路特性方程
对于气体输送系统,由于 常数 ,列伯努利方程以单位
体积为基准
HT
gZ
P
u 2 2
gH f
由于气体密度较小,位风压 gZ 一项一般可以忽略。
2、管路系统对输送机械的其他性能要求
1、结构简单,重量轻,投资费用低
2、运行可靠,操作效率高,日常操作费用低
理论压头、实际压头及各种压头损失与流量的关系为 H
q-H
实际压 头
实际压头和流量关系: H A BqT2
二、离心泵的主要性能参数和特性曲线
1、离心泵的主要性能参数
流量 q,泵单位时间实际输出的液体量,m3/s或m3/h。 压头 H,泵对单位重量流体提供的有效能量(扬程),m。 轴功率和效率p,电机输入离心泵的功率,单位W 或kW。 允许汽蚀余量 △h,泵抗气蚀性能参数,m 。
化工原理第二章-流体输送机械

w2 w2 w2 c2小,泵内流动阻力损失小
c2 c2
c2
uuu222
前径后弯向弯叶叶叶片片片
3) 理论流量
H T
u22 g
u2ctg2 gD2b2
若离心泵的几何尺寸(b2、D2、β2)和转速n一定,则式可表示
为
表示HT∞与QT呈线性关系,该直线的斜率与叶 片形状β2有关,即 β2>90°时,B<0, HT∞随QT的增加而增大。 β2=90°时,B=0, HT∞与QT的无关。 β2<90°时,B>0, HT∞随QT的增加而减少。
Ne
轴功率 N :电机输入到泵轴的功率,由于泵提供给流 体的实际扬程小于理论扬程,故泵由电机获得的轴功并不 能全部有效地转换为流体的机械能。
N Ne
有效功率 Ne:流体从泵获得的实际功率,可直
接由泵的流量和扬程求得
Ne = HgQρ
N QH 102
电机
泵
2. 离心泵特性曲线及其换算
用20C清水测定
包括 :H~Q曲线(平坦型、陡降型、 驼峰型) N~Q曲线、 ~Q曲线
QgH
N
由图可见: Q,H ,N,
有最大值。
思考: ➢ 离心泵启动时均关闭 出口阀门,why? ➢为什么Q=0时,N0?
02
高效区
与最高效率相比, 效率下降5%~8%
设计点
3.离心泵性能的改变和换算
1)液体性质的影响 (1)密度:
思考:泵壳的主要作用是什么?
①汇集液体,并导出液体; ②能量转换装置
轴封装置:离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵 壳之间的密封。
作用:防止高压液体从泵壳内沿间隙漏出,或外界空气 漏入泵内。
化工原理流体输送机械

化工原理流体输送机械1. 引言化工过程中,涉及到大量的流体输送工作。
流体输送机械是一类用于输送、泵送、搅拌、混合等操作的设备。
本文将介绍化工原理中常用的流体输送机械,包括离心泵、齿轮泵、隔膜泵、搅拌器等。
2. 离心泵离心泵是一种常用的流体输送机械,它利用离心力将流体从低压区域输送到高压区域。
离心泵的工作原理是通过转子的旋转使得流体在离心力的作用下产生压力差,从而实现输送效果。
离心泵具有结构简单、造价低廉、输送流量大的优点,广泛应用于化工领域。
2.1 离心泵的结构离心泵主要由叶轮、泵壳、轴和轴承等部分组成。
叶轮是离心泵中最关键的部件,它负责将流体由低压区域吸入并输出到高压区域。
泵壳是离心泵的外壳,起到固定叶轮和导向流体的作用。
轴和轴承用于传输转子的动力,并保证转子的平稳运转。
2.2 离心泵的工作原理离心泵的工作原理是基于离心力的作用。
当叶轮旋转时,流体将沿着叶轮的轴向方向进入泵壳,然后受到叶轮的离心力的作用,沿着辐射方向产生压力差。
高压区域的流体将通过出口管道输出,形成流动。
离心泵的输出流量取决于叶轮的转速和叶片的数目,可以通过调节叶轮的转速和叶片的数目来控制流量大小。
3. 齿轮泵齿轮泵是一种常用的流体输送机械,它利用齿轮的旋转来实现流体的输送。
齿轮泵的工作原理是通过两个或多个齿轮的啮合来产生压力差,从而将流体从低压区域输送到高压区域。
