西安交通大学数字图像处理第二次作业

西安交通大学数字图像处理第二次作业
西安交通大学数字图像处理第二次作业

数字图像处理的基本数学

工具的使用

摘要

本报告主要介绍了运用编程软件MATLAB对图像灰度级进行变换、求取图像均值与方差、采用不同的内插方法对图像进行缩放及利用仿射变换对图像进行空间变换处理的方法。同时,对最近邻内插法、双线性内插法、双三次内插法进行图像处理的效果进行了详细的对比,并对出现差异的原因做出了简要分析。

姓名: X X X

班级:

学号:

提交日期:年月日

2_1. 把lena 512*512图像灰度级逐级递减8-1显示;

(1) 问题分析:

所要实现的功能是:在不改变图像大小的前提下,使得整幅图像的灰度级逐级递减并将图像显示出来;即对所有像素点的灰度依次进行除2操作; (2) 实验过程:

工具:MATLAB 软件;

利用imread()函数将图像读入MATLAB ,利用imshow()对原图像进行显示,再利用循环体对整幅图像的灰度级逐级递减并一一进行显示。 源代码附于本报告最后一部分。 (3) 实验结果:

备注:在大小为512X512的途中观察更为方便,但此处为了便于排版以及将结果进行对比对所有图像做了一定的缩小。

a b

c d

e f

g h

图2_1 (a)大小为512X512的256灰度级图像;(b)~(h)保持图像大小不变的同

时以灰度级128,62,32,16,8,4,2显示的图像。

(4) 结果分析:

对图2_1中的(a)~(h)图像进行对比可知,256级、128级、64级以及32级灰度的图像几乎没有太大的区别;然而在灰度级为16的图(e)中出现了较为明显的伪轮廓,这种效果是由数字图像的平滑区域中的灰度级数不足引起的。(说明:此分析为本人肉眼的观察结果,对细节的观察难免存在疏漏之处,还请批评指正。)

2_2. 计算lena 图像的均值方差;

(1) 问题分析:

所要实现的功能是:计算图像‘lena.bmp ’的均值与方差; (2) 实验过程:

工具:MATLAB 软件;

利用imread()函数将图像读入MATLAB ,由于二维数字图像使用二维阵列表示的,因而可以直接利用MATLAB 中的mean2()及std2()分别求整幅图像的均值于方差; 源代码附于本报告最后一部分。

(3) 实验结果:均值 m =99.0512 方差 =52.8776。

2_3. 把lena 图像用近邻、双线性和双三次插值法zoom 到2048*2048;

(1) 问题分析:

分别用三种内插方法将图像‘lena.bmp ’由512X512放大到2048X2048; (2) 实验过程:

工具:MATLAB 软件;

函数B=imresize(A,[numrows,numcols],’method ’)功能说明:

‘method ’指所采用的内插方法,一般默认为’nearest ’(最近邻内插法),还可指定为’bilinear ’(双线性内插法)、’bicubic ’(双三次内插法); A 指原图像;

numrows 用于指定变换后的图像的行数,numcols 用于指定变换后的图像的列数; 源代码附于本报告最后一部分。 (3) 实验结果:

图2_31 (a) 大小为512*512的原图像;(b)~(d) 分别为采用最近邻、双线性、

双三次内插法进行内插后得到的大小为2048*2048的图像

(4) 结果分析:

abcd

图2_32 (a)~(d)分别为图2_31中(a)~(d)的部分截取

将图2_32中的(a)~(d)进行对比可知:原图像与经过最近邻内插所得的图像的肩膀以及脸颊部分的曲线呈现锯齿状;采用双线性内插法所得的图像的肩膀以及脸颊部分的曲线则比较平滑,基本没有锯齿出现;而采用双三次内插法所得的图像的曲线均非常平滑。

原因分析:最近邻内插法把原图像中最近邻的灰度赋给了每个新位置,这种方法简单,但有产生不希望的人为缺陷的倾向;双线性内插法用4个最近邻去估计给定位置的灰度,通常所给出的内插效果会比最近邻法好,但计算量也相对有所增加;双三次内插法用16个最近邻点的灰度去估计给定位置的灰度,因而在保持细节方面比双线性内插法要好。

2_4. 把lena和elain图像分别进行水平shear(参数可设置为1.5,或者自行选择)和旋转30度,并采用用近邻、双线性和双三次插值法zoom到2048*2048;

(1)问题分析:

先将lena和elain分别进行水平偏移变换、旋转变换,再讲变换后的图像利用最近邻内插法、双线性内插法、双三次内插法缩放为大小为2048*2048的图像,并进行显示。(2)实现过程:

先读入图像I=imread(),再根据需要输入矩阵T=[],再创建仿射矩阵tform=maketform(‘affine’,T);,其次进行空间变换II=imtrasform(I,tform);,最后再进行内插并进行图像显示;

源代码附于本报告最后一部分。

(3)实验结果:

ab

cd

图2_4_1 (a)512*512的lena原图像;(b)将图(a)进行水平偏移变换()并采用最近邻内插法zoom到2048*2048后的图像;(c)将图(a)进行水平偏移变换()并采用双线性内插法zoom到2048*2048后的图像;

(d)将图(a)进行水平偏移变换()并采用双三次内插法zoom到2048*2048后的图像。

ab

cd

图2_4_2 (a)512*512的elain1原图像;(b)将图(a)进行水平偏移变换()并采用最近邻内插法zoom到2048*2048后的图像;(c)将图(a)进行水平偏移变换()并采用双线性内插法zoom到2048*2048后的图像;(d)将图(a)进行水平偏移变换()并采用双三次内插法zoom到2048*2048后的图像。

ab

cd

图2_4_3 (a)512*512的lena原图像;(b)将图(a)进行旋转变换()并采用最近邻内插法zoom到2048*2048

后的图像;(c)将图(a)进行旋转变换()并采用双线性内插法zoom到2048*2048后的图像;(d)将图(a)进行旋转变换()并采用双三次内插法zoom到2048*2048后的图像。

ab

cd

图2_4_4 (a)512*512的elain原图像;(b)将图(a)进行旋转变换()并采用最近邻内插法zoom到2048*2048后的图像;(c)将图(a)进行旋转变换()并采用双线性内插法zoom到2048*2048后的图像;(d)将图(a)进行旋转变换()并采用双三次内插法zoom到2048*2048后的图像。

