超低温空气源热泵在严寒地区的应用

合集下载

空气源热泵在冬天超低温下环境下的难点

空气源热泵在冬天超低温下环境下的难点

空气源热泵在冬天超低温下环境下的难点针对空气源热泵来讲,除了具备诸多优势以外,仍具有许多缺陷及尚需克服的难题。

空气源热泵的性能受户外气候条件变化影响较大,伴随着户外环境的恶化而恶化。

大家都知道,超低温空气源热泵机组样本(或铭牌)上给出的冬天制热量能效比(不加说明),一般指标准工况(名义工况)下的制热量、能效比(干球温度7℃,湿球温度6℃,)冷热水热泵机组名义工况的最低制冷性能系数额定制冷量>50kW,COP不应小于2.6。

标准工况能效比测试数据:1、上述热水工况参数在环境温度20℃,水温从15℃升到55℃测定。

2、制冷工况参数在进水温度12℃,出水温度7℃,户外环境温度35℃测定。

3、制热工况参数在进水温度40℃,出水温度45℃,户外(环境温度)干球温度7℃测定。

因此,在夏热冬冷地域,鉴于超低温热泵冬天供暖时的户外空气温度最低达到-20℃,但目前空气源热泵空气能热泵机组样本(或铭牌)上给出的冬天制热量干球温度7℃,湿球温度6℃。

冬天当环境温度小于-10℃,在实际运行时,空气源热泵空气能热泵机组冬天运行制热量具有衰减,造成空气源热泵空气能热泵机组冬天运行制热量衰减现象的原因有两个:1、当室外温度小于7℃时,一方面室外侧换热器表面结霜会增大换热热阻,减小单位时间内的换热量;与此同时,为了除去盘管上的霜层,空气能热泵机组不得不作周期性的短暂换向运行,由制热工况改为制冷工况。

这必然导致空气能热泵机组实际制热运行时间的减少,从而影响向室内提供的热量。

这一部分热量衰减得比较有限,大致为5%~7%,而且空气能热泵机组多在空气温度-5~7℃时出现结霜。

伴随着室外温度的降低,鉴于空气中含湿量的减小,结霜的概率不增反降。

2、简单的说,鉴于室外温度的降低,空气源热泵热水机组工作时吸取的是户外空气中的热量,提升后把它传递给用户侧的水,显而易见,气温越低,越不容易吸取和提升,高效率就越低。

直接导致热泵机组制热量的降低。

怎样保证空气源热泵空气能热泵机组冬天超低温下的高效率难题:1、事实上制热量能效比是随干球温度、湿球温度变化的。

空气源热泵在寒冷地区供暖系统的应用

空气源热泵在寒冷地区供暖系统的应用

空气源热泵在寒冷地区供暖系统的应用一、空气源热泵技术概述空气源热泵是一种利用空气中的热量来提供供暖、热水和制冷的高效能源设备。

它通过吸收空气中的低温热量,经过压缩机的压缩,使温度升高,然后通过热交换器释放热量,为建筑提供所需的热能。

与传统的供暖方式相比,空气源热泵具有更高的能效比,能够显著降低能源消耗和运行成本。

1.1 空气源热泵的工作原理空气源热泵的工作原理基于逆卡诺循环,它通过制冷剂在蒸发器、压缩机、冷凝器和膨胀阀四个主要部件中的循环来实现热量的转移。

在蒸发器中,制冷剂吸收空气中的热量并蒸发成气态;在压缩机中,气态制冷剂被压缩,温度和压力升高;在冷凝器中,高温高压的气态制冷剂释放热量,冷凝成高压液态;最后在膨胀阀中,高压液态制冷剂经过节流降压后进入蒸发器,循环往复。