齿轮泵具有结构紧凑、输送流量稳定的优点,适用于输送高粘度的流体。
3.1 齿轮泵的结构齿轮泵由齿轮、泵体和轴等部分组成。
齿轮是齿轮泵中最关键的部件,它负责将流体从低压区域吸入并输出到高压区域。
泵体是齿轮泵的外壳,起到固定齿轮和导向流体的作用。
轴用于传输齿轮的旋转动力。
3.2 齿轮泵的工作原理齿轮泵的工作原理是基于齿轮的旋转和啮合作用。
当齿轮旋转时,流体将被齿轮齿槽所包围,形成封闭的空间。
齿轮的旋转使得空间逐渐缩小,流体被压缩,并在齿轮齿槽的作用下产生压力差。
高压区域的流体将通过出口管道输出,形成流动。
流体输送设备

流体输送设备第2章流体输送设备2.1 概述流体输送机械:为流体提供能量的机械或装置流体输送机械在化⼯⽣产的作⽤:从低位输送到⾼位,从低压送⾄⾼压,从⼀处送⾄另⼀处。
2.1.1 对流体输送机械的基本要求(1)满⾜⼯艺上对流量和能量的要求(最为重要);(2)结构简单,投资费⽤低;(3)运⾏可靠,效率⾼,⽇常维护费⽤低;(4)能适应被输送流体的特性,如腐蚀性、粘性、可燃性等。
2.1.2 流体输送机械的分类按输送流体的种类不同泵(液体):离⼼泵、往复泵、旋转泵风机(⽓体):通风机、⿎风机、压缩机,真空泵按作⽤原理不同:离⼼式、往复式、旋转式等本章主要讲解:流体输送机械的基本构造、作⽤原理、性能及根据⼯艺要求选择合适的输送设备。
2.2 离⼼泵离⼼泵是化⼯⽣产中最常⽤的⼀种液体输送机械,它的使⽤约占化⼯⽤泵的80~90%。
2.2.1 离⼼泵的⼯作原理和主要部件基本结构:蜗形泵壳,泵轴(轴封装置),叶轮启动前:将泵壳内灌满被输送的液体(灌泵)。
输送原理:泵轴带动叶轮旋转→液体旋转→离⼼⼒(p,u)→泵壳,A↑u↓p↑→液体以较⾼的压⼒,从压出⼝进⼊压出管,输送到所需的场所。
→中⼼真空→吸液⽓缚现象:启动前未灌泵,空⽓密度很⼩,离⼼⼒也很⼩。
吸⼊⼝处真空不⾜以将液体吸⼊泵内。
虽启动离⼼泵,但不能输送体。
此现象称为“⽓缚”。
说明离⼼泵⽆⾃吸能⼒。
防⽌:灌泵。
⽣产中⼀般把泵放在液⾯以下。
底阀(⽌逆阀),滤⽹是为了防⽌固体物质进⼊泵内。
2.2.2 离⼼泵的主要部件1. 叶轮叶轮是离⼼泵的最重要部件。
其作⽤是将原动机的机械能传给液体,使液体的静压能和动能都有所提⾼。
按结构可分为以下三种:开式叶轮:叶轮两侧都没有盖板,制造简单,效率较低。
它适⽤于输送含杂质较多的液体。
半闭式叶轮:叶轮吸⼊⼝⼀侧没有前盖板,⽽另⼀侧有后盖板,它适⽤于输送含固体颗粒和杂质的液体。
闭式叶轮:闭式叶轮叶⽚两侧都有盖板,这种叶轮效率较⾼,应⽤最⼴。
化工原理(第二版)第二章

p0
g
p1
g
u12 2g
H f
p0
g
p1
g
u12 2g
pv
g
pv
g
H
f
p0
g
ha
pv
g
Hf
p0
g
h
pv
g
Hf
Hg max
47
(3)允许汽蚀余量的校正
h~20度清水,条件不同时要校正,校正曲线说明书
2. 离心泵的实际压头
实际压头比理论压头要小。具体原因如下: (1)叶片间的环流运动
主要取决于叶片数目、装置角2、叶轮大小、液体粘度等因素,而几 乎与流量大小无关。
c2 c2
23
阻 力 损 失
(2)水力损失 冲 击损 失 阻力损失 可近似视为与流速的平方呈正比
24
冲击损失 在设计流量下,此项损失最小。流量若偏离设计量越远, 冲击损失越大。
高效
区
设计点 Q
33
3.离心泵特性的影响因素
(1)流体的性质:
密度的影响
对 H~Q 曲线、~Q 曲线无影响,但N QgH ,
故,N~Q 曲线上移。
粘度的影响 当比 20℃清水的大时,H,N,
实验表明,当<20 厘斯时,对特性曲 线的影响很小,可忽略不计。
第二章 流体输送机械

26
N一定
24
22
20
18
16
14
12
10
η
H P
80
70 60
50
8 40 6 30 4 20 2 10 00
0 20 40 60 80 100120 qv m3/s