(4)结果分析:

将图2_4_4中的图(b)、(c)、(d)中的局部进行放大得到图2_4_5 (a)~(c);

将图2_4_5 (a)~(c)进行对比可得:最近邻内插产生了最大的锯齿边缘,双线性内插得到了极大地改善,双三次内插产生了稍微清晰一些的结果;且图2_4_5(c)中的垂直灰度块数量要比图2_4_5(d)的相应垂直灰度块数量多,这说明图像的边缘更加清晰。

ab

c

图2_4_5 (a) 图2_4_4(a)的局部边缘放大图;(b) 图2_4_4(b)的局部边缘放大图;

(c) 图2_4_4(c)的局部边缘放大图。

参考文献:百度百科、维基百科

源代码:

2_1:

close all;clear all;clc;

I=imread('lena.bmp');%导入图像“lena.bmp”

figure(1)

imshow(I);

title('image of 8 bits');%显示k=8的原图像

[x,y]=size(I);%读取图像“lena.bmp”的长宽

img7=zeros(x,y);%产生一个名为img7的512X512的0矩阵

img6=zeros(x,y);

img5=zeros(x,y);

img4=zeros(x,y);

img3=zeros(x,y);

img2=zeros(x,y);

img1=zeros(x,y);

for i=1:x

for j=1:y

img7(i,j)=floor(I(i,j)/2);%将原图像的每个像素的灰度级除以2,并用函数floor进行下取整

end

end

figure(2)

imshow((img7),[0,127]);

title('image of 7 bits');

for i=1:x

for j=1:y

img6(i,j)=floor(img7(i,j)/2);%将原图像的每个像素的灰度级除以2,并用函数floor进行下取整

end

end

figure(3)

imshow((img6),[0,63]);

title('image of 6 bits');

for i=1:x

for j=1:y

img5(i,j)=floor(img6(i,j)/2);%将原图像的每个像素的灰度级除以2,并用函数floor进行下取整

end

end

figure(4)

imshow((img5),[0,31]);

title('image of 5 bits');

for i=1:x

for j=1:y

img4(i,j)=floor(img5(i,j)/2);%将原图像的每个像素的灰度级除以2,并用函数floor进行下取整

end

end

figure(5)

imshow((img4),[0,15]);

title('image of 4 bits');

for i=1:x

for j=1:y

img3(i,j)=floor(img4(i,j)/2);%将原图像的每个像素的灰度级除以2,并用函数floor进行下取整

end

end

figure(6)

imshow((img3),[0,7]);

title('image of 3 bits');

for i=1:x

for j=1:y

img2(i,j)=floor(img3(i,j)/2);%将原图像的每个像素的灰度级除以2,并用函数floor进行下取整

end

end

figure(7)

imshow((img2),[0,3]);

title('image of 2 bits');

for i=1:x

for j=1:y

img1(i,j)=floor(img2(i,j)/2);%将原图像的每个像素的灰度级除以2,并用函数floor进行下取整

end

end

figure(8)

imshow((img1),[0,1]);

title('image of 1 bits')

2_2:

close all;clear all;clc;

I=imread('lena.bmp');

m=mean2(I)

d2=std2(I)

2_3:

法(1):采用imresize()

close all;clear all;clc;

I=imread('lena.bmp');

IN=imresize(I,[2018,2048],'nearest');

IB=imresize(I,[2048,2048],'bilinear');

IC=imresize(I,[2048,2048],'bicubic');

subplot(2,2,1);

imshow(I);

title('(a) 原图像');

subplot(2,2,2);

imshow(IN);

title('(b) 最近邻内插法所得图像');

subplot(2,2,3);

imshow(IB);

title('(c) 双线性内插法所得图像');

subplot(2,2,4);

imshow(IC);

title('(d) 双三次内插法所得图像')

法(2):采用几何空间变换

close all;clear all;clc;

I=imread('lena.bmp');

T=[4 0 0;0 4 0;0 0 1];

tform=maketform('affine',T);

IN=imtransform(I,tform,'nearest');

IB=imtransform(I,tform,'bilinear');

IC=imtransform(I,tform,'bicubic');

figure(1)

imshow(I);

title('原图像');

figure(2)

imshow(IN);

title('最近邻内插');

figure(3)

imshow(IB);

title('双线性内插');

figure(4)

imshow(IC);

title('双三次内插')

2_4:

(1)水平偏移变换:

close all;clear all;clc;

I1=imread('lena.bmp');

I2=imread('elain1.bmp');

T=[1 1.5 0;0 1 0;0 0 1];

tform=maketform('affine',T);

I11=imtransform(I1,tform);

I1N=imresize(I11,[2048 2048],'nearest'); I1B=imresize(I11,[2048 2048],'bilinear'); I1C=imresize(I11,[2048 2048],'bicubic'); I22=imtransform(I2,tform);

I2N=imresize(I22,[2048 2048],'nearest');

I2B=imresize(I22,[2048 2048],'bilinear');

I2C=imresize(I22,[2048 2048],'bicubic');

figure(1);

imshow(I1);

title('lena原图像');

figure(2);

imshow(I1N);

title('lena最近邻');

figure(3);

imshow(I1B);

title('lena双线性');

figure(4);

imshow(I1C);

title('lena双三次');

figure(5);

imshow(I2);

title('elain1原图像');

figure(6);

imshow(I2N);

title('elain1最近邻');

figure(7);

imshow(I2B);

title('elain1双线性');

figure(8);

imshow(I2C);

title('elain1双三次')

(2)旋转变换:

close all;clear all;clc;

I1=imread('lena.bmp');

I2=imread('elain1.bmp');

T=[cosd(30) sind(30) 0;-sind(30) cos(30) 0;0 0 1]; tform=maketform('affine',T);

I11=imtransform(I1,tform);

I1N=imresize(I11,[2048 2048],'nearest');

I1B=imresize(I11,[2048 2048],'bilinear');

I1C=imresize(I11,[2048 2048],'bicubic');

I22=imtransform(I2,tform);

I2N=imresize(I22,[2048 2048],'nearest');

I2B=imresize(I22,[2048 2048],'bilinear');