1.2 空气源热泵的优势空气源热泵的优势在于其高能效比和环境友好性。

由于它主要利用空气中的热量,因此不依赖于化石燃料,减少了对环境的污染。

同时,空气源热泵的能效比通常在3-4之间,即消耗1单位电能可以产生3-4单位的热能,远高于传统的电加热设备。

二、寒冷地区供暖系统的需求特点寒冷地区由于气温较低,对供暖系统的需求有其特殊性。

这些地区需要供暖系统能够提供稳定、高效的热能,以保证室内温度的舒适性和建筑物的节能性。

2.1 寒冷地区供暖系统的要求在寒冷地区,供暖系统需要满足以下要求:- 高效的热量输出:由于室外温度低,供暖系统需要提供足够的热量以维持室内温度。

- 稳定的运行性能:在极端低温条件下,供暖系统需要保持稳定运行,不受外界环境影响。

- 节能和环保:寒冷地区的供暖周期长,因此节能和环保是供暖系统设计的重要考虑因素。

- 经济性:考虑到长期的运行成本,供暖系统需要具有经济性,以降低用户的经济负担。

2.2 寒冷地区供暖系统的挑战寒冷地区供暖系统面临的挑战包括:- 低温环境下的启动和运行问题:在低温条件下,供暖系统的启动和运行可能会受到影响。

低温环境下空气源热泵的应用分析

低温环境下空气源热泵的应用分析

低温环境下空气源热泵的应用分析一、低温环境下空气源热泵的原理及优势空气源热泵是利用空气中的低品位热能进行热能转换的一种设备。

其工作原理是通过压缩机将低温的空气中的热能转移到高温区域,从而达到取暖的目的。

在低温环境下,空气源热泵仍然能够提供稳定的热量,具有以下优势:1. 环保节能:空气源热泵不像传统的采暖方式需要燃烧化石燃料,不会产生废气和二氧化碳等有害物质,对环境没有污染。

空气源热泵采用新型压缩机和换热器,能够将外界的低品位热能充分利用,节约能源。

2. 适应性强:空气源热泵可以在-25℃以下的低温环境下正常工作,不受外界温度的限制。

在北方地区的寒冷冬季,空气源热泵仍然能够提供足够的热量,满足室内采暖的需求。

3. 运行成本低:与传统的采暖方式相比,空气源热泵的运行成本更低。

由于其利用空气中的低品位热能进行热能转换,只需支付少量的电能用于驱动压缩机,因此能够节约大量的能源费用。

在低温环境下,空气源热泵可以广泛应用于各种建筑物的采暖系统中,包括居民住宅、商业建筑、工业厂房等。

具体包括以下几个方面:1. 居民住宅采暖:在北方地区,采暖是居民生活的重要问题。

传统的采暖方式需要大量的燃料支持,而空气源热泵采用电能作为驱动能源,不受气源的限制,能够为居民提供舒适的采暖环境。

2. 商业建筑采暖:商业建筑通常对于室内温度的要求更高,而且需要长时间稳定供热。

空气源热泵具有稳定的供热能力,能够满足商业建筑的采暖需求。

3. 工业厂房采暖:工业厂房内部通常有大量的机器设备和工作人员,需要提供稳定的室内温度,以确保生产和作业的顺利进行。

空气源热泵在低温环境下能够提供足够的热量,适合用于工业厂房的采暖系统。

尽管空气源热泵在低温环境下具有诸多优势,但是也存在一些不足之处,主要体现在以下几个方面:1. 制热效率受限:在低温环境下,空气中的低品位热能较少,空气源热泵的制热效率会受到一定的影响,导致供热能力下降。

