基于STM32的音频信号分析设计与实现

基于STM32的音频信号分析设计与实现
基于STM32的音频信号分析设计与实现

龙源期刊网 https://www.360docs.net/doc/2c10526250.html,

基于STM32的音频信号分析设计与实现

作者:梁方舟李金泉黄训磊王玉花

来源:《现代电子技术》2014年第01期

摘要:基于ARM Cortex?M3内核的32位处理器STM32F103和快速傅里叶变换(FFT)算法实现了音频信号频谱的分析。整个系统由前级信号调理、A/D采样电路、CPU运算电路和LCD显示电路等组成。实验表明,系统能够检测20 Hz~10 kHz范围内的频率成份并显示

音频信号频谱,该方案成本低,具有一定的应用价值。

关键词:音频信号; FFT; STM32;基?4时间抽取

中图分类号: TN911.7?34 文献标识码: A 文章编号: 1004?373X(2014)01?0019?03

音频信号分析应用于音频制作、信号分析等领域,如音频设备的研发与生产、低频信号的综合分析等。本设计利用频谱分析原理来分析被测音频信号的频率、频谱,传统的频谱分析方法有扫频法、数字滤波法。采用STM32实现快速傅里叶变换(FFT)设计方案,通过FFT把被测的音频信号由时域信号转换为频域信号,将其分解成分立的频率分量。

1 系统设计

音频信号通过前级信号处理电路放大和滤波及模数转换,经STM32进行FFT运算后获得信号的频谱,单片机控制A/D转换器实时采集信号,频谱在液晶屏扫描显示。单片机采用ST 公司的低功耗STM32F103ZET6 32位单片机,其内部含有3个12位16通道A/D转换模块和2个12位D/A转换模块。系统框图如图1所示。

1.1 信号调理与采集

设计思想:为满足输入信号较大的动态范围,必须在信号进行A/D转换前进行合理的处理,使其在A/D量化范围内达到量化精度最高,该方法相当于AD位数的增加。本设计要求输入信号幅度范围(峰?峰值)为0.01 mV~10 V,即100 dB的输入信号动态范围。设定ADC

芯片的最小输入信号峰?峰值为500 mV,再设定ADC的输入动态范围为20lg(10 V/500 mV),即26 dB,故需要5路放大电路,每一路放大倍数固定,分别为62 400,8 000,400,20,1倍。由于设计小信号放大的增益较大,放大器的选择尤为关键,根据影响放大器输出的主要参数:运放的增益带宽积、噪声电压密度、噪声电流密度、失调电流和失调电压等,选择TI公司生产的运放OPA637,该运放增益带宽积约800 MHz,输入换算电压噪声密度为[4.5 nVHz,]输入偏置电流2 pA,输入失调电压130 μV。具体电路如图2所示。

图1 系统框图

基于单片机音频信号分析仪设计

2007年A题音频信号分析仪 本系统基于Altera Cyclone II 系列FPGA嵌入高性能的嵌入式IP核(Nios)处理器软核,代替传统DSP芯片或高性能单片机,实现了基于FFT的音频信号分析。 音频信号分析仪 山东大学王鹏陈长林秦亦安 摘要:本系统基于Altera Cyclone II 系列FPGA嵌入高性能的嵌入式IP核(Nios)处理器软核,代替传统DSP芯片或高性能单片机,实现了基于FFT的音频信号分析。并在频域对信号的总功率,各频率分量功率,信号周期性以及失真度进行了计算。并在FPGA中嵌入了8阶IIR切比雪夫(Chebyshev)II型数字低通滤波器,代替传统有源模拟滤波器实现了性能优异的音频滤波。配合12位A/D转换芯片AD1674,和前端自动增益放大电路,使在50mV到5V的测量范围下,单一频率功率及总功率测量误差均控制在1%以内。 关键词:FPGA;IP核;FFT;IIR;可控增益放大 Abstract: This system is based on IP core(Nios)soft-core processors embedded in the FPGA of Altera Cyclone II family. Instead of using DSP or microcontroller, we use Nios II to perform a low-cost FFT-based analysis of the audio signal.And we caculated the power of the whole signal,the power of each frequence point that componented the signal.By the way,we anlysised its periodicity and distortion.We also embedded an 8-order Chebyshev II IIR digital low-pass filter to replace the traditional analog Active Filter to perform an excellent audio filter. With 12bit A / D converter chip AD1674, and the front-end automatic gain amplifier, this system’s single-frequency power and total power measurement error is below 1% in 50mV to 5V measurement range. Keyword: FPGA;IP core; FFT;IIR; automatic gain amplifier 一、方案选择与论证 1、整体方案选择 音频分析仪可分为模拟式与数字式两大类。 方案一:以模拟滤波器为基础的模拟式频谱分析仪。有并行滤波法、扫描滤波法、小外差法等。因为受到模拟滤波器滤性能的限制,此种方法对我们来说实现起来非常困难。 方案二:以FFT为基础的的数字式频谱分析仪。通过信号的频谱图可以很方便的得到输入信号的各种信息,如功率谱、频率分量以及周期性等。外围电路少,实现方便,精度高。 所以我们选用方案二作为本音频分析仪的实现方式。