I2C=imresize(I22,[2048 2048],'bicubic');

figure(1);

imshow(I1);

title('lena原图像');

figure(2);

imshow(I1N);

title('lena最近邻'); figure(3);

imshow(I1B);

title('lena双线性'); figure(4);

imshow(I1C);

title('lena双三次'); figure(5);

imshow(I2);

title('elain1原图像'); figure(6);

imshow(I2N);

title('elain1最近邻'); figure(7);

imshow(I2B);

title('elain1双线性'); figure(8);

imshow(I2C);

title('elain1双三次')

西安交大少年班入学考试试题

数学:全国数学竞赛或联赛的题要做,黄东坡的《培优竞赛新方法》的竞赛内容。物理:省赛水平,力电为主,去年光声都没考。 语文:古文要注意,作文关注社会热点。 英语:看高中词汇,做高考阅读和完型填空。 化学:去年没考,建议天原杯的原题。 面试:10个科普,一个一分钟回答,一个动手能力操作,一个团队合作项目,再问你什么事情让你成长最多。面试时要努力争取发表意见的机会但不要让人觉得你爱出风头过于张扬,要把握一个度。 科普:书香门第是什么意思?被蚊子叮了为什么痒?兔子上山快还是下山快为什么?NBA单场最高得分是多少? 一分钟:砖块的用处?空城计被识破了会怎么样? 团队合作:每人在一张纸上画一笔,并起一个名字。 动手:如何把一张纸变得最长,要有创意。 数学是最难的一门,甚至有好多高中奥赛的题,千万不要指望都做出来,重要的是心态,不要慌,能做多少做多少就行了。 语文重要的是阅读量,都是初中生没看过的,如果你平常看的课外书比较多,应该不成问题。 英语吗,我英语比较好,当时考了全河北省第一,所以觉得比较简单,呵呵,给不出什么建议,抱歉啦。 物理不难,要做一本叫《初中生物理培优教程》,有大量原题。 面试要落落大方,大胆些,抢到说话的主动权,无论发生什么紧急状况,千万不要怵,因为那是评委给你设的套! 题目很多,我是去年的,我们先是自我介绍,然后专家会根据你的介绍向个人提问题。不过,呵呵,有的会问提前写好的问题,我们那一组有两道题挺好“如果照相时摄影师没有安排你位置,你会选择坐在哪里?”,“你如何看待学校里阴盛阳衰(女生比男生强势)的问题?”反正,我觉得这种题,你最好答的成熟一些,比如我前面有个人答第一个题,她竟说在最边上!当时我觉得她就挂掉了。不过因人而异,表达自己就好,专家通常能看出你是不是很真实,最忌讳虚假!!!然后就是看了一幅图片,我记得当时是一只母鸡喂养一只小狗,然后写下自己的感想,然后依次发言,我的建议,写的不要太详细,关键字写上就好,这样发言时自由空间比较大。然后是动手操作,我知道两道题:用一个纸杯,一根吸管,胶带,一根牙签(好像是),一个组做一个能下落时间最长的飞行器,一个组我记得是做能从斜面上滑下能直线运动且运动最远的模型。反正你只要做得比同组人做的好就行了。比较式的那种呵呵,你比同组强就行了。我是女生,我觉得女生其实挺占优势,至少我们做得差不多就行了,不过最后的环节,他们问你可不可以实验一下,一定要实验哦,否则我个人认为你的主动性得分就会大打折扣。还有最简单有效的模型有时就比奇异形状好。既省时间,又好想。最后一个环节,我们是集体合作将一个字改成画,“旮”。我们组做得超级好。因为我们提前就商量

数字图像处理课后参考答案

数字图像处理 第一章 1、1解释术语 (2) 数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置与每个像素的灰度级数的图像形式称为数字图像。 (3)图像处理:就是指对图像信息进行加工以满足人的视觉或应用需求的行为。 1、7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。彩色图像、多光谱图像与高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术与方法。 1、8基本思路就是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。 1、9基本思路就是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。 1、10基本思路就是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储与实时传输的应用需求。 1、11基本思路就是,通过数学方法与图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。 1、12基本目的就是,找出便于区分与描述一幅图像中背景与目标的方法,以方便图像中感兴趣的目标的提取与描述。 第二章 2、1解释下列术语 (18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。 (19)灰度分辨率:就是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。 (20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的4个像素称为该像素的4邻域像素,她们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。 (21)像素的8邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的8个像素称为该像素的8邻域像素,她们的坐标分别为(x-1,y-1)(x-1,y)(x-1,y+1)(x,y-1)(x,y+1)(x+1,y-1)(x+1,y)(x+1,y+1)。 (28)欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的欧氏距离定义为:D e(p,q)=[(x-u)2+(y-v)2]1/2 (29)街区距离:欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的街区距离定义为:D4(p,q)=|x-u|+|y-v|。 (30)棋盘距离:欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的欧氏距离定义为:D8(p,q)=max(|x-u|,|y-v|)。 (33)调色板:就是指在16色或者256色显示系统中,将图像中出现最频繁的16种或者256种颜色组成的一个颜色表,并将她们分别编号为0~15或0~255,这样就使每一个4位或者8位的颜色编号或者颜色表中的24位颜色值相对应。这种4位或者8位的颜色编号称为颜色的索引号,由颜色索引号及对应的24位颜色值组成的表称为颜色查找表,即调色板。 2、7对图像进行描述的数据信息一般应至少包括: (1)图像的大小,也即图像的宽与高 (2)表示每个像素需要的位数,当其值为1时说明就是黑白图像,当其值为4时说明就是16色或16灰度级图像,当其值为8时说明就是256色或256灰度级图像,当其值为24就是说明就是真彩色图像。 同时,根据每个像素的位数与调色板的信息,可进一步指出就是16色彩色图像还就是16灰度级图像;就是256色彩色图像还就是256灰度级图像。 (3)图像的调色板信息。 (4)图像的位图数据信息。 对图像信息的描述一般用某种格式的图像文件描述,比如BMP等。在用图像文件描述图像信息时,相应的要

数字图像处理 作业1汇总

数字图像处理 报告标题:01 报告编号: 课程编号: 学生姓名: 截止日期: 上交日期:

