向量代数与空间解析几何相关概念和例题
高等数学 向量代数与空间解析几何题【精选文档】

第五章向量代数与空间解析几何5。
1。
1 向量的概念例1 在平行四边形中,设=a,=b.试用a和b表示向量、、和,这里是平行四边形对角线的交点(图5-8)解由于平行四边形的对角线互相平行,所以a+b==2即-(a+b)=2于是=(a+b)。
因为=-,所以(a+b)。
图5-8又因-a+b==2,所以=(b-a).由于=-,=(a-b).例2 设液体流过平面S上面积为A的一个区域,液体在这区域上各点处的速度均为(常向量)v.设n为垂直于S的单位向量(图5-11(a)),计算单位时间内经过这区域流向n 所指向一侧的液体的质量P(液体得密度为)。
(a)(b)图5-11解该斜柱体的斜高|v |,斜高与地面垂线的夹角为v与n的夹角,所以这柱体的高为|v|cos,体积为A|v|cos=A v·n。
从而,单位时间内经过这区域流向n所指向一侧的液体的质量为P= A v·n.例3 设的三条边分别是a、b、c(图5-15),试用向量运算证明正弦定理证明注意到CB=CA+AB,故有CBCA=(CA+AB) CA=CACA+ABCA=ABCA=AB(CB+BA) =ABCB图5-15于是得到CBCA=ABCA =ABCB从而 |CBCA|=|ABCA| =|ABCB|即ab sin C=cb sin A=ca sin B所以5。
2 点的坐标与向量的坐标例1 已知点A(4,1,7)、B(-3,5,0),在y轴上求一点M,使得|MA|=|MB|。
解因为点在y轴上,故设其坐标为,则由两点间的距离公式,有解得,故所求点为例2 求证以三点为顶点的三角形是一个等腰三角形.解因为所以,即△为等腰三角形。
5.2。
2 向量运算的坐标表示例3 设有点,,求向量的坐标表示式.解由于,而,,于是即例4 已知两点A(4,0,5)和B(7,1,3),求与方向相同的单位向量e。
解因为=–=(7,1,3)-(4,0,5)=(3,1,–2),所以=,于是 e.例5 求解以向量为未知元的线性方程组其中a=(2,1,2),b=(—1,1,-2).解解此方程组得x=2a–3b , y =3a–5b以a,b代入,即得x=2(2,1,2)–3(–1,1,–2)=(7,–1,10)y=3(2,1,2)–5(–1,1,–2)=(11,–2,16)。
向量代数与空间解析几何(18)

m
n
p
s {m, n, p},
: Ax By Cz D 0, n {A, B,C},
(s^,n)
2
(s^,n)
2
sin
cos
2
cos
2
.
20
sin
| Am Bn Cp | A2 B2 C 2 m2 n2 p2
直线与平面的夹角公式
直线与平面的位置关系:
y
x
• ••
L
24
旋转曲面方程
总之,位于坐标面上的曲线C,绕其上的 一个 坐标轴转动,所成的旋转曲面方程可以 这样得到 :
曲线方程中与旋转轴相同的变量不动, 而用另两个的变量的平方和的平方根(加正、 负号)替代曲线方程中另一个变量即可.
25
如 yOz坐标面上的已知曲线f ( y, z) 0 绕z轴旋转一周的 旋转曲面方程:
第六章 向量代数与空间解析 几何(二)
主要内容 典型例题 堂上练习题
小结
1
一、主要内容
第4节 平面的方程
关键确定平面的法向量
一、平面的点法式方程
经过点 M 0 (x0 , y0 , z0 ) 法向量为 n {A, B, C} 的平面的点法式方程为:
A(x x0 ) B( y y0 ) C(z z0 ) 0
z
O
y
x
28
z
5. 椭球面
x2 a2
y2 b2
z2 c2
1
O
6. 单叶双曲面
x
x2 a2
y2 b2
z2 c2
1
7. 双z叶双曲面
x2 y2 z2 a2 b2 c2 1
x
y
z
高等数学第06章 向量代数与空间解析几何习题详解

ab AC 2 AM 即 (ab) 2 MA 于是 MA 1 (ab) 2 因为 MC MA 所以
MC 1 (ab) 又因ab BD 2 MD 所以 MD 1 (ba) 2 2
2 2
M1M 3 (4 5)2 (3 2)2 (1 3)2 6 ,即 M1M 3 M 2 M 3 , 因此结论成立.