语音信号分析与处理2011

数字信号处理实验二:语音信号分析与处理 学号 姓名 注:1)此次实验作为《数字信号处理》课程实验成绩的重要依据,请同学们认真、独立完成,不得抄袭。 2)请在授课教师规定的时间内完成; 3)完成作业后,请以word 格式保存,文件名为:学号+姓名 4)请通读全文,依据第2及第3 两部分内容,认真填写第4部分所需的实验数据,并给出程序内容。 1. 实验目的 (1) 学会MATLAB 的使用,掌握MATLAB 的程序设计方法 (2) 掌握在windows 环境下语音信号采集的方法 (3) 掌握MATLAB 设计FIR 和IIR 滤波器的方法及应用 (4) 学会用MATLAB 对语音信号的分析与处理方法 2. 实验内容 录制一段自己的语音信号,对录制的语音信号进行采样,画出采样后语音信号的时域波形和频谱图,确定语音信号的频带范围;使用MATLAB 产生白噪声信号模拟语音信号在处理过程中的加性噪声并与语音信号进行叠加,画出受污染语音信号的时域波形和频谱图;采用双线性法设计出IIR 滤波器和窗函数法设计出FIR 滤波器,画出滤波器的频响特性图;用自己设计的这两种滤波器分别对受污染的语音信号进行滤波,画出滤波后语音信号的时域波形和频谱图;对滤波前后的语音信号进行时域波形和频谱图的对比,分析信号的变化;回放语音信号,感觉与原始语音的不同。 3. 实验步骤 1)语音信号的采集与回放 利用windows 下的录音机或其他软件录制一段自己的语音(规定:语音内容为自己的名字,以wav 格式保存,如wql.wav ),时间控制在2秒之内,利用MATLAB 提供的函数wavread 对语音信号进行采样,提供sound 函数对语音信号进行回放。 [y,fs,nbits]=wavread(file), 采样值放在向量y 中,fs 表示采样频率nbits 表示采样位数。Wavread 的更多用法请使用help 命令自行查询。 2)语音信号的频谱分析 利用fft 函数对信号进行频谱分析 3)受白噪声干扰的语音信号的产生与频谱分析 ①白噪声的产生: N1=sqrt (方差值)×randn(语音数据长度,2)(其中2表示2列,是由于双声道的原因) 然后根据语音信号的频谱范围让白噪声信号通过一个带通滤波器得到一个带限的白噪声信号 N2; 带通滤波器的冲激响应为: h B (n )= ))((sin ))((sin 1122απ ωπωαπωπω---n c n c c c c c

音频信号分析仪(A题一等奖)

题目名称:音频信号分析仪(A题) 华南理工大学电子与信息学院参赛队员:陈旭张洋林士明 摘要:本音频信号分析仪由32位MCU为主控制器,通过AD转换,对音频信号进行采样,把连续信号离散化,然后通过FFT快速傅氏变换运算,在时域和频域对音频信号各个频率分量以及功率等指标进行分析和处理,然后通过高分辨率的LCD对信号的频谱进行显示。该系统能够精确测量的音频信号频率范围为20Hz-10KHz,其幅度范围为5mVpp-5Vpp,分辨力分为20Hz和100Hz两档。测量功率精确度高达1%,并且能够准确的测量周期信号的周期,是理想的音频信号分析仪的解决方案。 关键词:FFT MCU频谱功率 Abstract:The audio signal analyzer is based on a32-bit MCU controller,through the AD converter for audio signal sampling,the continuous signal discrete,and then through the FFT fast Fourier transform computing,in the time domain and frequency domain of the various audio frequency signal weight and power,and other indicators for analysis and processing,and then through the high-resolution LCD display signals in the spectrum.The system can accurately measure the audio signal frequency range of20Hz-10KHz,the range of5-5Vpp mVpp,resolution of20Hz and100Hz correspondent.Power measurement accuracy up to1%,and be able to accurately measuring the periodic signal cycle is the ideal audio signal analyzer solution. Keyword:FFT MCU Spectrum Power