摘要 (1)编写函数计算灰度图像的均方误差(MSE)、信噪比(SNR)、峰值信噪比(PSNR)、平均绝对误差(MAE);(2)编写函数对灰度图像经行降采样,直接消除像素以及消除像素前进行简单平滑滤波;(3)编写函数对图像进行放大,分别使用像素直接复制和双线性插值的方法:(4)编写函数用题目给出的量化步骤Q去量化灰度图像,并给出相应的MSE和直方图;(5)编写函数对灰度图像执行直方图均衡化,显示均衡前后的直方图。同时,熟悉使用MATLAB,并且熟练操作对图像进行各种修改变换等。 KEY WORD :MATLAB MSE、PSNR 直方图量化

技术探讨 数字图像处理是基于Matlab来实现的,由于Matlab 独特的功能和对矩阵,图像,函数灵活的处理,因而用于图像的处理相当的方便。 task1 均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)。可以使用使用for循环语句,分别计算图像MSE/SNR/PSNR/MAE,具体的计算公式见附录代码,下面只附运算原理代码 均方误差(MSE): sum=sum+(a(i,j)-b(i,j))^2; MSE=sum/(M*N) 信噪比(SNR): sum2=sum2+a(i,j)^2; SNR=10*log10(sum2/MSE) 峰值信噪比(PSNR): sum=sum+(a(i,j)-b(i,j))^2; PSNR=10*log10(255^2/MSE) 平均绝对误差(MAE): sum=sum+a(i,j)+b(i,j); MAE=sum/(M*N) 在每次对同一个图像处理时它们的均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)都会有所不同,因为它是原图像与加噪后的图像比较,而电脑的每次操作都会对加噪过得图像有影响。 task3 按比例缩小灰度图像 (1)直接消除像素点: I1=g(1:m:end,1:m:end);I1 为缩小后的图像,g为原图。 (2)先平滑滤波再消除像素点: 滤波函数,g=imfilter(I,w,'corr','replicate'); task4 对图像的放大运用了pixel repetition法以及双线性插值法: 它有三种插值法:即最近邻插值(pixel repetition)、双线性插值、双三次插值(缩放倍数为0.5) ;缩放与放大由给定的参数来确定。 ;缩放与放大由给定的参数来确定。而缩小则同样适用I1=g(1:m:end,1:m:end); 而放大的代码为“J=imresize(I,m,'nearest');%使用pixel repetition法”和“J=imresize(I,m,'bilinear');%使用双线性插值法” 放大倍数更改m值即可 task4 对图像的量化,使用“J=histeq(I,x); ”,x为可变的量化步长 task5 灰度图像的量化和直方图均衡化直接调用函数。“J=histeq(I)”“imhist(I,64)”

西南交通大学限修课数学实验题目及答案四

实验课题四曲面图与统计图 第一大题:编程作下列曲面绘图: 用平面曲线r=2+cos(t)+sin(t),t∈(0,π)绘制旋转曲面 t=0:0.02*pi:pi; r=2+cos(t)+sin(t); cylinder(r,30) title('旋转曲面'); shading interp 用直角坐标绘制双曲抛物面曲面网线图,z2=xy (-3

axis off 用直角坐标绘制修饰过的光滑曲面曲面:z 4=sin(x )-cos(y ) x 与y 的取值在(-π,π) [x,y]=meshgrid(-pi:0.02*pi:pi); z4=sin(x)-cos(y); surf(x,y,z4); title('picture 4'); shading interp axis off 用连续函数绘图方法绘制曲面)2 s in (6522x y x z ++=,x ∈[-2pi,2pi], y ∈[-2pi,2pi],并作图形修饰。 ezsurf(@(x,y)(x^2+y^2+6*sin(2*x)),[-2*pi 2*pi -2*pi 2*pi]) title('picture 5'); shading interp axis off 第二大题:按要求作下列问题的统计图: x21是1—10的10维自然数构成的向量,y21是随机产生的10维整数向量,画出条形图。(提示bar(x,y)) x21=1:10; y21=randn(10,1); bar(x21,y21) 随机生成50维向量y22,画出分5组的数据直方图。(提示hist(y,n))

数字图像处理部分作业答案

3.数字化图像的数据量与哪些因素有关? 答:数字化前需要决定影像大小(行数M、列数N)和灰度级数G的取值。一般数字图像灰度级数G为2的整数幂。那么一幅大小为M*N,灰度级数为G的图像所需的存储空间M*N*g(bit),称为图像的数据量 6.什么是灰度直方图?它有哪些应用?从灰度直方图你能获得图像的哪些信息? 答:灰度直方图反映的是一幅图像中各灰度级像素出项的频率之间的关系。以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图。 应用:通过变换图像的灰度直方图可以,使图像更清晰,达到图像增强的目的。 获得的信息:灰度范围,灰度级的分布,整幅图像的平均亮度。但不能反映图像像素的位置。 2. 写出将具有双峰直方图的两个峰分别从23和155移到16和255的图像线性变换。 答:将a=23,b=155 ;c=16,d=255代入公式: 得 1,二维傅里叶变换有哪些性质?二维傅里叶变换的可分离性有何意义? 周期性,线性,可分离性,比例性质,位移性质,对称性质,共轭对称性,差分,积分,卷积,能量。 意义:分离性表明:二维离散傅立叶变换和反变换可用两组一维离散傅立叶变换和反变换来完成。 8.何谓图像平滑?试述均值滤波的基本原理。 答:为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪。 均值滤波是一种局部空间域处理的算法,就是对含有噪声的原始图像f(x,y)的每个像素点取一个领域S,计算S中所有像素的灰度级平均值,作为空间域平均处理后图像g(x,y)像素值。 9.何谓中值滤波?有何特点? 答:中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,它是一种非线性的图像平滑法。 它对脉冲干扰及椒盐噪声的的图像却不太合适。抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多 6图像几何校正的一般包括哪两步?像素灰度内插有哪三种方法?各有何特点? 答:1)建立失真图像和标准图像的函数关系式,根据函数关系进行几何校正。 2)最近邻插值,双线性插值,三次卷积法 3)最近邻插值:这种插值方法运算量小,但频域特性不好。 3、若f(1,1)=4,f(1,2)=7,f(2,1)=5,f(2,2)=6,分别按最近邻元法、双线性插值法确定点(1.2,1.6)的灰度值。 最近邻元法:点(1.2,1.6)离(1,2)最近,所以其灰度值为7.双线性法:f(i+u,j+v)=(1-u)(1-v)f(i,j)+(1-u)vf(i,j+1)+u(1-v)f(i+1,j)+uvf(i+1,j+1) 将i=1,j=1,u=0.2,v=0.6代入,求得:f(i+u,j+v)=5.76。四舍五入取整后,得该点其灰度值为6