11、 在 yoz 坐标面上,求与三个点 A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设 yoz 坐标面所求点为 M (0, y, z ) ,依题意有 | MA || MB || MC | ,从而
14 14 ,故所求点为 (0,0, ) . 9 9
13、 求 使向量 a { ,1,5} 与向量 b {2,10,50} 平行.
2
第六章 向量代数与空间解析几何习题详解
解:由 a // b 得
2
1 5 1 得 . 10 50 5
14、 求与 y 轴反向,模为 10 的向量 a 的坐标表达式. 解: a = 10 ( j ) 10 j = {0, 10,0} .
7、已知点 A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐
1
第六章 向量代数与空间解析几何习题详解
标). 解:分别为 (a, b,0), (0, b, c), (a,0, c), (a,0,0), (0, b,0), (0,0, c) .
8、过点 P(a, b, c) 分别作平行于 z 轴的直线和平行于 xOy 面的平面,问它们上面的点的 坐标各有什么特点? 解:平行于 z 轴的直线上面的点的坐标: x a, y b,z R ;平行于 xOy 面的平面上的 点的坐标为 z c, x, y R . 9、求点 P(2,-5,4)到原点、各坐标轴和各坐标面的距离 . 解:到原点的距离为 3 5 ,到 x 轴的距离为 41 ,到 y 轴的距离为 2 5 ,到 z 轴的距离 为 29 .
[全]高等数学之向量代数与空间解析几何知识点与题型总结[下载全]
![[全]高等数学之向量代数与空间解析几何知识点与题型总结[下载全]](https://img.taocdn.com/s3/m/a18b0a7008a1284ac9504311.png)
高等数学之向量代数与空间解析几何知识点与题型总结
向量代数与空间解析几何知识点:
(1)向量代数知识点
(2)两平面夹角与两直线夹角公式
两平面夹角和两直线夹角公式(3)点到直线的距离公式
点到直线的距离
(4)常见二次曲线
常见二次曲线
题型一:求曲线上一点到某一固定平面的最近距离和最远距离例1:
【分析】:曲线上一点(x,y,z)到XOY面的距离为|z|,但把目标函数设为
f(x,y,z)=|z|,不便于计算,因而常把目标函数设为f(x,y,z)=z^2,把两个方程看成约束条件使用拉格朗人数乘法求解即可。
解:
题型二:求直线方程
建立直线方程有两个基本方法:
(1)已知直线L上的一个点P(x0,y0,z0)和直线L的方向向量s={l,m,n}就可以确定直线L;
(2)两个不平行的平面相交于一直线;
例2:求过点(-1,0,4)且平行于平面3x-4y+z=10,又与直线x+1=y-3=z/2相交的直线方程。
分析:只要求出所求直线方向向量即可,可利用所求直线与已知平面平行且与已知直线相交直接求。
解:。
高等数学期末复习-向量代数与空间解析几何

r a
与三个坐标面
xoy,
yoz,
zox
的夹角分别为1, 2,
3 (
0
1, 2,
3
2
),则
cos2 1 cos2 2 cos2 3
;
解: cos2 1 cos2 2 cos2 3 2 ,所以填 2。(内容要求 2)
r 4、向量 a
(1,
1,
).
(A) a b a b
(B) a b a b
(C) a b a b
(D) a b a b
解: a b 2 | a |2 | b |2 2 | a | | b | cos | a |2 | b |2 ,( cos =0)
a b 2 | a |2 | b |2 2 | a | | b | cos | a |2 | b |2
{2, 4,
}
,且
r a
/
r /b
,则
(
);
10
(A)
(B) 10
(C) 6
(D) 6
3
3
解:因为
ar
/
r /b
,所以
1
2
3
,所以选 C。(内容要求 8)
24
r
r
r
r
16、设向量 a {2, 1, 10} , b {4, 2,1},则向量 a 与向量 b 的关系是(
5)
11、已知 a 1, b
2
,且 a 与 b 的夹角为
,则
a
b
(
).