音频信号分析与处理

实验三音频信号的分析与处理1 一、实验目的 1.掌握音频信号的采集以及运用Matlab软件实现音频回放的方 法; 2.掌握运用Matlab实现对音频信号的时域、频谱分析方法; 3.掌握运用Matlab设计RC滤波系统的方法; 4.掌握运用Matlab实现对加干扰后的音频信号的进行滤波处理 的方法; 5.锻炼学生运用所学知识独立分析问题解决问题的能力,培养学 生创新能力。 二、实验性质 设计性实验 三、实验任务 1.音频信号的采集 音频信号的采集可以通过Windows自带的录音机也可以用专用的录制软件录制一段音频信号(尽量保证无噪音、干扰小),也可以直接复制一段音频信号,但必须保证音频信号保存为.wav的文件。 2.音频信号的时域、频域分析 运用Matlab软件实现对音频信号的打开操作、时域分析和频域分析,并画出相应的图形(要求图形有标题),并打印在实验报告中(注意:把打印好的图形剪裁下来,粘贴到实验报告纸上)。 3.引入干扰信号 在原有的音频信号上,叠加一个频率为100KHz的正弦波干扰信号(幅度自定,可根据音频信号的情况而定)。 4.滤波系统的设计 运用Matlab实现RC滤波系统,要求加入干扰的音频信号经过RC滤波系统后,能够滤除100KHz的干扰信号,同时保留原有的音频信号,要求绘制出RC滤波系统的冲激响应波形,并分析其频谱。

% 音频信号分析与处理 %% 打开和读取音频文件 clear all; % 清除工作区缓存 [y, Fs] = audioread('jyly.wav'); % 读取音频文件 VoiceWav = y(300000 : 400000, 1); % 截取音频中的一段波形 clear y; % 清除缓存 hAudio = audioplayer(VoiceWav, Fs); % 将音频文件载入audioplayer SampleRate = get(hAudio, 'SampleRate'); % 获取音频文件的采样率KHz T = 1/SampleRate; % 计算每个点的时间,即采样周期SampLen = size(VoiceWav,1); % 单声道采样长度 %% 绘制时域分析图 hFig1 = figure('Units', 'normalized', 'Position', [0 0.05 0.49 0.85]); t = T: T: (SampLen* T); subplot(2, 1, 1); % 绘制音频波形 plot(t, VoiceWav); % 绘制波形 title('音频时域波形图'); axis([0, 2.3, -0.5, 0.5]); xlabel('时间(s)'); ylabel('幅值(V)'); % 显示标题 %% 傅里叶变换 subplot(2, 1, 2); % 绘制波形 myfft(VoiceWav, SampleRate, 'plot'); % 傅里叶变换 title('单声道频谱振幅'); % 显示标题 xlabel('Frequency (Hz)'); ylabel('|Y(f)|'); play(hAudio); % 播放添加噪声前的声音 pause(3); %% 引入100KHz的噪声干扰 t = (0: SampLen-1)* T; noise = sin(2 * pi * 10000 * t); % 噪声频率100Khz,幅值-1V到+1V hFig2 = figure('Units', 'normalized', 'Position', [0.5 0.05 0.5 0.85]); subplot(2, 1, 1); % 绘制波形 plot(t(1: 1000), noise(1: 1000)); title('100KHz噪声信号'); % 显示标题 noiseVoice = VoiceWav+ noise'; % 将噪声加到声音里面 hAudio = audioplayer(noiseVoice, Fs); % 将音频文件载入audioplayer subplot(2, 1, 2); % 绘制波形 [fftNoiseVoice, f] = myfft(noiseVoice, SampleRate, 'plot'); title('音乐和噪声频谱'); % 显示标题 play(hAudio); % 播放添加噪声后的声音 pause(3);