离心泵的特性曲线
1.流量的影响
1)qv
, He
; qv
0,
H
也只能达到一定值。
e
2)qv ,Pa ;qv 0,Pa最小, 离心泵启动时,应关闭出口阀门。
ha
p1
g
u12 2g
pV
g
有效气蚀余量:与吸入管路条件有关,与泵的结构尺寸无关。
必需汽蚀余量(Δhr):表示液体从泵入口流到叶轮内最低压 力处的全部压头损失。
泵入口处压头
p1
g
u12 2g
有效汽蚀余量ha 必需汽蚀余量hr
叶轮压力最低处压头 pk
g
饱和蒸汽压头
pV
g
必需汽蚀余量越小,泵越不易发生汽蚀现象。
※泵向管路提供能量用以提高流体的势能和克服管路阻力损失。
2.2.3离心泵的流量调节和组合操作
管路特性方程:
H H0 Kqv2
泵的特性方程: He (qv ) C Dqv2
泵------供方 管路------需方
H
两特性曲线的交点即 为泵的工作点。
qV 工作点
2.流量调节
方法:改变管路特性曲线;
Q
4)离心泵的组合操作
A. 泵的并联
两台相同的离心泵并联,理论上讲在同 样的压头下,其提供的流量应为单泵的 两倍。
H H并 流量增加,使管路流动阻力增加 H
《流体输送输送机械》课件

安全操作:操作人员应熟悉通风 机的操作规程,确保安全操作
管道系统的运行与维护
定期检查:检 查管道是否有 泄漏、腐蚀等
现象
定期清洗:清 洗管道,防止
堵塞和污染
定期润滑:润 滑管道,防止
磨损和生锈
定期维护:维 护管道,确保
其正常运行
流体输送输送机械的故障 诊断与处理
章节副标题
泵的故障诊断与处理
故障诊断方法:如观察、听 诊、测量等
THEME TEMPLATE
感谢观看
泵的常见施:如更换零件、 调整参数、维修等
预防措施:如定期检查、维 护、更换易损件等
压缩机的故障诊断与处理
故障类型:机 械故障、电气 故障、液压故
障等
故障原因:磨 损、腐蚀、堵
塞、泄漏等
故障诊断方法: 观察、听声音、 测量、分析等
故障处理措施: 更换零件、调 整参数、清洗、
流体输送输送机械的应用
石油、天然气等能源输送 化工、制药、食品等行业的物料输送 城市供水、排水、污水处理等市政工程 农业灌溉、排涝等农业工程 船舶、飞机等交通工具的燃料输送 热力、电力等能源输送
流体输送输送机械的组成 与结构
章节副标题
泵的组成与结构
泵体:容纳 流体,承受 压力
叶轮:将流 体加速,产 生压力
章节副标题
流体输送输送机械概述
章节副标题
定义与分类
定义:流体输送输送机械是一 种用于输送流体的机械设备, 包括泵、压缩机、风机等。
分类:根据流体输送输送机械 的工作原理和用途,可以分为 泵、压缩机、风机等类型。
泵:用于输送液体,包括离心 泵、轴流泵、混流泵等。
压缩机:用于压缩气体,包括 离心压缩机、轴流压缩机、混 流压缩机等。
2流体输送机械

ha hr ha hr ha hr
不发生汽蚀 开始发生汽蚀 严重汽蚀
2.1 离心泵
2 流体输送机械
(3) 离心泵的最大安装高度
pg1 pg0 Hg2u1g2 Hf
ha pg1 2u1g2 pgv
Hgpg0pgv ha Hf
Hgma xpg 0pg vhr Hf
2.1 离心泵
2 流体输送机械
量与压头(H-Q),应与管路所要的流量与压头 (He-Qe)相一致。若将(H-Q)与(He-Qe)绘于同一 图中,则两曲线的交点即为工作点。
2.1 离心泵
2 流体输送机械
3、 离心泵的流量调节
对一台泵而言,其特性曲线H-Q是不会变的, 而管路特性曲线可变。当原工作点所提供的流 量不满足新条件下所需要的送液量时,即应设 法改变原工作点的位置,即需要进行流量调节。
2.1 离心泵
• 2.1.3 离心泵的主要性能参数
2 流体输送机械
2.1 离心泵
2 流体输送机械
H~qv关系的实验测定 在1、2 两截面间列柏努利方程得
z1p g v2 u1 g 2Hz2pM g2 ug 2 2 H f