2. 除霜能力不足:在低温环境下,空气中的水分容易结冰,对空气源热泵的换热器和风道会造成影响,影响其正常运行。

空气源热泵采暖技术在寒冷地区的应用研究

空气源热泵采暖技术在寒冷地区的应用研究

空气源热泵采暖技术在寒冷地区的应用研究摘要:随着科技与时代的发展,当前国际社会经济发展趋势已然朝着低碳环保发展。

近年来,我国确立了3060双碳目标,对高效、清洁能源的需求与日俱增。

这也对我国现代化城市楼宇建设提出了更高的要求,尤其是在寒冷地区楼房供暖方面。

而空气源热泵采暖技术,这一种高效、清洁的新供暖方式开始逐渐进入了公众的视野。

关键词:空气源热泵;热源;采暖技术;寒冷地区随着热泵技术不断发展,空气源热泵采暖技术不仅可以提升建筑供暖系统的整体性能,还更加的环保与节能。

尤其是在寒冷地区空气源热泵采暖技术的建筑供暖成本将比新型中央集中供暖系统更高效、更具性价比。

一.我国背景介绍1.1能源现状改革开放以来,我国社会经济飞速发展,成为全球最大的能源消费国以及能源消耗国之一。

近年来,我国不断促进水电、风电等可再生清洁能源的开发建设与发展利用,成为了全球最大的能源生产国。

虽然,我国极力推动低碳能源替代高碳能源,可再生能源替代化石能源,但仍然大规模的使用煤炭等化石能源。

同时,在能源的高效利用方面仍然存在不足。

1.2寒冷地区供暖现状我国寒冷地区多采用集中供暖系统,能源主要为煤炭、天然气和电力等。

在整个供暖系统的热源结构中,煤炭仍然是最主要的供暖能源,燃煤锅炉是最普遍的采暖方式。

采用大规模的燃煤供暖,通过燃煤锅炉进行供暖,虽然成本相对较低,但增加碳排放对环境照成严重污染,而且燃煤锅炉对于能源利用效率非常低。

同时,采用天然气作为供暖能源的燃气锅炉,虽然相比于燃煤锅炉对环境的污染小以及能源利用率较高。

但天然气价格要远高于煤炭,这也导致燃气锅炉在供暖成本控制上不及燃煤锅炉,无法做到全国大规模应用。

而采用电力作为供暖能源的热泵,则成为了符合低碳环保、高效的最佳清洁采暖方式。

二.热泵热泵是一种可从土壤、空气和水中吸取热量,并将其传递给需加热对象进行热量交换的高效、环保、节能的采暖技术。

也可说是一种从低档热能向高档传递的提升装置。

低温环境下空气源热泵的应用分析

低温环境下空气源热泵的应用分析

低温环境下空气源热泵的应用分析随着环保节能的重要性日益凸显,空气源热泵成为了一种备受关注的新型绿色能源。

空气源热泵可以将空气中的低温热能转化成高温热能,从而实现空调、制热、热水供应等多种功能。

因为其具有高效节能、环保无污染等优点,因此受到了越来越多人的青睐。

本文将重点分析低温环境下空气源热泵的应用情况及其存在的问题。

空气源热泵的工作原理是基于空气中热能的获取和转化,由于热量传输需要温差推动,所以其性能受到环境温度的影响。

一般来说,空气源热泵的温度运行范围为-15℃~43℃,其效果在5℃~35℃的环境下最为显著。

在低温环境下,空气源热泵的应用情况与一般的温度下有所不同。

因为空气源热泵需要获取空气中的低温热能并将其转化成高温热能,而低温环境下减少了空气中的热能,因此其效果相对较差。

但是,在目前的发展状况下,空气源热泵已经通过不断的技术更新和改良,逐渐能够适应低温环境下的应用需求。

在具体应用中,空气源热泵在低温环境下主要应用于小型别墅和办公室等场所。

这些场所相对较小,空气的流动相对有限,同时对温度和湿度的要求也不是很高,因此空气源热泵能够基本满足其需求。

此外,在寒冷地区,空气源热泵也可以作为辅助系统来使用,如与地源热泵、太阳能和锅炉等其他能源相结合,来保证供暖系统的稳定性和节能性。