音频信号分析仪毕业论文

音频信号分析仪 指导老师:邓晶 年纪专业:11信息工程 成员:丽梅(1128401039) 东飞(1128401014) 罗兰(1128401128) 日期:2014年6月

摘要:本音频信号分析仪基于快速傅里叶变换的原理,以32位CPU STM32构成的最小系统为控制核心,由电压跟随、程控放大、峰值检测、抗混叠滤波等模块组成。本音频信号分析仪由STM32控制,通过AD转换,对音频信号进行采样,把连续信号离散化,然后通过FFT运算,对音频信号各个频率分量以及功率等指标进行分析和处理,然后通过高分辨率的LCD对信号的频谱进行显示。该系统能够精确测量的音频信号频率围为50Hz-10KHz,其幅度围为5mVpp-5Vpp,分辨力为50Hz。 关键词:FFT 嵌入式系统前级信号处理功率谱 Abstract: This audio signal analyzer based on the principle of fast Fourier transform, the minimum system consisting of STM32 embedded system as control core, followed by the voltage, program-controlled amplifier, peak detection, such as anti aliasing filter modules. This audio signal analyzer controlled by an embedded system, through the AD conversion, the audio signal sampling, the continuous signal discretization, then through FFT arithmetic, each frequency component and the power index in the audio signal analysis and processing, and then through high resolution display LCD frequency spectrum of the signal and the characteristics of. The system can accurately measure the audio signal frequency range of 50 -10K HZ, its amplitude range is 5 mVpp- 5 V pp ,resolution of 50 Hz.

基于Matlab的语音信号处理与分析

系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析 学生姓名 指导教师 班级 学号 完成日期:2013 年5 月 目录 1 绪论.............................................................................................................. 错误!未定义书签。 1.1课题背景及意义................................................................................. 错误!未定义书签。 1.2国内外研究现状................................................................................. 错误!未定义书签。 1.3本课题的研究内容和方法................................................................. 错误!未定义书签。 1.3.1 研究内容................................................................................ 错误!未定义书签。 1.3.2 开发环境................................................................................ 错误!未定义书签。 2 语音信号处理的总体方案............................................................................ 错误!未定义书签。 2.1 系统基本概述.................................................................................... 错误!未定义书签。 2.2 系统基本要求与目的........................................................................ 错误!未定义书签。 2.3 系统框架及实现................................................................................ 错误!未定义书签。 2.3.1 语音信号的采样.................................................................... 错误!未定义书签。 2.3.2 语音信号的频谱分析............................................................ 错误!未定义书签。 2.3.3 音乐信号的抽取.................................................................... 错误!未定义书签。 2.3.4 音乐信号的AM调制.............................................................. 错误!未定义书签。 2.3.5 AM调制音乐信号的同步解调............................................... 错误!未定义书签。 2.4系统设计流程图................................................................................. 错误!未定义书签。 3 语音信号处理基本知识................................................................................ 错误!未定义书签。 3.1语音的录入与打开............................................................................. 错误!未定义书签。 3.2采样位数和采样频率......................................................................... 错误!未定义书签。 3.3时域信号的FFT分析......................................................................... 错误!未定义书签。 3.4切比雪夫滤波器................................................................................. 错误!未定义书签。 3.5数字滤波器设计原理......................................................................... 错误!未定义书签。 4 语音信号实例处理设计................................................................................ 错误!未定义书签。 4.1语音信号的采集................................................................................. 错误!未定义书签。

基于FFT的音频信号分析仪报告

音频信号分析仪设计实践报告 摘要 系统基于快速傅立叶变换(FFT)算法,以FPGA和NIOS软核为数据处理与控制核心,实现对频率范围在100Hz~10KHz,电压范围(峰-峰值)在1mV~2.5V的音频信号频率成分的分析。系统由音频信号采集、FFT处理、FIFO数据缓存、NIOS软核控制和LABVIEW 上位机显示等模块组成,硬件采用Cyclone III系列FPGA芯片EP3C25F324C8为核心,采用高性能的立体音频Codec芯片TLV320实现音频处理,对输出具有可编程增益调节,然后在Quartus环境下采用FFT IP核完成离散信号的FFT处理,采用DC_FIFO对FFT变换后的数据进行缓存处理,实现与高时钟NIOS核的通讯,在IDE环境下通过C语言编程实现FIFO 和软核CPU的控制,最终在LABVIEW显示音频信号主要频率成分的信息,实现对音频信号的分析和显示。 关键词:音频分析 FFT FPGA NIOS软核 FIFO