4
(A) 5
向量代数与空间解析几何

(一)向量代数 1.知识范围 (1)向量的概念 向量的定义 向量的模 单位向量 向量在坐标轴上的投影 向量的坐标表示法 向量的方向余弦 (2)向量的线性运算 向量的加法 向量的减法 向量的数乘 (3)向量的数量积 二向量的夹角 二向量垂直的充分必要条件 (4)二向量的向量积 二向量平行的充分必要条件 2.要求 (1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。 (2)掌握向量的线性运算、向量的数量积与向量积计算方法。 (3)掌握二向量平行、垂直的件。
解: AB = {3, 1, 2}
|AB|
解
解
实例
定义
两向量的数量积
数量积也称为“点积”、“内积”.
关于数量积的说明:
证
数量积符合下列运算规律:
交换律:
ቤተ መጻሕፍቲ ባይዱ
分配律:
若 为数:
数量积的坐标表达式
设
数量积的坐标表达式
两向量夹角余弦的坐标表示式
解
证
4、两向量的向量积
实例
定义
(3)
例1 化简
解
例2 试用向量方法证明:对角线互相平分的四边形必是平行四边形.
证
与 平行且相等,
结论得证.
[3] 向量与数的乘法
数与向量的乘积符合下列运算规律:
结合律:
分配律:
按照向量与数的乘积的规定,
3. 向量的坐标
单击此处添加文本具体内容,简明扼要地阐述你的观点
01
02
向量的模与方向余弦的坐标表示式
非零向量 的方向角:
非零向量与三条坐标轴的正向的夹角称为方向角.
由图分析可知
向量的方向余弦
空间解析几何例题

第4章 向量代数与空间解析几何习题解答习题一、计算题与证明题1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ⨯+⨯+⨯. 解:因为1||=a , 4||=b , 5||=c , 并且0=++c b a 所以a 与b 同向,且b a +与c 反向 因此0=⨯b a ,0=⨯c b ,0=⨯a c 所以0=⨯+⨯+⨯a c c b b a2.已知3||=⋅b a , 4||=⨯b a , 求||||b a ⋅. 解:3cos ||=⋅=⋅θb a b a (1)4sin ||=⋅=⨯θb a b a (2)()222)1(+得()252=⋅b a所以 5=⋅b a3.设力k j i F 532++-=作用在点)1,6,3(A , 求力F 对点)2,7,1(,-B 的力矩的大小. 解:因为()1,6,3A ,()2,7,1-B 所以()31,2--=力矩()()k j i k j i F AB M 53232++-⨯-+-=⨯=kj i kj i kj i 41614321252325331532312-+=--+-----=---=所以,力矩的大小为()13641614222=-++=M4.已知向量x 与)2,5,1(,-a 共线, 且满足3=⋅x a ρρ, 求向量x 的坐标. 解:设x 的坐标为()z y x ,,,又()2,5,1-=a则325=-+=⋅z y x x a (1)又x 与a 共线,则0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y ky x j y x i z y z yx kj i所以()()()05252222=-+++--y x x z z y即010*********22=-++++xy xz yz z y x (2) 又x 与a 共线,x 与a 夹角为0或π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax整理得 103222=++z y x (3) 联立()()()321、、解出向量x 的坐标为⎪⎭⎫⎝⎛-51,21,101 5.用向量方法证明, 若一个四边形的对角线互相平分, 则该四边形为平行四边形.证明:如图所示,因为平行四边形ABCD 的对角线 互相平分,则有==,由矢量合成的三角形法则有+=+=+=+=所以CD BA =即BA 平行且等于CD四边形ABCD 是平行四边形6.已知点)7,8,3(A , )3,2,1(--B 求线段AB 的中垂面的方程. 解:因为()7,8,3A ,)3,2,1(--BAB 中垂面上的点到B A 、的距离相等,设动点坐标为()z y x M ,,,则由MB MA =得()()()()()()222222321783++-++=-+-+-z y x z y x化简得027532=-++z y x这就是线段AB 的中垂面的方程。
向量代数与空间解析几何-平面及其方程

−1 −1 1 2 Q = = = , 两平面重合 −4 2 2 −2
例8 求过点 M1 (0, −1,0), M 2 (0,0,1),且与xoy面
成 60 角的平面.