虽然空气源热泵在低温环境下的应用逐渐得到了推广,但其存在的问题也不容忽视。

其中主要问题包括以下几个方面:1.能效比较低。

在低温环境下,空气源热泵需要耗费更多的电能进行加热,因此其能效比会下降,从而影响了其节能性。

2.对环境依赖性强。

空气源热泵需要获取空气中的低温热能,因此其工作效果会受到环境的影响。

在极度寒冷的环境下,空气中的热能减少,会对其工作效果产生很大的影响。

3.噪音问题。

空气源热泵在工作时会产生一定的噪音,而在低温环境下,由于机器需要不断运作来进行加热,因此其噪音也会相对较高。

4.维护成本高。

空气源热泵需要不断进行维护和保养,以保证其正常运行。

我国北方冬季寒冷地区一支鲜艳的雪中红梅

我国北方冬季寒冷地区一支鲜艳的雪中红梅

我国北方冬季寒冷地区一支鲜艳的雪中红梅——超低温空气源热泵采暖空气源热泵是一种节能环保产品,在国内外得到了广泛的应用。

但普通的空气源热泵一般是在夏季制冷(或制取卫生热水)中使用的,它将室内的热能“搬运”的室外并散发掉,使室温降低(或将空气的热能“搬运”到水中,使水温升高)。

但在冬季气温在零下时,它的“搬运”能力大大下降,它“搬运”的热能往往小于它付出的电能的热量(能效比小于1)。

针对普通空气源热泵的缺陷,广州西莱克中央空调有限公司从2001年开始研制在低温环境中能高效“搬运”热能的空气源热泵,并引进欧盟成熟先进的制造技术开发研制出超低温空气源热泵机组,该机组的制热能力突出,可在-20℃的环境温度下正常工作,且能效比可达1:2.超低温空气源热泵是在寒冷地区利用空气能采暖的高科技产品,该产品自诞生以来一直出口欧洲,已成为欧洲热泵供暖的主要设备,受到欧洲用户的好评。

(瑞典实例图片)(德国实例图片)CDR文件有图片根据超低温空气源热泵在欧洲使用的成功经验,广州西莱克中央空调有限公司自2008年初开始在国内推广使用,从2008年5月开始辽宁省葫芦岛市的一些住宅用户和山东省临沂市的一些办公楼、别墅、普通住宅安装了超低温空气源热泵机组,根据这1.2年机组的运行情况来看:机组在夏天制冷的能力与普通的中央空调相似,但冬季制热的能力远远高出普通的空气源热泵,运行费用极低。

现仅仅以葫芦岛市两个的普通住宅和临沂的一栋别墅、一栋办公大楼来说明这个问题。

一.辽宁葫芦岛的取暖期为144天,冬季极平均温度-3.5℃. 电价0.5元/度,热网的取暖费是25元/平方米。

1.一住户建筑面积69.7平方米,是2007年交工使用的节能住宅,该住户楼层位于四楼,由于是新楼房,入住率很低,08年冬天这个住户的上下左右都无人居住(邻居都没有供暖),这种情况冬季取暖需要的热量较大,这个用户使用了西莱克的空气源热泵采暖,整个取暖期采暖用电费710元,取暖期间室温在18-20℃.(如交采暖费要1742.5元),是交取暖费的40%。

空气源热泵采暖技术在严寒地区选煤厂供暖的应用研究

空气源热泵采暖技术在严寒地区选煤厂供暖的应用研究

空气源热泵采暖技术在严寒地区选煤厂供暖的应用研究摘要:近年来有一些严寒地方应用了空气源热泵的采暖方式,这种方法在应用过程中即能环保,又可增强室内供暖系统的节水作用。

在严寒地方可以通过复叠循环、双压缩等的方法减小水压比,又或者可以通过电加热压气机与热水界面间的吸气管道,从而增加了蒸汽压力、蒸发温度等。

该报告通过对空气源热泵式采暖系统在中国北部严寒地区选煤厂使用现状的探讨,期望能使在中国北部严寒地区的选煤厂供暖效果有所提高。

关键词:空气源热泵;采暖技术;选煤厂;严寒地区前言:随着我国城镇化进程的加快,城镇建设用地规模急剧扩大,城镇建设用地的能源消耗也在不断上升,同时带来了日益严重的环境污染问题。