目录 音频信号分析仪设计实践报告 (1) 摘要 (1) 一、设计任务及要求 (3) 1)任务 (3) 2)要求 (3) 二、系统设计方案 (3) 2.1 设计方案的选择 (3) 2.2 总体设计思路 (4) 三、模块电路与程序设计 (5) 3.1 TLV320控制电路 (5) 3.2 FFT控制电路 (5) 3.3 FIFO控制电路 (7) 3.4 NIOS软核 (8) 3.5 LABVIEW显示 (8) 3.6 程序说明 (8) 四. 测试方案与测试结果 (9) 4.1 测试方案 (9) 4.2 测试结果 (9) 五.遇到问题及解决办法 (10) 六. 组员分工.................................................................................................. 错误!未定义书签。 七. 总结与感想.............................................................................................. 错误!未定义书签。八.参考文献 (12) 附录 ................................................................................................................ 错误!未定义书签。

音频信号分析仪设计报告

音频信号分析仪设计报告 1.摘要: 设计一个可对音频信号进行分析,并在LCD上显示其频率分量及功率的电路,电路还可对输入的失真信号进行失真度测量。电路主要由扫描滤波网络,检波采集网络,以及失真度测量网络构成。扫描滤波部分主要由MAX264开关电容滤波器电路和基于DDS扫描控制信号产生电路组成,完成对各个频率分量的提取;检波部分主要由有效值转换电路完成对频率分量功率的测量;失真度测量部分可自动跟踪输入信号的基频,通过谐波检测的方法,实现对失真度的测量,并可借助单片机测量其频率。整个测量电路结构简单,可较好完成对音频信号的各项分析。 关键字:MAX264 AD9851 音频功率检测失真度 2.总体方案设计 2.1方案一 动态信号分析法,即对信号进行时域采集,然后进行fourier变换,转换成频域信号。特点是较快,有较高的分辩率和采样速率。但受采样定理限制,无法推广到高频,且对采集网络要求较高,一般的单片机无法完成信号的频域变换算法。 2.2方案二 并行滤波法,通过一组滤波器网络,且每个滤波器都有自己的检波器,其通频带应尽量窄,数目应应该有足够的密度概括整个测量频带。优点是可实时显示和分析各个信号的频率分布及大小,缺点是其频率分量的个数取决于滤波器数目,当测量带宽增大,所需滤波器数目巨大。 2.3方案三 外差法,采用超外差接收机的方式,利用混频器、中频放大器、中频滤波器、检波器等构成频谱分析电路。其优点是工作频率范围宽、选择性好、灵敏度高。但是由于本振是连续可调谐的,被分析的频谱是依次顺序取样,因此扫频外差式不能实时地检测和显示信号的频谱。 2.4方案四 扫描滤波法,其采用中心频率可调的滤波器。被测信号首先加至可调谐窄带滤波器,其中心频率自动反复在信号频率范围内扫描。扫描滤波式频谱分析电路的优点是结构简单,价格低廉。由于没有混频电路,省去了抑制假信号的问题。我们选择这种方案,用DDS控制滤波器中心频率从而实现对不同频率分量的的提取并且利用滤波网络还可以实现失真度测量。(系统框图如下)

数字信号处理 语音信号分析与处理及其MATLAB实现..