整理得
Hh0pM gpvu2 22 gu1 2 Hf
不计动压头差及压头损失,则有
2.1 离心泵
2.1.1 离心泵的结构和工作原理
2 流体输送机械
主要结构:叶轮 泵壳 泵轴和轴封装置
2.1 离心泵
2 流体输送机械
1— 叶轮 2— 泵壳 3— 叶片 4— 吸 入管 5— 底阀 6— 排出管 7— 泵轴
2.1 离心泵
2 流体输送机械
• 气缚现象:若在离心泵启 动前没向泵壳内灌满被输 送的液体,则泵壳内存在 空气,由于空气密度低, 叶轮旋转后产生的离心力 小,叶轮中心区不足以形 成吸入贮槽内液体的低压, 因而虽启动离心泵也不能 输送液体。此现象称为气 缚。这表明离心泵无自吸 能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 流体输送机械授课时间:8学时授课方式:板书+幻灯片 授课内容提纲:离心泵结构、操作原理和类型;离心泵的理论压头和实际压头;离心泵特性参数和特性曲线;管路特性曲线;离心泵的工作点和流量调节;离心泵安装高度的确定;离心泵的选用;往复泵和其它类型泵;通风机、鼓风机、 压缩机和真空泵教学目的、要求:1.了解离心泵主要部件,重点掌握离心泵的工作原理,掌握离心泵基本方程式及应用,离心泵主要性能参数,重点掌握离心泵的特性曲线及其应用、离心泵的工作点与流量调节、离心泵的安装高度及其计算,熟悉离心泵的类型与选择。
了解往复泵、计量泵和旋转泵等其他类型泵的工作原理和构造。
2.了解离心通风机、鼓风机与压缩机的构造和工作原理。
了解往复压缩机的构造及工作原理,压缩循环的有关计算。
教学重点及难点:重点:离心泵操作原理;离心泵的工作点和流量调节;离心泵安装高度的确定。
难点:离心泵特性参数和特性曲线;管路特性曲线。
教学方法和教学手段:新课引入:1.播放动画、2.播放图片 新课教学:1.动画图示、2.过程解析讨论:离心泵启动前为什么灌满液体;离心泵的安装高度目的本讲要点:离心泵的工作原理,离心泵基本方程式及应用,掌握离心泵的特性曲线及其应用、离心泵的工作点与流量调节、离心泵的安装高度及其计算。
作业布置:3;5教学内容:第二章 流体输送机械如果说管路是设备与设备之间、车间与车间之间、工厂与工厂之间联系的通道的话,则流体输送机械是这种联系的动力所在。
以供料点和需料点为截面列柏努利方程:f e H gu g p z H +∆+∆+∆=22ρ其中e H 是流体输送机械对单位重量流体所做的功。
从上式可以看出,采用流体输送机械操作的目的可能是为了提高流体的动能、位能或静压能,或用于克服沿程的阻力,也可能几种目的兼而有之。
流体输送机械目的:实现非自动化过程。
流体输送机械的分类:(1)按输送流体的状态分:液体输送机械 如:泵气体输送机械 如:风机、压缩机、真空泵(2)按工作原理通常分三大类: 离心式正位移式流体动力作用式第一节 离心泵一、离心泵的操作原理与构造1.离心泵的构造:2.操作原理: 启动:⎪⎩⎪⎨⎧:、:、:、泵轴及轴封装置泵壳叶轮321 离心泵结构示意图1泵内灌满液体(灌泵),2关出口阀, 3开泵(开出口阀)。
原理:(a) 排出阶段叶轮旋转(产生离心力,使液体获得能量)→流体流入涡壳(动能→静压能) →流向输出管路。
(b) 吸入阶段液体自叶轮中心甩向外缘→叶轮中心形成低压区→贮槽液面与泵入口形成压差→液体吸入泵内。
离心泵之所以能够输送液体,主要依靠高速旋转的叶轮,产生离心力,在惯性作用下,获得了能量以提高压强。
气缚现象:泵内未充满液体,气体密度低,产生离心力小,在叶轮中心形成的低压不足以将液体吸上。
说明:离心泵无自吸能力,启动前必须将泵体内充满液体。
3.离心泵的主要部件1)叶轮:敞式:结构简单,制造清洗方便,用于含较多固体悬浮物的液体;液体回流,效率较低。
半闭式:适于输送易于沉淀的液体,效率较低。
闭式:适于输送不含固体杂质的清洁液体,结构较复杂,效率较高。