o
r n
60o
解 所求平面的法向量为: r n = ( A, B , C ), ⎯ ⎯→ r Q n ⊥ M 1 M 2 = (0, 1, 1) ⎯→ r ⎯ ∴ n ⋅ M 1 M 2 = 0, B + C = 0 r∧ r 又 Q ( n , k ) = 60o r r 1 n⋅k C o = cos 60 = r r = r ∴ 2 nk n
⎯ ⎯→
r n
⋅ P0 P1 ⋅
N
Π
P1 P0 ⋅ n Prjn P1 P0 = n
⎯ ⎯→
P1 P0 = ( x0 − x1 , y0 − y1 , z0 − z1 )
⎯ ⎯→
r n = ( A, B , C )
P1 P0 ⋅ n Prjn P1 P0 = n
⎯ ⎯→ ⎯ ⎯→
A( x0 − x1 ) + B( y0 − y1 ) + C ( z0 − z1 ) = A2 + B 2 + C 2
第七章
第三节 平面及其方程
一、主要内容 二、典型例题 三、同步练习 四、同步练习解答
一、主要内容
(一) 平面方程
设有平面 Π , M0 ( x0 , y0 , z0 ) ∈ Π 点 z r 如果一非零向量垂直于一 n 平面,这向量就叫做该平 M0 Π 面的法向量. M r o 平面 Π 的法向量 n 的 特征: r r x ① n≠0 r ② n⊥Π
y
r 设法向量:n = ( A, B , C ), r ( n = A2 + B2 + C 2 ≠ 0)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间解析几何与向量代数向量及其运算目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算;重点与难点重点:向量的概念及向量的运算。
难点:运算法则的掌握过程:一、向量既有大小又有方向的量称作向量通常用一条有向线段来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.向量的表示方法有两种:→a、→AB向量的模:向量的大小叫做向量的模.向量→a、→AB的模分别记为||→a、||→AB.单位向量:模等于1的向量叫做单位向量.零向量:模等于0的向量叫做零向量,记作→0.规定:→0方向可以看作是任意的.相等向量:方向相同大小相等的向量称为相等向量平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反,就称这两个向量平行.记作a // b.规定:零向量与任何向量都平行.二、向量运算向量的加法向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a 的起点到b的终点的向量c称为向量a与b的和,记作a+b,即c=a+b .当向量a与b不平行时,平移向量使a与b的起点重合,以a、b为邻边作一平行四边形,从公共起点到对角的向量等于向量a与b的和a+b.向量的减法:设有两个向量a与b,平移向量使b的起点与a的起点重合,此时连接两向量终点且指向被减数的向量就是差向量。
→→→→→AOOBOBOAAB-=+=,2、向量与数的乘法向量与数的乘法的定义:向量a与实数λ的乘积记作λa,规定λa是一个向量,它的模|λa|=|λ||a|,它的方向当λ>0时与a相同,当λ<0时与a相反.(1)结合律λ(μa)=μ(λa)=(λμ)a;(2)分配律(λ+μ)a=λa+μa;λ(a+b)=λa+λb.例1在平行四边形ABCD中,设−→−AB=a,−→−AD=b.试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点. 解 :a +b −→−−→−==AM AC 2于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ).又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ).由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).定理1 设向量a ≠ 0, 那么, 向量b 平行于a 的充分必要条件是: 存在唯一的实数λ, 使 b = λa .三、空间直角坐标系过空间一个点O ,作三条互相垂直的数轴,它们都以O 为原点。