摘要 (2) 1 设计目的与要求 (3) 2 设计步骤 (4) 3 设计原理及内容 (5) 3.1 理论依据 (5) 3.2 信号采集 (6) 3.3 构造受干扰信号并对其FFT频谱分析 (8) 3.4 数字滤波器设计 (9) 3.5 信号处理 (10) 总结 (12) 致谢 (13) 参考文献 (14)

用MATLAB对语音信号进行分析与处理,采集语音信号后,在MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。 数字滤波器是数字信号处理的基础,用来对信号进行过滤、检测和参数估计等处理。IIR数字滤波器最大的优点是给定一组指标时,它的阶数要比相同组的FIR滤波器的低的多。信号处理中和频谱分析最为密切的理论基础是傅立叶变换(FT)。离散傅立叶变换(DFT)和数字滤波是数字信号处理的最基本内容。 关键词:MATLAB;语音信号;加入噪声;滤波器;滤波

1. 设计目的与要求 (1)待处理的语音信号是一个在20Hz~20kHz频段的低频信号 (2)要求MATLAB对语音信号进行分析和处理,采集语音信号后,在MATLAB平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器进行滤除噪声,恢复原信号。

2. 设计步骤 (1)选择一个语音信号或者自己录制一段语音文件作为分析对象; (2)对语音信号进行采样,并对语音信号进行FFT频谱分析,画出信号的时域波形图和频谱图; (3)利用MATLAB自带的随机函数产生噪声加入到语音信号中,对语音信号进行回放,对其进行FFT频谱分析; (4)设计合适滤波器,对带有噪声的语音信号进行滤波,画出滤波前后的时域波形图和频谱图,比较加噪前后的语音信号,分析发生的变化; (5)对语音信号进行回放,感觉声音变化。

基于STM32的音频信号分析设计与实现

龙源期刊网 https://www.360docs.net/doc/2c10526250.html, 基于STM32的音频信号分析设计与实现 作者:梁方舟李金泉黄训磊王玉花 来源:《现代电子技术》2014年第01期 摘要:基于ARM Cortex?M3内核的32位处理器STM32F103和快速傅里叶变换(FFT)算法实现了音频信号频谱的分析。整个系统由前级信号调理、A/D采样电路、CPU运算电路和LCD显示电路等组成。实验表明,系统能够检测20 Hz~10 kHz范围内的频率成份并显示 音频信号频谱,该方案成本低,具有一定的应用价值。 关键词:音频信号; FFT; STM32;基?4时间抽取 中图分类号: TN911.7?34 文献标识码: A 文章编号: 1004?373X(2014)01?0019?03 音频信号分析应用于音频制作、信号分析等领域,如音频设备的研发与生产、低频信号的综合分析等。本设计利用频谱分析原理来分析被测音频信号的频率、频谱,传统的频谱分析方法有扫频法、数字滤波法。采用STM32实现快速傅里叶变换(FFT)设计方案,通过FFT把被测的音频信号由时域信号转换为频域信号,将其分解成分立的频率分量。 1 系统设计 音频信号通过前级信号处理电路放大和滤波及模数转换,经STM32进行FFT运算后获得信号的频谱,单片机控制A/D转换器实时采集信号,频谱在液晶屏扫描显示。单片机采用ST 公司的低功耗STM32F103ZET6 32位单片机,其内部含有3个12位16通道A/D转换模块和2个12位D/A转换模块。系统框图如图1所示。 1.1 信号调理与采集 设计思想:为满足输入信号较大的动态范围,必须在信号进行A/D转换前进行合理的处理,使其在A/D量化范围内达到量化精度最高,该方法相当于AD位数的增加。本设计要求输入信号幅度范围(峰?峰值)为0.01 mV~10 V,即100 dB的输入信号动态范围。设定ADC 芯片的最小输入信号峰?峰值为500 mV,再设定ADC的输入动态范围为20lg(10 V/500 mV),即26 dB,故需要5路放大电路,每一路放大倍数固定,分别为62 400,8 000,400,20,1倍。由于设计小信号放大的增益较大,放大器的选择尤为关键,根据影响放大器输出的主要参数:运放的增益带宽积、噪声电压密度、噪声电流密度、失调电流和失调电压等,选择TI公司生产的运放OPA637,该运放增益带宽积约800 MHz,输入换算电压噪声密度为[4.5 nVHz,]输入偏置电流2 pA,输入失调电压130 μV。具体电路如图2所示。 图1 系统框图