(较多采用)叶轮后盖板上平衡孔的作用:平衡轴向应力吸液方式:单吸式和双吸式2)泵壳蜗壳形汇集和导出液体通道,能量转换装置。
3) 导轮固定不动;导轮的弯曲方向与叶片弯曲方向相反引导液体在泵壳通道内平稳地改变方向,使能量损耗最小,动压能转换为静压能的效率高。
4) 轴封装置泵轴与泵壳之间的密封。
作用:防止液体外漏,气体进入。
a.填料密封结构简单,加工方便,功率消耗大,密封不严。
b.机械密封密封性好,功率消耗少,广泛使用,加工精度高,价格高。
二.离心泵的理论压头与实际压头1. 压头H,又称扬程,泵对单位重量流体提供的机械能,m。
2动压头的增量与其他项相比,一般可以忽略。
因此,泵产生的压头主要用于使液体位置升高、静压头增大以及克服流动过程中的压头损失。
2. 离心泵的理论压头定义:理想情况下单位重量液体所获得的能量称为理论压头,用H ∞ 表示。
理想情况:泵的压头H 与影响因素的关系式只能由实验测定,但理想情况下的关系式则可理论推导得到。
在1与2之间列伯努利方程式,得:产生的原因:原因一:离心力作功;原因二:液体由1流到2时,由于流动通道逐渐扩大,w 逐渐变小,这部分能量将转化为静压能。
3.实际压头H实际压头比理论压头要小。
原因:泵内各种能量损失,包括: (1)叶片间的环流运动 (2)阻力损失(3)冲击损失三.离心泵的主要性能参数1.压头和流量 前已述及,仅介绍方法。
如图,在泵进口b 、泵出口 c 间列机械能衡算式:2. 有效功率、轴功率和效率(1)离心泵的有效功率是指液体从叶轮获得的能量,单位为W 或kW 。
⎩⎨⎧多,且叶片厚度不计。
叶轮的叶片数目为无穷流体为理想流体)2()1(c 2 ω 2c 1 1=∞H +-g p p ρ12g c c 22122-g p p ρ12- 流量计真空表 压力表h 0 c b =++H g u g p b b 22ρfc c h h g u g p +++022ρ=-≈g p p H b c ρg p p b c ρ)()(真表+Ne=Q ρgH=WsWe [KW] 式中:Q 一泵在输送条件下的流量,m 3/s ;g —重力加速度,m /s 2 H —泵在输送条件下的压头,m ;ρ—输送液体的密度 kg/m 3(2)轴功率N 是指泵轴所需的功率,即电机传给泵轴的功率,单位为W 或kW 。
(3)效率ηη=(Ne/N)×100%η小于1,离心泵在输送液体过程中存在能量损失,主要有三种: a.容积损失 容积损失是指泵的泄漏所造成的损失;b.机械损失 由机械摩擦而引起的能量损失称为机械损失;c.水力损失 粘性液体流经叶轮通道和蜗壳时产生的摩擦阻力以及在泵局部处而产生的局部阻力,统称为水力损失。
四.离心泵的特性曲线及应用1. 离心泵特性曲线离心泵的主要性能参数流量Q 、压头H 、轴功率N 及效率η间的关系曲线称为离心泵的特性曲线或工作性能曲线,离心泵的特性曲线只与叶轮的直径、转速和测试时的工作介质有关,它是在泵的制造厂通过实验作出来的。
图2-12为4B20型离心水泵在2900r /min 时的特性曲线,由H-Q ,N —Q 及h -Q 三条曲线所组成。
特性曲线随转速而变,故特性曲线图上一定要标出实验时的转速。
① Q H -曲线 ↑Q ↓H② Q N -曲线 ↑Q ↑N 0=Q =N 最小 故离心泵启动时,应关闭出口阀,使启动电流减少以保护电机。
③ Q -η曲线 0=Q 0=η ↑Q ↑η 上升到最大值 ↑Q ↓η32)'(')'('''nn N N n n H H n n Q Q ===4B20型离心泵的特性曲线N=2900 r/minηη图2-12 4B20型离心泵的特性曲线离心泵在一定转速下有一最高效率点,称为设计点。
离心泵的工作范围称为泵的高效率区。
通常为最高效率的92%左右 ,离心泵最好在此范围内工作。
-A 最高效率点,称为设计点。