这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),统称为坐标轴。
三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标面。
其中x 轴与y 轴所确定的平面叫做xOy 面,y 轴与z 轴所确定的平面叫做yOz 面,z 轴与x 轴所确定的平面叫做zOx 面。
三个坐标面把空间分成八个部分,每一部分叫做卦限。
含x 轴、y 轴、z 轴正半轴的那个卦限叫做第I 卦限,其它第Ⅱ,Ⅲ,Ⅳ卦限,在xOy 坐标面的上方,按逆时针方向确定。
第Ⅴ到第Ⅷ卦限分别在第Ⅰ到第Ⅳ卦限的下方(如图)。
设P 为空间一点,过点P 分别作垂直x 轴、y 轴、z 轴的平面,顺次与x 轴、y 轴、z 轴交于P X ,P Y ,P Z ,这三点分别在各自的轴上对应的实数值x ,y ,z 称为点P 在x 轴、y 轴、z 轴上的坐标,由此唯一确定的有序数组(x ,y ,z )称为点P 的坐标。
依次称x ,y 和z 为点P 的横坐标、纵坐标和竖坐标,并通常记为P (x ,y ,z )。
坐标面上和坐标轴上的点, 其坐标各有一定的特征. 例如: 点M 在yOz 面上, 则x =0; 同相, 在zOx 面上的点, y =0; 在xOy 面上的点, z =0. 如果点M 在x 轴上, 则y =z =0; 同样在y 轴上,有z =x =0; 在z 轴上 的点, 有x =y =0. 如果点M 为原点, 则x =y =z =0.四、利用坐标作向量的线性运算对向量进行加、减及与数相乘,只需对向量的各个坐标分别进行相应的数量运算利用向量的坐标判断两个向量的平行: 设a =(a x , a y , a z )≠0, b =(b x , b y , b z ), 向量b //a ⇔b =λa , 即b //a ⇔(b x , b y , b z )=λ(a x , a y , a z ), 于是zzy y x x a b a b a b ==.例2求解以向量为未知元的线性方程组⎩⎨⎧=-=-b y x ay x 2335,其中a =(2, 1, 2), b =(-1, 1, -2).解 如同解二元一次线性方程组, 可得 x =2a -3b , y =3a -5b . 以a 、b 的坐标表示式代入, 即得x =2(2, 1, 2)-3(-1, 1, -2)=(7, -1, 10), y =3(2, 1, 2)-5(-1, 1, -2)=(11, -2, 16).例3已知两点A (x 1, y 1, z 1)和B (x 2, y 2, z 2)以及实数λ≠-1, 在直线AB 上求一点M , 使→→MB AM λ=.解 设所求点为M (x , y , z ), 则→) , ,(111z z y y x x AM ---=, →) , ,(222z z y y x x MB ---=. 依题意有→→MB AM λ=, 即(x -x 1, y -y 1, z -z 1)=λ(x 2-x , y 2-y , z 2-z ) λλ++=121x x x , λλ++=121y y y , λλ++=121z z z . 点M 叫做有向线段→AB 的定比分点. 当λ=1, 点M 的有向线段→AB 的中点, 其坐标为221x x x +=, 221y y y +=, 221zz z +=.空间向量数量积与向量积目的:掌握向量的数量积、向量积的定义及数量积的性质;掌握其计算方法。
重点与难点:数量积与向量积的计算方法。
过程:一、两向量的数量积数量积的物理背景: 设一物体在常力F 作用下沿直线从点M 1移动到点M 2. 以s 表示位移→21M M . 由物理学知道, 力F 所作的功为W = |F | |s | cos θ ,其中θ 为F 与s 的夹角.数量积: 对于两个向量a 和b , 它们的模 |a |、|b | 及它们的夹角θ 的余弦的乘积称为向量a 和b 的数量积,记作a ⋅b , 即a ·b =|a | |b | cos θ . 数量积与投影:当a ≠0时, |b | cos(a ,^ b ) 是向量b 在向量a 的方向上的投影 数量积的性质:(1) a·a = |a | 2.