为了应对日益严峻的能源环保问题,寻找一种洁净、高效的采暖方法已迫在眉睫[1]。

空气源热泵采暖是一种清洁、高效、灵活的采暖形式,其发展前景十分广阔。

但在高寒地区,常规空气能热泵因其性能下降、热效率下降等问题,已不能正常使用。

为此,本文提出了几种新型的空气源热泵技术,但该技术在较冷的环境下的工作性能需要进一步研究。

一、研究现状中国很多寒冷地区冬季供暖多采用空气源热泵系统。

冬季来临,很多寒冷地区气温下降,空气源热泵制冷系统比容量增大。

空气源热泵系统在运行时,由于室外温度降低,空气源热泵系统的吸入量将逐渐减少,产生的热量将逐渐升高。

随着建筑外部温度的持续下降,空气源热泵机组在运行过程中,由于压缩机吸气压力的降低,压比的增大,使空气源热泵机组的运行压比偏离了最优值。

随着压缩比的增大,其输气能力、及输气系数均有所降低。

压气机工作过程中,压气机润滑油的粘度一般会降低。

造成这一现象的主要原因是由于压气机排气温度过高,严重影响了压气机的软化效果。

空气源热泵在运行时,如果压缩率过高,将会导致系统启动频繁、停机,从而影响热泵系统的推广应用。

随着国家对环境保护要求的提高,选煤厂的生产工艺和厂房设计也发生了相应的变化,目前多数选煤厂采用燃煤锅炉作为热源,对环境产生严重影响。

北方地区低温环境下空气源热泵应用研究

北方地区低温环境下空气源热泵应用研究

北方地区低温环境下空气源热泵应用研究摘要随着清洁供暖深入推进和“煤改电”政策的落实,空气源热泵以优异的节能效果、良好的用户体验、使用维护方便等显著优点,成为热泵诸多型式中应用最为广泛的一种。

空气源热泵在低温环境下应用时,突出问题是制热能力受室外温度波动和结霜严重程度的影响。

本文结合低温环境下空气源热泵应用现状和典型问题,针对低温环境情况,进行空气源热泵应用的适宜性研究和应用时的关键技术指标计算方法的研究,提出提高低温环境下空气源热泵应用性能的建议和措施,以促进空气源热泵技术在清洁供暖应用领域的推广应用。

关键词空气源热泵;低温环境;应用适宜性;计算方法;建议;措施1 北方地区空气源热泵应用现状和典型问题分析空气源热泵在北方地区低温环境下的推广和应用,关注的焦点就是它的应用受到气候条件的约束,热泵机组出现的突出问题是制热能力受室外温度波动和结霜程度的双重影响。

2 低温环境下空气源热泵应用的适宜性研究2.1低温环境下空气源热泵应用的适宜性研究按照《民用建筑热工设计规范》(GB50716-2016)的建筑热工设计原则[1],建筑热工设计区划分为两级。

其中,严寒、寒冷地区的建筑热工设计区划指标见表1所示。

表1 建筑热工设计区划指标及设计要求[4]一级区划名称区划指标二级区划名称区划指标主要指标辅助指标严寒地区(1)t min.m≤-10℃145≤d≤5严寒A区(1A)6000≤HDD18严寒B区(1B)5000≤HDD18<6000严寒C区(1C)3800≤HDD18<5000寒冷地区(2)-10℃<t min.m≤0℃90≤d≤5<145寒冷A区(2A)2000≤HDD18<3800CDD26≤90寒冷B区(2B)CDD26>90北方地区的严寒B区气候酷寒,极端最低温度低于-30℃,可选择-35℃超低温空气源热泵;严寒C区气候寒冷,极端最低气温在-25℃左右,宜选择-25℃超低温空气源热泵,可保证供暖期的正常启动和运行;寒冷A区和寒冷B区冬季平均气温在0℃左右,冬季供暖期气候整体比严寒地区温和,寒冷A区可选择配备低温空气源热泵以应对极端最低气温,寒冷B区选择常规空气源热泵即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超低温空气源热泵在严寒地区的应用
●PHNIX集团廖汉光
一、引言
人类进入二十一世纪,首先面临的是这样的矛盾,一方面,人民对生活品质的要求日益提高,另一方面是日益高涨的环保压力和能源价格。