西安交通大学攻读硕士学位研究生入学考试试题样本

西安交通大学 攻读硕士学位研究生入学考试试题 考试科目: 考试编号: 考试时间: 月 日 午 ( 注: 所有答案必须写在专用答题纸上, 写在本试题纸上和其它草稿纸上一律 无效) 说明: 试题分为反应堆物理、 反应堆热工和原子核物理三部分。考生能够任意选择其中一部分答题, 不可混选。 反应堆物理部分: 共150分 一、 术语解释( 30) 1、 燃料深度 2、 反应堆周期 3、 控制棒价值 4、 停堆深度 5、 温度系数 6、 多普勒效应 7、 四因子模, 8、 徙动长度 9、 核反应率 10、 反应层节省 二、 设吸收截面服从1/V 规律变化, 中子通量服从1/E 分布, 试求在能量(E 0,E c ) 区间内平均微观吸收截面的表示式。( 15) 三、 均匀球体的球心有一每秒各向同性发射出S 个中子的点源, 球体半径为 R( 包含外推距离) , 试求经过该球表面泄漏出去的中子数。( 30) ( 一维球体坐标下的亥母霍慈方程 ()()22-B =0r r φφ?的通解为

()r e C r A r Br B +=r -e φ) 四、 一个四周低反射层的圆柱形反应堆, 已知堆芯燃料的 1.16=∞K , 扩散 长度2245cm L =,热中子年龄25cm =τ, 令堆芯的高度H 等于它的直径D, 并设径向和轴向( 单边) 反射层节省等于5cm, ①试求堆芯的临界大小; ②设在该临界大小下, 将 1.25=∞K , 试求这是反应堆的反应性。( 30) 五、 请画出某一压水堆突然停堆时氙浓度和过剩反应性的变化曲线, 并在图中 标明碘坑时间t 1, 强迫停止时间t o , 和允许停堆时间t p ; 并画出压水堆开堆、 突然停堆和再启动的整个过程中的钐浓度和过剩反应性的变化曲线。( 30) 六、 试从物理角度分析压水堆燃料温度反应性反馈和慢化剂温度反应性反馈的 理。( 15) 反应堆热工部分: 共150分 一、 名词解释( 30分, 每小题5分) 1、 积分导热率 2、 子通道模型 3、 失流事故 4、 接触导热模型 5、 热点因子 6、 失水事故 二、 解答题( 30分, 每小10分)

《数字图像处理》习题解答

胡学龙编著 《数字图像处理(第 3 版)》思考题与习题参考答案 目录 第 1 章概

述 (1) 第 2 章图像处理基本知识 (4) 第 3 章图像的数字化与显示 (7) 第 4 章图像变换与二维数字滤波 (10) 第 5 章图像编码与压缩 (16) 第 6 章图像增强 (20) 第 7 章图像复原 (25) 第 8 章图像分割 (27) 第 9 章数学形态学及其应用 (31) 第 10 章彩色图像处理 (32)

第1章概述 连续图像和数字图像如何相互转换 答:数字图像将图像看成是许多大小相同、形状一致的像素组成。这样,数字图像可以 用二维矩阵表示。将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像 (连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。图像的数字 化包括离散和量化两个主要步骤。在空间将连续坐标过程称为离散化,而进一步将图像的幅 度值(可能是灰度或色彩)整数化的过程称为量化。 采用数字图像处理有何优点 答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点: 1.具有数字信号处理技术共有的特点。(1)处理精度高。(2)重现性能好。(3)灵活性高。 2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。 3.数字图像处理技术适用面宽。 4.数字图像处理技术综合性强。 数字图像处理主要包括哪些研究内容 答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的 图像。 说出图像、视频(video)、图形(drawing)及动画(animation)等视觉信息之间的联系和区别。 答:图像是用成像技术形成的静态画面;视频用摄像技术获取动态连续画面,每一帧可

西南交通大学限修课数学实验题目及答案五

实验课题五线性代数 第一大题:创建矩阵: 1.1 用元素输入法创建矩阵 ??? ???? ??-=34063689 864275311A ?????? ? ? ?--=96 5 214760384 32532A A1=[1 3 5 7;2 4 6 8;9 8 6 3;-6 0 4 3] A2=[3 5 -2 3;4 8 3 0;6 7 4 -1;2 5 6 9] 1.2 创建符号元素矩阵 ???? ? ?=54 3 2 15432 13y y y y y x x x x x A ??? ? ??+=)cos(1)sin(42x x x x A A3=sym('[x1 x2 x3 x4 x5;y1 y2 y3 y4 y5]') A4=sym('[sin(x) x^2;1+x cos(x)]') 1.3 生成4阶随机整数矩阵B B=rand(4) 1.4 由向量t=[2 3 4 2 5 3]生成范德蒙矩阵F t=[2 3 4 2 5 3]; F=vander(t) 1.5 输入4阶幻方阵C C=magic(4) 1.6 用函数创建矩阵:4阶零矩阵Q ; 4阶单位矩阵E ; 4阶全壹矩阵N Q=zeros(4) E=eye(4) N=ones(4) 1.7 用前面题目中生成的矩阵构造8×12阶大矩阵: ???? ? ?=16A C N Q E B A A6=[B E Q;N C A1] 第二大题:向量计算:

2.1计算:a21是A1的列最大元素构成的向量,并列出所在位置。提示:[a21,i]=max(A1) a22是A1的列最小元素构成的向量,并列出所在位置. a23是A1的列平均值构成的向., a24是A1的列中值数构成的向量. a25是A1的列元素的标准差构成的向量. a26是A1的列元素和构成的向量. [a21,i]=max(A1) [a22,j]=min(A1) a23=mean(A1) a24=median(A1) a25=std(A1) a26=sum(A1) 2.2计算a27=A1+A2;a28=A1×A2 a27=A1+A2 a28=A1.*A2 2.3取矩阵A2的一、三行与二、三列的交叉元素做子矩阵A29. A29=A2([1,3],[2,3]) 第三大题:矩阵运算 3.1生成6阶随机整数矩阵A A=fix(15*rand(6)) 3.2作A31等于A的转置;作A32等于A的行列式;作A33等于A的秩。 A31=A' A32=det(A) A33=rank(A) 3.3判断A是否可逆.若A可逆,作A34等于A的逆,否则输出‘A不可逆’。 if det(A)==0 disp('A不可逆'); else A34=inv(A) end