(2) a 、b , 为非零向量, a·b =0是 a ⊥b 的充要条件 数量积的运算律: (1)交换律: a·b = b·a (2)分配律: (a +b )⋅c =a ⋅c +b ⋅c .(3) (λa )·b = a·(λb ) = λ(a·b ), 数量积的坐标表示:设a =(a x , a y , a z ), b =(b x , b y , b z ), 则a·b =a x b x +a y b y +a z b z .设θ是a 与b 的夹角,则当a ≠0、b ≠0时, 有222222||||cos zy x z y x z z y y x x b b b a a a b a b a b a ++++++=⋅=b a b a θ复习高中时的有代表性的例题例1 一质点在力F=4i + 2j +2k 的作用下,从点A(2, 1, 0)移动到点B(5, –2, 6) ,求F 所做的功及F 与间的夹角.解 由数量积的定义知, F 所做的功是W=F .s, 其中s=AB =3i – 3j+6k 是路程向量, 故W=F .s=(4 i + 2j +2k).( 3i – 3j+6k )=18.如果力的单位是牛顿(N),位移的单位是米(m),则F 所做的功是18焦耳(J).再由式(6.7),有 cos θ =s F s F ⋅=2222226)3(322418+-+++=21, 因此, F 与s 的夹角为θ=3π. 例2 求向量a=(5, –2, 5)在 b=(2, 1, 2)上的投影. 解 Cos<a,b >=b b a ⋅=41410210+++-=6. 二、两向量的向量积向量积: 设向量c 、 a 、b 满足:c 的模 |c |=|a ||b |sin θ , 其中θ 为a 与b 间的夹角;c 的方向垂直于a 与b 所决定的平面, c 的指向按右手规则从a 转向b 来确定. 则称向量c 是a 与b 的向量积, 记作a ⨯b , 即c = a ⨯b .向量积的运算律:(1) 交换律a ⨯b = -b ⨯a ;(2) 分配律: (a +b )⨯c = a ⨯c + b ⨯c .(3) (λa )⨯b = a ⨯(λb ) = λ(a ⨯b ) (λ为数).向量积的坐标表示: 若a = a x i + a y j + a z k , b = b x i + b y j + b z k . 则zy x z y x b b b a a a kj i b a =⨯=zyz y b b a a i –zxz x b b a a j +yxy x b b a a k .= ( a y b z - a z b y ) i + ( a z b x - a x b z ) j + ( a x b y - a y b x ) k . .例3 设a =(1,2,–2), b =(–2,1,0), 求a ⨯b 及与a 、b 都垂直的单位向量.解 a ⨯b =012221--kj i =0122-i –0221--j +1221-k= 2i +4j +5k .所求的单位向量为±2225)4(21++(2i +4j +5k )=±155(2i +4j +5k ).例4 已知三角形ABC 的顶点分别是A (1, 2, 3)、B (3, 4, 5)、C (2, 4, 7), 求三角形ABC 的面积.解 根据向量积的定义, 可知三角形ABC 的面积→→→→||21sin ||||21AC AB A AC AB S ABC ⨯=∠=∆. 由于→AB =(2, 2, 2), →AC =(1, 2, 4), 因此→→421222kj i =⨯AC AB =4i -6j +2k .于是 142)6(421|264|21222=+-+=+-=∆k j i ABC S .例5设a =(–2, 3, 1), b =(0,–1, 1), c =(1, –1, 4),三个向量是否共面?解 因为r =a ⨯b 与a 、b 所确定的平面垂直,所以当a 、b 、c 三个向量共面时, 应该有 r ⊥c ,即r .c =0.r =a ⨯b =110132--kj i=(4, 2, 2) ,所以有r .c = (4i +2j +2k ).( i – j +4k )=4–2+8=10≠0,因此三个向量不共面.空间简单图形及其方程方程目的:掌握直线、平面、常见曲面的方程及其求法;会利用平面、直线的相互关系解决有关问题。