如何化解这个矛盾,是关系着人类可持续和谐发展的大问题。

热泵作为一种可再生能源的利用模式,节能环保,受到越来越广泛的重视和应用。

根据热量的来源,热泵可分为空气源热泵,土壤源热泵,水源(污水,海水,地下水)热泵等,上述热泵各有优缺点,土壤源热泵和水源热泵的热源稳定,无结霜化霜过程,但受自然条件的约束,空气源热泵热源灵活,受自然条件的限制大,热源不太稳定,有结霜和化霜的过程,在环境温度较低(小于-5℃)的情况下,制热量和能效比都大幅衰减。

如何开发出在-15℃以下的环境温度条件下能够稳定有效地制热空气源热泵机组,是每一个的热泵生产厂家和开发人员面临的一个艰巨的问题。

PHNIX(芬尼克兹)北极星系列超低温热泵机组的开发成功,使空气源热泵推广应用到高寒地区成为可能。

二、ZWKS系列压缩机
PHNIX(芬尼克兹)北极星系列超低温热泵机组使用的就是艾默生公司研发的ZWKS系列热泵热水器专用压缩机,该系列压缩机拥有先进的喷气增焓(EVI)技术,该技术不但能拓展空调热泵在北方地区的应用,还可以优先地提高空调系统的制冷制热性能,特别是可以使低环境温度下的制热量和COP得到显著提升。

EVI涡旋压缩机除了常规的吸气口和排气口外,还带有第二个吸气口,即蒸气喷射口,中压的制冷剂蒸气通过蒸气喷射口和位于定涡旋盘的喷射孔喷射到涡旋盘的中间腔,以增加制冷剂流量,结合带经济器的系统设计,达到增加系统制热量或COP,以及降低涡旋温度的目标。

由于热泵热水器的应用极为苛刻,艾默生公司对此专门设计了ZWKS系类热泵热水器专用涡旋压缩机,为适应高出水温度对应的高负载,对压缩机的点击进行了加强,对浮动密封、动涡旋以及动态排气阀进行了专门设计以适应低温制热水时的高压比运行特点,同时为了控制安全的排气温度,对EVI喷射通道进行了设计加强。

ZWKS压缩机机构图如下:
三、PHNIX北极星系列超低温热泵机组工作原理
下图是PHNIX北极星系列超低温热泵机组的工作原理:
高温喷气增焓系统,是由喷气增焓压缩机、喷气增焓技术、高效过冷却器组成的新型系统,这三个技术的组合可提供高效的性能。

这是一个有机的整体,即高效的喷气增焓压缩机、高效过冷却器及电子膨胀阀形成的经济器、高效换热器共同构成了高效节能的喷气系统。

高效过冷却器在整个系统中也起到了关键性的作用,一方面对主循环回路冷媒进行节流前过冷,增大焓差;另一方面,对辅助回路(这路冷媒将由压缩机中部导入直接参与压缩)中经过电子膨胀阀降压后的低压低温冷媒进行适当的预热,以达到合适的中压,提供给压缩机进行二次压缩。

四、PHNIX北极星系列机组特点
1、采用艾默生公司专为热泵热水机组所生产的喷气增焓ZWKS系列压缩机。

2、拥有超宽的运行范围,如下图(数据由艾默生公司提供)
3、出水温度高。

出水温度可达60℃,适用于传统的暖气片加热;
4、适用于低环境温度下工作。

其最低的工作温度可低至-25℃,在-15℃温度下COP可达2.52(出水温度为45℃);
5、既能制热,又能制冷,性能侧重于制热(在国标工况下COP=3.8,EER=3.0)。

五、PHNIX北极星系列机组应用示意图
六、工厂实测数据(PASRW060SB-PS)
七、适用区域
由于PHNIX 北极星机组的低环温,高水温的运行特性,北极星非常适用于中国的华北,也适用于东北和西北等严寒地区,应用区域基本覆盖全国。