2021年西安交通大学网络教育专升本高等数学入学测试复习题

当代远程教诲 专升本高等数学入学考试复习题 注:答案一律写在答题卷上,写在试题上无效 考生注意:依照国家规定,试卷中正切函数、余切函数、反正切函数、反余切函数分别用tan ,cot ,arctan ,arccot x x x x 来表达。 一、 单项选取题 1.设)(x f 是奇函数,)(x g 是偶函数,则)]([x g f 是【 】 A .即不是奇函数,又不是偶函数 B .偶函数 C .有也许是奇函数,也也许是偶函数 D .奇函数 2.极限03lim tan4x x x →=【 】 A .0 B .3 C . 43 D .4 3.由于e n n n =?? ? ??+∞→11lim ,那么=x e 【 】 A .x n n n x ??? ??+ ∞→1lim B .n n n x ??? ??+∞→1lim C .nx n n x ??? ??+∞→1lim D .x n n n ??? ??+∞→11lim 4.若2)(2+=x e x f ,则=)0('f 【 】 A .1 B .e C .2 D .2e 5.设1)(-=x e x f ,用微分求得(0.1)f 近似值为【 】 A .11.0-e B .1.1 C .1.0 D .2.0 6.设? ??==2bt y at x ,则=dy dx 【 】

A . a b 2 B .bt a 2 C .a bt 2 D .bt 2)()('x f de x f 7.设0=-y xe y ,则=dx dy 【 】 A .1-y y xe e B .y y xe e -1 C .y y e xe -1 D .y y e xe 1- 8.下列函数中,在闭区间]1,1[-上满足罗尔定理条件是【 】 A .x e B .21x - C .x D .x ln 9.函数x x y ln =在区间【 】 A .),0(+∞内单调减 B .),0(+∞内单调增 C .)1,0(e 内单调减 D .),1(+∞e 内单调减 10.不定积分? =dx x x )cos(2【 】 A .C x +)sin(212 B .21sin 2 x C + C .C x +-)sin(212 D .C x +-)sin(22 11.不定积分?=+dx e x x ln 32【 】 A .C e x +233 B .C e x +236 C .C e x +2331 D .C e x +236 1 12.已知()f x 在0x =某邻域内持续,且(0)0f =,0()lim 21cos x f x x →=-,则在 0x =处()f x 【 】 A .不可导 B .可导但()0f x '≠ C .获得极大值 D .获得极小值 13.广义积分 2 21dx x +∞ =?【 】 A .0 B .∞+ C .21- D .21 14.函数223y x z -=在)0,0(点为【 】 A .驻点 B .极大值点 C .极小值点 D .间断点 15.定积分1 22121ln 1x x dx x -+=-?【 】

数据结构与算法分析专题实验-西安交大-赵仲孟

西安交通大学 数据结构与算法课程实验 实验名称:数据结构与算法课程专题实验 所属学院:电信学院 专业班级:计算机32班 小组成员: 指导老师:赵仲孟教授 实验一背包问题的求解 1.问题描述 假设有一个能装入总体积为T的背包和n件体积分别为w1,w2,…w n的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1+w2+…+w m=T,要求找出所有满足上述条件的解。 例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解:

(1,4,3,2) (1,4,5) (8,2) (3,5,2)。 2.实现提示 可利用回溯法的设计思想来解决背包问题。首先,将物品排成一列,然后,顺序选取物品装入背包,若已选取第i件物品后未满,则继续选取第i+1件,若该件物品“太大”不能装入,则弃之,继续选取下一件,直至背包装满为止。 如果在剩余的物品中找不到合适的物品以填满背包,则说明“刚刚”装入的物品“不合适”,应将它取出“弃之一边”,继续再从“它之后”的物品中选取,如此重复,直到求得满足条件的解,或者无解。 由于回溯求解的规则是“后进先出”,自然要用到“栈”。 3.问题分析 1、设计基础 后进先出,用到栈结构。 2、分析设计课题的要求,要求编程实现以下功能: a.从n件物品中挑选若干件恰好装满背包 b. 要求找出所有满足上述条件的解,例如:当T=10,各件物品的体积{1,8,4, 3,5,2}时,可找到下列4组解:(1,4,3,2)、(1,4,5)、(8,2)、(3,5,2)3,要使物品价值最高,即p1*x1+p2*x1+...+pi*xi(其1<=i<=n,x取0或1,取1表示选取物品i) 取得最大值。在该问题中需要决定x1 .. xn的值。假设按i = 1,2,...,n 的次序来确定xi 的值。如果置x1 = 0,则问题转变为相对于其余物品(即物品2,3,.,n),背包容量仍为c 的背包问题。若置x1 = 1,问题就变为关于最大背包容量为c-w1 的问题。现设r={c,c-w1} 为剩余的背包容量。在第一次决策之后,剩下的问题便是考虑背包容量为r 时的决策。不管x1 是0或是1,[x2 ,.,xn ] 必须是第一次决策之后的一个最优方案。也就是说在此问题中,最优决策序列由最优决策子序列组成。这样就满足了动态规划的程序设计条件。 4.问题实现 代码1: #include"iostream" using namespace std; class Link{ public: int m; Link *next; Link(int a=0,Link *b=NULL){ m=a; next=b; } }; class LStack{ private: Link *top;