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

对语音信号进行分析及处理资料

一、设计目的 1.进一步巩固数字信号处理的基本概念、理论、分析方法和实现方法;使自身对信号的采集、处理、传输、显示和存储等有一个系统的掌握和理解; 2.增强应用Matlab语言编写数字信号处理的应用程序及分析、解决实际问题的能力; 3.培养自我学习的能力和对相关课程的兴趣; 二、设计过程 1、语音信号的采集 采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。 采样位数可以理解为声卡处理声音的解析度。这个数值越大,解析度就越高,录制和回放的声音就越真实 采样定理又称奈奎斯特定理,在进行模拟/数字信号的转换过程中,当采样频率fs不小于信号中最高频率fm的2倍时,采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍。 利用Windows下的录音机,录制了一段发出的声音,内容是“数字信号”,时间在3 s内。接着在D盘保存为WAV格式,然后在Matlab软件平台下.利用函数wavread对语音信号进行采样,并记录下了采样频率和采样点数,在这里我们还通过函数sound引入听到采样后自己所录的一段声音。 [x1,fs,bits]=wavread('E:\数字信号.wav'); %读取语音信号的数据,赋给变量x1,返回频率fs 44100Hz,比特率为16 。 2 、语音信号的频谱分析 (1)首先画出语音信号的时域波形; 程序段: x=x1(60001:1:120000); %截取原始信号60000个采样点

plot(x) %做截取原始信号的时域图形 title('原始语音采样后时域信号'); xlabel('时间轴 n'); ylabel('幅值 A'); (2)然后用函数fft 对语音号进行快速傅里叶变换,得到信号的频谱特性; y1=fft(x,6000); %对信号做N=6000点FFT 变换 figure(2) subplot(2,1,1),plot(k,abs(y1)); title('|X(k)|'); ylabel('幅度谱'); subplot(2,1,2),plot(k,angle(y1)); title('arg|X(k)|'); ylabel('相位谱'); (3)产生高斯白噪声,并且对噪声进行一定的衰减,然后把噪声加到信号中,再次对信号进行频谱特性分析,从而加深对频谱特性的理解; d=randn(1,60000); %产生高斯白噪声 d=d/100; %对噪声进行衰减 x2=x+d; %加入高斯白噪声 3、设计数字滤波器 (1)IIR 低通滤波器性能指标通带截止频Hz f c 1000=,阻带截止频率 Hz f st 1200=,通带最大衰减dB 11=δ,阻带最小衰减dB 1002=δ。 (2)FIR 低通滤波器性能指标通带截止频率Hz f c 1000=,阻带截止频率 Hz f st 1200=, 通带衰减1δ≤1dB ,阻带衰减 2δ≥ 100dB 。 (3)IIR 高通滤波器的设计指标,Hz f z 1000=,Hz f p 2000=,阻带最小衰减dB A s 30=,通带最大衰减dB A P 1=。 (4)(4)FIR 高通滤波器的设计指标,Hz f z 1000=,Hz f p 2000=,阻带最小衰减dB A s 50=,通带最大衰减dB A P 1=。 (5)用自己设计的各滤波器分别对采集的信号进行滤波,在Matlab 中,FIR 滤波器利用函数fftfilt 对信号进行滤波,IIR 滤波器利用函数filter 对信号进行滤波。比较滤波前后语音信号的波形及频谱,在一个窗口同时画出滤波前后

含噪声的语音信号分析与处理设计

课程设计任务书 学生姓名:苗强强专业班级:电信1204 指导教师:阙大顺沈维聪工作单位:信息工程学院 题目: 程控宽带放大器的设计 初始条件: 程控宽带放大器是电子电路中常用模块,在智能仪器设备及嵌入式系统中有广 泛的应用。因此对于电子信息专业的技术人员来说,熟练掌握该项技术很有必要。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体 要求) (1)输入阻抗>1KΩ,单端输入,单端输出,放大器负载电阻为600Ω; (2)3dB通频带10kHz~6MHz,在20kHz~5MHz频带内增益起伏<1dB。 (3)增益调节范围10 dB~40 dB,(通过键盘操作调节)。 (4)发挥部分:当输入频率或输出负载发生变化时,通过微处理器自动调节,保持 放大器增益不变。 (5)电路通过仿真即可。 时间安排: 1. 任务书下达,查阅资料 1天 2. 制图规范、设计说明书讲解 2天 3. 设计计算说明书的书写 5天 4. 绘制图纸 1天 5. 答辩 1天 指导教师签名:年月日 系主任(或责任教师)签名:年月日

滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR滤波器是滤波器设计的重要组成部分。利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用MATLAB 作为编程工具进行计算机实现。在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB 作为辅助工具完成设计中的计算与图形的绘制。通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。 关键词数字滤波器 MATLAB IIR滤波器 FIR滤波器

(完整版)语音信号分析与处理系统设计

语音信号分析与处理系统设计

语音信号分析与处理系统设计 摘要 语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 关键字:Matlab;语音信号;傅里叶变换;信号处理;

目录 1 绪论 (1) 1.1课题背景及意义 (1) 1.2国内外研究现状 (1) 1. 3本课题的研究内容和方法 (2) 1.3.1 研究内容 (2) 1.3.2 运行环境 (2) 1.3.3 开发环境 (2) 2 语音信号处理的总体方案 (3) 2.1 系统基本概述 (3) 2.2 系统基本要求 (3) 2.3 系统框架及实现 (3) 2.4系统初步流程图 (4) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6) 3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (6) 3.4数字滤波器设计原理 (7) 3.5倒谱的概念 (7) 4 语音信号处理实例分析 (8) 4.1图形用户界面设计 (8) 4.2信号的采集 (8) 4.3语音信号的处理设计 (8) 4.3.1 语音信号的提取 (8) 4.3.2 语音信号的调整 (10)

基于FPGA的音频信号分析仪2

基于FPGA的音频信号分析仪 摘要:本系统基于Altera Cyclone II 系列FPGA嵌入高性能的嵌入式IP核(Nios)处理器软核,代替传统DSP芯片或高性能单片机,实现了基于FFT的音频信号分析。并在频域对信号的总功率,各频率分量功率,信号周期性以及失真度进行了计算。并在FPGA中嵌入了8阶IIR切比雪夫(Chebyshev)II型数字低通滤波器,代替传统有源模拟滤波器实现了性能优异的音频滤波。配合12位A/D转换芯片AD1674,和前端自动增益放大电路,使在50mV到5V的测量范围下,单一频率功率及总功率测量误差均控制在1%以内。 关键词:FPGA;IP核;FFT;IIR;可控增益放大 Abstract: This system is based on IP core(Nios)soft-core processors embedded in the FPGA of Altera Cyclone II family. Instead of using DSP or microcontroller, we use Nios II to perform a low-cost FFT-based analysis of the audio signal.And we caculated the power of the whole signal,the power of each frequence point that componented the signal.By the way,we anlysised its periodicity and distortion.We also embedded an 8-order Chebyshev II IIR digital low-pass filter to replace the traditional analog Active Filter to perform an excellent audio filter. With 12bit A / D converter chip AD1674, and the front-end automatic gain amplifier, this system’s single-frequency power and total power measurement error is below 1% in 50mV to 5V measurement range. Keyword: FPGA;IP core; FFT;IIR; a utomatic gain amplifier 一、方案选择与论证 1、整体方案选择 音频分析仪可分为模拟式与数字式两大类。 方案一:以模拟滤波器为基础的模拟式频谱分析仪。有并行滤波法、扫描滤波法、小外差法等。因为受到模拟滤波器滤性能的限制,此种方法对我们来说实现起来非常困难。 方案二:以FFT为基础的的数字式频谱分析仪。通过信号的频谱图可以很方便的得到输入信号的各种信息,如功率谱、频率分量以及周期性等。外围电路少,实现方便,精度高。 所以我们选用方案二作为本音频分析仪的实现方式。 2、FFT计算方式选择 方案一:使用VHDL 硬件实现。FFT的VHDL程序编写难度大,短时内不易实现。 方案二:在FPGA中嵌入Nios II处理器,通过软件实现。Nios II 支持C语言编程方式,普通的C语言版的FFT稍加改正即可应用到本方案中。 四天之内我们不可能实现一个用硬件实现的FFT算法,因此我们选用方案二。 3、采样电路与A/D芯片选择 本设计中要求分析的信号峰峰值范围为100mVp-p~5Vp-p,用8位A/D进行采样,不能满足题目的精度要求,采用12位的A/D芯片AD1674,其分辨率可达到1.2mV(相对于5Vp-p信号),满足了题目要求的5%误差范围。同时其100K的采样频率也满足本设计中的频率要求。

相关文档
最新文档