八、实际应用案例
1、工程概况
本别工程于甘肃省武威市一商贸城,建筑面积为8000㎡.设计采用超低温空气能热泵机组(北极星系列)做为本工程的热源。

2、室外气象参数
夏季冬季
空气调节干球温度30.6℃空气调节干球温度-18℃
通风干球温度27℃通风干球温度-9℃
空气调节日平均干球温度25.9℃采暖干球温度-15℃
空气调节湿球温度22℃相对湿度58%
相对湿度64%大气压力89.57KPa
大气压力88.35KPa风速 2.2m/s
风速 1.7m/s
3、设计依据
本工程依据建设单位提供的建施图。

《暖气与通风工程施工及验收规范》
《采暖通风与空气调节设计规范》
《采暖空调制冷手册》(机械工业出版社)
《采暖通风与空气调节设计规范》(GB50019-2003)
《简明空调设计手册》
国家现行的其他相关规范及措施
PHNIX相关资料
4、系统设计
1)空调冷热源:
本工程热所在的地区环境温度比较低,而且以采暖为主,所以在热源上,共采用了PHNIX 分体式超低温空气源北极星系列机组PASHW250S-PS-N×1+PAXRW060S×47套,室内主机均
放在负一层,室外机放在一层外墙,总制热量为490KW.
2)空调水系统
a、空调水系统为机械循环二次泵变流量双管制系统。

b、空调水系统水为同程设计;
c、由于该地区有峰谷电价,该工程还采用了水蓄能的形式。

3)设计特点
a、二次泵变流量水系统
在管路系统固定不变的前提下,变频水泵的效率特性和水系统的阻力特性接近,理论上水泵的能耗与流量成三次方的关系,故变流量水系统节能降耗潜力明显。

二次泵变流量水系统的主要特点是将空调系统的传统一次循环泵分为两级。

一次泵负责克服冷机侧的阻力,一次与冷水机组一一对应,水泵设计流量为冷水机组蒸发器额定流量,通过合理的计算选型,使一次泵运行在最佳效率工况点。

二次泵用来克服末端的阻力,可以在不同的末端环路上单独设置,二次泵可以根据该环路负荷变化进行独立控制、变频调节。

当系统较大、阻力较高,且各环路负荷特性相差较大,或压力损失相当悬殊时,如果采用一次泵方式,水泵流量和扬程要根据主机流量和最不利环路的水阻力进行选择,配置功率都比较大;部分负荷运行时,无论流量和水流阻力有多小,水泵也要满负荷配合运行,管路上多余流量与压头只能采用旁通和加大阀门阻力予以消耗,因此输送能量的利用率较低,能耗较高。

若采用二次泵方式,二次泵的流量与扬程可以根据不同负荷特性的环路分别配置,对于阻力较小的环路来说可以降,f~--次泵的设置扬程,做到“量体裁衣”,极大地避免了无谓的浪费。

而且二次泵的设置不影响制冷主机规定流量的要求,可方便地采用变流量控制和各环路的自由启停控制,负荷侧的流量调节范围也可以更大;尤其当二次泵采用变频控制时,其节能效果更好。

b、水蓄能系统
水蓄能空调是利用夜间低谷荷电力制取能量储存在蓄能装置中,白天将所储存能量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的先进水平,预示着中央空调的发展方向,该工程能使用蓄能系统,主要有以下两个条件:一是该工程所在的地区实行峰谷电价,二是所选用的机组最高出水温度能达到65℃.
水蓄能系统具有如下优点:
a.利用蓄能技术移峰填谷,平衡电网负荷,提高电厂发电设备的利用率,降低电厂电网
的运行成本,节约电厂、电网的基础建设投入。

b.减少机组容量,降低主机一次性投资;总用电负荷少,减少配电容量与配电设施费。

利用峰谷荷电价差,大大减少空调年运行费。

c.使用灵活,过渡季节、节假日或者下班后部分办公室使用空调可由蓄能槽提供,无需
开主机,节能效果明显。

具有应急功能,提高空调系统的可靠性。

d.启动时间短,只需15-20分钟即可达到所需温度,而常规系统则需1小时左右。

5、工程图片
1)工程主建筑
2)室内主机
3)室外辅机。

相关文档
最新文档