数字图像处理作业 1

数字图像处理作业 1 1.基本问题 a.什么是数字图像处理,英语全称是什么? 数字图像处理:对图像进行一些列的操作,以达到预期目的的技术,可分为模拟图像处理和数字图像处理两种方式。英文全称:Image Processing b.数字图像处理与什么领域的发展密切相关? 数字图像处理与数字计算机的发展,医学,遥感,通信,文档处理和工业自动化等许多领域的发展密切相关。 c.人类主要通过什么来感知获取信息的? 主要通过人的视觉、味觉、嗅觉、触觉、听觉以及激光、量子通信、现代计算机网络、卫星通信、遥感技术、数码摄影、摄像等来获取信息。 d.数字图像处理技术与哪些学科领域密切相关? 与数学、物理学、生理学、心理学、电子学、计算机科学等学科密切相关 e.数字图像处理在哪些领域得到广泛应用? 数字图像处理的应用越来越广泛,已渗透到工程、工业、医疗保健、航空航天、军事、科研、安全保卫等各个领域。 f.数字图像处理起源于什么年代? 20世纪20年代 g.现代大规模的图像处理需要具备哪些计算机能力? 需要具备图像处理、图像分析、图像理解计算机能力 h.根据人的视觉特点,图像可分为哪两种图像? 分为可见图像和不可见图像。 i.根据光的波段,图像可分为哪几种图像? 分为单波段、多波段和超波段图像。 j.图像数字与模拟图像的本质区别是什么? 区别: 模拟图像:空间坐标和明暗程度都是连续变化的、计算机无法直接处理。 数字图像:空间的坐标和灰度都不连续、用离散的数字表示,能被计算机处理。 2.通过互联网,查下数字图像处理有哪些应用?选一个应用范例即可。具体描绘如何通过数字图像处理技术来实现其应用。要有图像范例说明。 数字图像处理主要应用领域有:生物医学,遥感领域,工业方面,军事公安领域,通信领域,交通领域等。我就生物医学领域做一个简单介绍。 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理,医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。 医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性。下面是关于人体微血管显微图像的采集实例。

西安交通大学入学测试机考《大学语文(专升本)》模拟题及答案

西安交通大学入学测试机考 专升本大学语文模拟题 1、王实甫《西厢记.长亭送别》的体裁是()(2)() A.散曲 B.套数 C.诸宫调 D.杂剧 标准答案:D 2、下列传记作品中,带有寓言色彩的是()(2)() A.《张中丞传后叙》 B.《种树郭橐鸵传》 C.《马伶传》 D.《李将军列传》 标准答案:B 3、七言绝句《从军行》的作者是()(2)() A.王维 B.王昌龄 C.王之涣 D.王建 标准答案:B 4、《短歌行》(对酒当歌)的作者是()(2)() A.曹操 B.曹丕 C.曹植 D.陶潜 标准答案:A 5、下列句子中“以”字作介词用,可解释为“凭借”的是()(2)() A.皆以力战为名 B.斧斤以时入山林 C.以子之道,移之官理,可乎? D.五亩之宅,树之以桑 标准答案:A 6、柳永《八声甘州》(对潇潇暮雨洒江天)一词所表达的主要内容是()(2)() A.仕途失意 B.伤春惜别

C.羁旅行役之苦 D.伤古叹今之悲 标准答案:C 7、《饮酒》(结庐在人境)的作者是()(2)() A.曹操 B.李白 C.王维 D.陶渊明 标准答案:D 8、谥号“靖节先生”的诗人是()(2)() A.杜甫 B.李白 C.陶渊明 D.曹操 标准答案:C 9、中国现代杂文的创始人是()(2)() A.鲁迅 B.郭沫若 C.梁启超 D.朱光潜 标准答案:A 10、《炉中煤》作者是()(2)() A.郭沫若 B.鲁迅 C.冰心 D.艾青 标准答案:A 11、《心灵的灰烬》的作者是()(2)() A.梁启超 B.朱自清 C.朱光潜 D.傅雷 标准答案:D 12、由徐志摩发起、组织的文学社团是()(2)() A.新月社 B.创造社 C.语丝社 D.文学研究会

西南交通大学限修课数学实验题目及答案六

西南交通大学限修课数学实验题目及答案六

实验课题六一元微积分 第一大题函数运算 1.用程序集m 文件中定义函数: 键盘输入自变量x ,由下列函数 求函数值:f 1 (12) f 1 (-32) function y=f1(x) if x>0 y=4*x^3+5*sqrt(x)-7 else y=x^2+sin(x) end end 2. 用函数m 文件定义函数f 2 ???<+≥+=06)5sin(0 3232x x x x x e f x 求f 2(-6) f 2(11) function y=f2(x) if x<0 y=sin(5*x)+6*x^3 else y=exp(2*x)+3*x ???≤+>-+=0 )sin(0 754123x x x x x x f

313-+=x x f end end 3.已知 求 其反函 数 syms x f3=(1+x)/(x-3); g=finverse(f3) %g =(3*x + 1)/(x - 1) 4.已知: 92847 653423234-++=+-+=x x x g x x x f

做函数运算:u1 = f 4+ g 4 ; u2 = f 4 – g 4 ; u3 = f 4 * g 4 ; u4 = f 4 / g 4 u5=)(4)(4x g x f ,u6=()()x g f 44 syms x f4=3*x^4+5*x^3-6*x^2+7 g4=8*x^3+2*x^2+x-9 u1=f4+g4 u2=f4-g4 u3=f4*g4 u4=f4/g4 u5=f4^g4 u6=compose(f4,g4) %u1 =3*x^4 + 13*x^3 - 4*x^2 + x - 2 %u2 =3*x^4 - 3*x^3 - 8*x^2 - x + 16 %u3 =(3*x^4 + 5*x^3 - 6*x^2 + 7)*(8*x^3 + 2*x^2 + x - 9) %u4 =(3*x^4 + 5*x^3 - 6*x^2 + 7)/(8*x^3 + 2*x^2 + x - 9) %u5 =(3*x^4 + 5*x^3 - 6*x^2 + 7)^(8*x^3 + 2*x^2 + x - 9) %u6 =5*(8*x^3 + 2*x^2 + x - 9)^3 - 6*(8*x^3 + 2*x^2 + x - 9)^2 + 3*(8*x^3 +

数字图像处理大作业

大作业指导书 题目:数字图像处理 院(系):物联网工程学院 专业: 计算机 班级:计算机1401-1406 指导老师: 学号: 姓名: 设计时间: 2016-2017学年 1学期

摘要 (3) 一、简介 (3) 二、斑点数据模型 .参数估计与解释 (4) 三、水平集框架 (5) 1.能量泛函映射 (5) 2.水平集传播模型 (6) 3.随机评估方法 (7) 四、实验结果 (8) 五、总结 (11)