泵在最高效率相对应的流量及压头下工作最为经济,所以与最高效率点对应的N H Q ..称为最佳工况参数。
离心泵的铭牌上标出的性能参数就是指该泵在运行时效率最高点的状况参数,根据输送条件的要求,离心泵往往不可能正好在最佳状况点上运转,因此一般只能规定一个工作范围,称为泵的高效率区,通常为最高效率的92%左右,如图中波折线所示的范围。
2. 液体性质对离心泵特性的影响 (1)密度的影响离心泵的压头,流量均与液体的密度无关,故泵的效率亦不随液体的密度而改变,所以离心泵特性曲线中的H-Q 及h —Q 曲线保持不变。
但是泵的轴功率随液体密度而改变,N-Q 曲线不再适用;用Ne=Q ρgH 校正。
(2)粘度的影响若被输送液体的粘度大于常温下清水的粘度,则泵体内部液体的能量损失增大,因此泵的压头,流量都要减小,效率下降,而轴功率增大,亦即泵的特性曲线发生改变。
当液体的运动粘度n 大于20cSt(厘沲10-6m 2/s)时,需校正。
3.转速与叶轮尺寸对离心泵特性的影响1)转速的影响离心泵的特性曲线都是在一定转速下测定的,改变转速时,泵的压头、流量、效率和轴功率也随之改变。
当液体的粘度不大,假设泵的效率不变时,泵的流量、压头、轴功率与转速的近似关系为:32)'(')'('''DD N N D D H H D D Q Q ===f e H gu Z g p h +∆+∆+∆=22ρ252282Q dL L g g u d L L H e e f ∑+=∑+=πλλ2414222212222)11(82/])4()4[(2Q d d g g d Q d Q g u -=-=∆πππ222BQ H gu f =+∆式中:Q’、H’、N’-为转速为n’ 时泵的性能; Q 、H 、N-为转速为n 时泵的性能2)叶轮直径的影响叶轮切削,直径改变不大时,其流量、压头和轴功率与叶轮直径之间的近似关系为:式中:Q’、H’、N’-为直径为D’ 时泵的性能; Q 、H 、N-为直径为D 时泵的性能五.离心泵的工作点与流量调节(一)管路特性曲线对下图所示的管路输送系统,在1-1‘与2-2’间列柏努利方程得:对于一定的管路系统,上式中的△Z 与△p/ρg 均为定值,即:△Z+△p/ρg =A式中: Q--管路系统的输送量,m3/s则: h e =A+BQ 2 (2-19)(二)离心泵的工作点与流量调节1.离心泵的工作点式2-10即为管路特性方程,表示管路所需压头H e随液体流量Q的平方成正比;将其标绘在相应的坐标图上,称为管路特性曲线,如图所示。
管路特性曲线与泵特性曲线交点M称为泵在管路上的工作点;在M点处: Q=Q e H=H e;2.流量调节1)改变阀门的开度改变泵出口阀门的开度,即可改变管路特性曲线;阀门关小,特性曲线变陡,工作点由M移至M1点,流量由QM降至QM1;反之流量加大。
2)改变泵的转速改变泵的转速,即可改变泵的特性曲线,转速提高,H-Q线向上移,Q增大,反之则Q 减小。
【习题课】P60【例2-1】;P63【例2-3】【补充例1】某离心泵工作转速为n=2900r.p.m.(转/min),其特性曲线方程为H=30-0.01V2 。
当泵的出口阀全开时,管路特性曲线方程为he=10+0.04V2,式中V的单位为m3/h,H及he的单位均为m。
求:(1)阀全开时,泵的输水量为多少?(2)要求所需供水量为上述供水量的75%时:a.若采用出口阀调节,则多损失的压头为多少m水柱?b.若采用变速调节,则泵的转速应为多少r.p.m.?【解】(1)204.010Vhe+=201.030VH-=ehH=mhhmVe26203==(2)多损失的压头为多少m 水柱? a. 采用调节出口阀门的方法b. 采用调节转速的方法,则泵的转速应为多少r.p.m.?新转速下泵的特性曲线方程为:六、离心泵的安装高度Z S1、什么是安装高度?离心泵的安装高度是指要被输送的液体所在贮槽的液面到离心泵入口处的垂直距离,即右图中的s z 。