基于水平集方法和G0模型的SAR图像分割 Abstract(摘要) 这篇文章提出了一种分割SAR图像的方法,探索利用SAR数据中的统计特性将图像分区域。我们假设为SAR图像分割分配参数,并与水平集模型相结合。分布属于G分布中的一种,处于数据建模的目的,它们已经成功的被用于振幅SAR图像中不同区域的建模。这种统计数据模型是驱动能量泛函执行区域映射的基础,被引用到水平集传播数值方案中,将SAR 图像分为均匀、异构和极其异构区域。此外,我们引入了一个基于随机距离和模型的评估过程,用于量化我们方法的鲁棒性和准确性。实验结果表明,我们的算法对合成和真实SAR 数据都具有准确性。+ 简介 1、Induction(简介) 合成孔径雷达系统是一种成像装置,采用相干照明比如激光和超声波,并会受到斑点噪声的影响。在SAR图像处理过程中,返回的是斑点噪声和雷达切面建模在一起的结果。这个积性模型(文献[1])因包含大量的真实SAR数据,并且在获取过程中斑点噪声被建模为固有的一部分而被广泛应用。因此,SAR图像应用区域边界和目标检测变得更加困难,可能需要斑点去除。因此,斑点去除是必需的,有效的方法可以在文献[2][3][4][5][6][7][8][9][10]中找到。 对于SAR图像分割,水平集方法构成一类基于哈密顿-雅克比公式的重要算法。水平集方法允许有效的分割标准公式,从文献[12]中讨论的传播函数项可以得到。经典方法有着昂贵的计算成本,但现在的水平集的实现配置了有趣的低成本的替换。 水平集方法的一个重要方面,比如传播模型,可以用来设计SAR图像的分割算法。这个传播函数能够依据伽马和伽马平方根法则将斑点统计进行整合,函数已经被广泛地应用于SAR图像中的均质区域分割。Ayed等基于伽马分布任意建模,设计方案将SAR图像分成多个均质区域。尽管多区分割问题已经解决,该方案人需要一定数量的区域作为输入。Shuai 和Sun在文献[16]中提出对这个方法进行了改进,他们使用了一个有效的传播前收敛判断。Marques等引入了一个类似于含有斑点噪声图像中目标检测的框架,将基于本地区域的斑点噪声统计融合进去。这些作者采用伽马平方根对均质区域进行建模并用一个自适应窗口方案检测本地的同质性。 最近,新的SAR数据模型比如K,G,显示出了优势。经典法则受限于均质区域特性的描述,而最近的法则展现出了在数据建模中更有吸引力的特性。法则允许同构、异构和高度异构幅度SAR数据的建模。这个分布族提供了一组参数,可以描述SAR图像中的不同区域。分布的参数信息,可以被广泛的应用于设计SAR图像处理和分类技术。在文献[21]中,Mejail 等人介绍了SAR监督数据分类器,它基于其参数映射并实现了有趣的结果。Gambini等人在文献[22]中使用这个分布的一个参数来量化SAR数据的粗糙度,通过活动轮廓和B样条差值来检测边缘。然而,这种技术需要一个初始分割步骤,并受拓扑限制。一般来说,活动轮廓方法不能解决不连续区域分割的问题。 本文介绍了一种新的水平集算法来实现SAR图像中均质、异构和极其异构区域分割的目标。由于分布能够描述SAR图像的同质性和规模,我们的方法采用分布对斑点数据进行建模。这些分布参数基于每一个域点进行估计,通过这些信息,我们可以在水平集分割框架内得到一个能量泛函来驱动向前传播(front propagation)。该泛函以最大化不同区域平均能量间的差异作为结束。最终水平集阶段以能量带作为依据得到SAR图像的分割结果。

西安交通大学网络教育专升本高等数学入学测试复习题

西安交通大学网络教育专升本高等数学入学测试复习题

现代远程教育 专升本高等数学入学考试复习题 注:答案一律写在答题卷上,写在试题上无效 考生注意:根据国家要求,试卷中正切函数、余切函数、反正切函数、反余切函数分别用 tan ,cot ,arctan ,arccot x x x x 来表示。 一、 单项选择题 1.设)(x f 是奇函数,)(x g 是偶函数,则)]([x g f 是【 】 A .即不是奇函数,又不是偶函数 B .偶函数 C .有可能是奇函数,也可能是偶函数 D .奇函数 2.极限0 3lim tan4x x x →=【 】 A .0 B .3 C .4 3 D .4 3.因为 e n n n =?? ? ??+∞→11lim ,那么=x e 【 】 A . x n n n x ?? ? ??+∞→1lim B . n n n x ?? ? ??+∞→1lim C . nx n n x ?? ? ??+∞→1lim D .x n n n ?? ? ??+∞ →11lim 4.若2)(2+=x e x f ,则=)0('f 【 】 A .1 B .e C .2 D .2 e 5.设1)(-=x e x f ,用微分求得(0.1)f 的近似值为【 】

A .11 .0-e B .1.1 C .1 .0 D .2.0 6.设? ??==2 bt y at x ,则=dy dx 【 】 A .a b 2 B .bt a 2 C .a bt 2 D .bt 2) ()('x f de x f 7.设0=-y xe y ,则=dx dy 【 】 A .1 -y y xe e B . y y xe e -1 C . y y e xe -1 D . y y e xe 1 - 8.下列函数中,在闭区间]1,1[-上满足罗尔定理条件的是【 】 A .x e B .2 1x - C .x D .x ln 9.函数x x y ln =在区间【 】 A .),0(+∞内单调减 B .),0(+∞内单调增 C .)1,0(e 内单调减 D .),1 (+∞e 内单调减 10.不定积分?=dx x x )cos(2 【 】 A .C x +)sin(212 B .21sin 2 x C + C .C x +-)sin(21 2 D .C x +-)sin(22 11.不定积分?=+dx e x x ln 32【 】 A .C e x +233 B . C e x +236 C .C e x +2 33 1 D .C e x +2 36 1

(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案 第一章和第二章作业:1.简述数字图像处理的研究内容。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 3.列举并简述常用表色系。 1.简述数字图像处理的研究内容? 答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面, 将这几个方面展开,具体有以下的研究方向: 1.图像数字化, 2.图像增强, 3.图像几何变换, 4.图像恢复, 5.图像重建, 6.图像隐藏, 7.图像变换, 8.图像编码, 9.图像识别与理解。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。 根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。 图像处理着重强调在图像之间进行的变换。比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。图像处理主要在图像的像素级上进行处理,处理的数据量非常大。图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。 图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。 第三章图像基本概念

相关文档
最新文档